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Modeling of an impact system with a drift
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A physical model to examine impact oscillators has been developed and analyzed. The model accounts for
the viscoelastic impacts and is capable to mimic the dynamics of a bounded progressive(andtifi)y which
is important in practical applications. The system moves forward in stick-slip phases, and its behavior may
vary from periodic to chaotic motion. A nonlinear dynamic analysis reveals a complex behavior and that the
largest drift is achieved when the responses switch from periodic to chaotic, after a cascade of subcritical
bifurcations to period one. Based on this fact, a semianalytical solution is constructed to calculate the progres-
sion of the system for periodic regimes and to determine conditions when periodicity is lost.
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I. INTRODUCTION Il. MATHEMATICAL MODELING

. . W nsider imple tw ree-of-fr m m
The dynamics of physical systems, whose componentg, e consider a simple two degree-of-freedom system,

ke | . ith h oth 4 wh hich is shown in Fig. (b). A massm is driven by an ex-
make Intermittent contacts with each other and whose Cofyy ) force containing a harmonic component of amplitude

tact points are progressively drifting, is of a considerablepd’ frequencyQ and phase shifp, and a static component,
importance in practical applications. Imagine, for example, .. The slider has weightless top and bottom plates con-
vibroimpact syste.m.driving a pile into the ground. During it§ nected to each other by a linear spring with stiffniesand a
operation, the driving module moves downwards, and its;iscous damper with damping coefficientSimilarly to the
motion may be viewed as a sum of a progression with conggick-slip phenomena reported {21,272, the progressive
stant velocity and bounded oscillations. The simplest physimotion of the mass occurs when the force acting on the slider
cal model exhibiting sqch beh_avior is Compri_sed of a mas$yceeds the threshold of the dry friction foe. X, X, Xp
loaded by a force having static and harmonic componentgepresent the absolute displacements of the mass, slider top,
and a dry friction slider, as shown in Fig(al. This model 4.4 slider bottom, respectively. It is assumed that the model

was introduced and preliminarily analyzed[ih2]. Despite  operates in a horizontal plane, or gravity force is included in
its simple structure, a very complex dynamics was revealed, siatic force.

The main result from that work was a finding that the best \ye assume that at the initial moment0. there is a

progression occurs when the system responds periodicallyisiance between the mass and the slider top calledGap
The dynam|cs of that system is similar to the dynamics ofrpe gapG is one of the system parameters and it may be
impact oscillatorgsee, for example,3—11)). , positive, negative, or equal to zero.@&>0, there is a tran-

A special feature of impacting systems that might provegiona| phase when the mass moves freely without any in-
to be useful in the current study is the instability caused by 4ction with the slider: iiG=0. the mass is touching the
!ow-velocny coI_I|S|0_ns, so-called grazing effects. The first gjijer top, but the slider spring is not compressed; and fi-
|mpqrtant Worl_< in this area was done bY Nordr_n-BIR], th nally, if G<O0, there is a precompression of the slider.
studied analytically the occurrence of singularities in a piece- ¢ the system may operate in stick-slip phases, its dy-

wise linear system. This work has been further expanded by, e gimension may vary. For the case when the mass and
thorough investigations of two-dimensional maps, whergpe glider move separately, the dynamics of the system is
some l_mlversal beh_awor h_as been fogh8-14. _ described by one second- and two first-order differential
A wide range of impacting models have been applied toequations
simulate and analyze engineering systems operating within

bounded dynamic responses. For example, in heat-exchanger

tubes[17], thin-wall milling [18], ultrasonic drilling of hard mX,=Ps+ Pycod Qt+ @),
materials[19], and a vibroimpact ground moling system
[20], impacting models have proved to be useful. However, C(Xt—Xb)+k(Xt—Xb):O, 1)

as it has been mentioned earlier, very feM2] have consid-

ered systems with drift. To fill this gap, a detailed math- )

ematical modeling and nonlinear dynamic analysis of a Xp=0.

model is given in this paper. The model includes the vis-

coelastic properties of the contact between the impactingVhen the mass and the slider are in contact, their motion is
mass and the frictional slider, which were previously ne-described by one second-order and one first-order differential
glected. equations, which may be either oscillatory
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(@ ()
P=Picos(Qt+¢)+P;

P=Pi cos(Qt+@)+P:

m
FIG. 1. Physical models of
m progressive impact systemsa)
: previous model[1,2], (b) new
I Slider{ k § "i" c Xo model.
X [
Pr X:
X Fr
X
M X+ C(X;— Xp) + K(X;— Xp) = Ps+ Py cog Qt + o), A. No contact
2) If the displacement of the mass is smaller than the dis-
)'(bzo, placement of the slider top plus the gap,
or progressive x<z+g, (4)
MXyn=—P¢+ P+ PycogQt+o), then the mass and the slider top move separately. The motion
o (3)  of the mass may be determined from the following set of
C(Xi— Xp) +K(X;—Xp) = Py equations:
Note that for Eqs(2) and(3), the displacement of the slider X'=y

top X; is in phase with the displacement of the mxss, but
differs by a gap ®

'=aco +¢)+Db,
N y dor+o)

The equations of motio(il)—(3) are to be transformed to sets where’ denotesd/dr. Equations of motion for the top and
of first-order differential equations. These sets will use thethe bottom of the slider are
following nondimensional variables:

1
k dx k. Z'=——(z-v) (6)
T=Qt, x= mxm, Y—d—T—mxm, 2¢
K k v'=0 (7)
z= X, v= Xp» '
Prax” ' Prmax
and parameters B. Contact without progression
This mode occurs when the relative displacement of the
Q k Py Ps mass exceeds the displacement of the slider top, i.e.,
w= Q_, 0= E, a= P y b= =) )
0 max max X>Z+g, (8)
P C k
d= Pmax’ £= 2mQ,’ - PmaxG' and the force acting on the mass from the slider is greater
than zero but smaller than the threshold of the dry friction
whereP ., is @ normalization constant force. force, which may be expressed as
As has been discussed above, the considered system may
operate at the time in one of the following modés: no 0<2é7' +(z—v)<1. 9)

contact;(ii) contact without the progression of the slidgii;)

contact with the progression of the slider; and for each, a

careful consideration will be given next. For the simplicity of In this case, the mass and the slider top move together but
further analysis, the dimensionless friction threshold fatce without progression, and the second equation of (Bghas

is set to 1. additional elastic and viscous terms
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g FIG. 2. Displacement of the mass,(solid
E curve and slider bottomyp (dash curvg versus
_§ time, 7 calculated fora=0.3, b=0.22, »=0.2,
& 1501 g=0.02, ¢==/2, and £=0.01. The zoom-up
A windows of regionsA and B are presented in
N Figs. 3a) and 3b), respectively.
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x' =y, tions of motion. We will use the Heaviside functiéf(-) to
(10) describe the piecewise linear nature of the system.

y'=—2¢z2'—(z—v)+acodwr+¢)+b. P P1(x.2)=H(X—2—q). 17

The velocity of the slider top is equal to the velocity of the
mass, and the displacement of the slider top is in phase with
the mass displacement but differs gyn position

z'=x’, (11

Po=Py(2,2 ,v)=H(2¢z +2-v),
P;=P5(z,z' ,v)=H(2¢z' +z—v—1),

Py=P4(v")=H(v").

X=2z+g. (12 ) ) _ .
Finally, the equations of motion for the system being con-

When there is no progression, the bottom of the slider residered may be given by the following set of first-order dif-
mains stationary, hence, its velocity is equal to zero ferential equations:

v'=0. (13 x'=y,
y'=acowr+¢)+b—PPy(1-P3)(2&y+z—v)
ey, a9

C. Contact with progression

When the displacement of the mass is equal to or greater
than the displacement of the slider top plus the =2 Eq.
(8)], and the force acting on the mass is greater than the
threshold of dry friction force

2' =Py~ (1= Py)(z—v)/2¢,

v’ =PiPsP[y+(z—v—1)/2¢].

2¢2'+(z—v)=1, (14 . ) _ .
Equations(18) will be used to conduct nonlinear dynamic

then the mass and the top and the bottom of the slider ar@nalysis(Sec. Il) by a means of numerical integration, and
moving together, and the progression takes place. Equatior#so to construct an algorithm to determine periodic re-

of motion for mass are sponsegSec. V).
x'=y, IIl. NONLINEAR DYNAMIC ANALYSIS
15
y'=acofwr+¢)+b—1, 13 The basic function of the investigated system is to over-

come the frictional force and move downwards. Despite the
The displacement and the velocity of the slider top are defact that the considered model has only two degrees of free-
scribed as beforgsee Egs(11) and(12)]. The velocity of the  dom, the dynamics of this system is very complex, varying
slider bottom motion may be calculated from the expressiorirom different types of periodic to chaotic types of motion. A

below typical steady-state time history is presented in Fig. 2, where
the absolute displacement of the impacting m@sdid line)
, o1 and the bottom of the slidgidash ling are shown. As the
vi=zt 2—5(2— v=1). (16) responses of the slider top and the mass are indistinguishable

in Fig. 2, a zoom up of the time history between 839.7 and
Having spelled out different distinct phases of motion, let841 (window A) is depicted in Fig. @&). The vertical dis-
us now define a set of auxiliary functiorB,, P,, P3, and  tance between the solid and dash lines, for any time when the
P,, which will be used to obtain the final form of the equa- mass is in contact with the slider top, is equal to the gap
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FIG. 3. (a) Displacement of the masg,(solid curve and slider topz (dash and dotted curyeversus time,r for a=0.3,b=0.22,
=0.2,g=0.02,p= /2, and£¢=0.01; (b) Displacement of the mass(solid curve and slider bottomy (dash curveversus times for the
same values of parameters.

The progressive motion of the slider bottom and the massescillations are caused by the mass being in permanent con-

may be seen from Fig.(B). The phases when the mass andtact with the slider.

the slider are in contact and out of contact are essential for Further in this section, a brief overview of the global sys-

the dynamics of this system and they are discussed in detaiém dynamics will be given by a means of bifurcation dia-

later in the paper, where the periodic solution is constructedgrams, Poincarenaps, and Lyapunov exponents, which have
Our study has revealed that the largest ditie best pro- been computed usin@ynamicssoftware[24].

gression is achieved for period-one motidirig. 4, curve Since the displacements of the system elemémisss,

(d)], which may be clearly seen by examining displacementop, and bottom of the slideare moving from the origin, the

of the slider bottomdash lineg in Fig. 4. The steady-state mass velocity has been used to view the structural changes in

responses ate (800,1200) for the same system parameterghe system responses due to the fact that it is bounded.

are depicted on Figs.(&-5(e). Figure 5 shows an important Therefore, the bifurcation diagrams presented in Fig. 6 with

sequence of subcritical bifurcations, where the system bifurthe branching parameters as the static force and frequency of

cates from period foufFig. 5b)] to period two[Fig. 5(c)], excitation, are constructed for the change of the mass veloc-

then from period two to period ondig. 5(d)]. A transition ity.

from period-one to chaotic motion with a high-frequency In Fig. 6@a), a bifurcation diagram for variable static force

componen{Fig. 5e)] determines the interval of static force b is presented. The bifurcation structure is rather complex

b for which the best progression exists. In addition, the sysf13,16 and not typical of a smooth system because the vec-

tem may exhibit chaotic motion at largEig. 5a)], and this

tor field given by Eqs(18) is nondifferentiable. As can be

will be discussed later. The periodic motion depicted in Fig.seen, the system responds chaoticallytfer(0.0,0.1) with a

5(f) is similar to the one obtained for a four-dimensional narrow window of periodic motion, fob e (b4,

b,). Then

rotor system studied by Heijdef23]. The high-frequency we have a large window of periodic motion farin the

800 @
. 600+ TAN
< -\ ©
= i N ] FIG. 4. Displacement of the mass, (solid
2 400 ) 7 _nl©  curves and slider bottomy (dash curvesversus
3 Y R AN N ) time, 7 calculated fora=0.3, w=0.1, §=0.05,
= o004 G A _ - AR N R \c’\ \ g=0.02,¢=m/2, and(a) b=0.05;(b) b=0.095;
& - A~A AN ANAAY V/ .. (©) b=0.1; (d) b=0.15; (¢) b=0.19, and(f) b
A 2\ AWA VA" A .../\/J\(a) o
PP VAR A N i W WAV R
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0 400 800 1200 1600
Time, T
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FIG. 5. Steady-state responses of the magsplid curve$ and slider bottomy (dash curvesfor a=0.3, w=0.1, £=0.05,g=0.02,
¢=m/2, and(a) b=0.05; (b) b=0.095;(c) b=0.1; (d) b=0.15;(e) b=0.19, and(f) b=0.27.

interval (0.10,0.165), where its end is marked by a verticainarked abh~0.165. Since the system equilibrium is moving
dash line. Thereafter, a series of quasiperiodic and perioditowards larger displacements, one way to monitor the pro-
windows appear. This branching parameter proved to be vergression rate is to calculate progression in a finite time. In
useful for determining the regions of the best progression. our experiments, we set up time equal to 50 periods of
Figure @b) uses the frequency of excitatiomy as a external loading. As can be clearly seen from Fig. 7, the
branching parameter. The system starts up with a narrownaximum penetration rate coincides with the end of periodi-
chaotic window arouna = 0.03, and then oscillates periodi- cal regime, which occurs fdr~0.165. Also, it is worth not-
cally up tow=~0.25, where a first period of doubling bifur- ing a few local maxima for higher values bf which were
cation occurs. The second period of doubling appears aroungientioned by Krivtsov and Wiercigrocfi]. The informa-
»w=0.37, leading eventually to chaos far in the interval tion regarding the position of the maximum penetration rate
(0.4,0.55). Then, the system has a window of periodic mo{the end of periodic regimehas been used to develop a
tion, initially with period two, which atw=~0.62 doubles and semianalytical algorithm for determining this point, and this
at w~0.68 doubles again leading to chaotic motion startingwill be outlined in the next section.
approximately atw~0.7. Apart from the velocity, the other bounded characteristic
The observation of the bifurcation diagrams has broughof the system is the difference between displacement of the
some practical insight regarding the progression ratesnass and displacement of the slider bottom. This difference
achieved by the system. By looking at the bifurcation dia-was used for construction of Poincareps. Poincarenaps
gram in Fig. 6a), the end of the large periodic window is for two different values of the frequeney and fixed static
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4l ! FIG. 7. Progressions fa=0.3, £=0.05, »=0.1, g=0.02, ¢
E = /2. Dash line indicates the value of static force corresponding to
31 | the maximum progression.

final displacements and velocities of the preceding phase de-
fine the initial conditions for the next one. This enables us
also to calculate the time interval for which a particular
phase persists. Finally, the initial conditions of the first phase
are being found from the periodicity condition. The current
5 0.50 0.75 1.00 paper refrains from a detailed account of the method used to
Frequency, © determine the periodic solution as this will be given in a
separate publication. However, a skeleton of the method will
FIG. 6. Bifurcation diagram&lash lines indicate borders of dif- pe discussed below.
ferent regimeg (a) y=f(b) for a=03, §=0.05 =01, g In Fig. 9, a sequence of four phases for the one period of
=0.02, ¢=m/2; (b) y=f(w) for a=0.3, b=0.15, £=0.05,9  period-one motion is presented. This typical pattern is com-
=0.02, ¢=m/2. Bifurcation diagrams are constructed as follows. prised of the following:

The initial value of the branching parametefor o) is set to the Phase | — progression: the mass and the slider are in con-
leftmost value 0.000.02 in the (a) and (b). For this set of param- tact

o meb i 12 Phase 11 - contact wihout progression: the mass and he
P g anything. 1 . ; slider are in contact but the slider bottom is not moving.
map produces 300 values of the velocitywhich are plotted in the Phase Il — no contact: the mass and the slider are movin
figure. Then a small increment is added to the branching paramet%repamltely - ’ 9
[in these figures it is equal t®(0r ) max— b(Or w)min)/480] and : . .
the procedure is repeated until the branching parameter reaches th%PhaSe IV' — contact without progression: the same as
rightmost value. The repetition of the procedure by decreasing th&hase |l. . . . . L
branching parameter from rightmost to leftmost value showed no N order to simplify our consideration, the beginning of
hysteresis in the system. progression was chosen as an initial point. In this moment,
the mass and the slider top are moving together, and the
and dynamic forces and damping coefficient are given in Figforce actln_g on the mass from the slider rg_aches the threshold
lue. Taking into account that the velocities of the mass and

8. They demonstrate a strange attractor development, whiq[\fri;" ider t | and their disol s differ bv th
appears to be similar to the one reported5h As can be € slider top are equal, and their displacements differ by the

seen, the higher the frequency, the more complex the beha¥ar: the f_oIIowing relati_on between the initial displacement
ior of the system and velocity may be written:

Velocity, y

[}
¥
-
1
1
1

2&yo+(Xg—9g—vo)=1. (19
IV. PERIODIC BEHAVIOR
As the initial displacement of the slider bottony, does not

The numerical analysis of th m shows that th
© numerical analysis of the system shows that t influence the mass motion, it is set to zero. Thus, we have

period-one motion presented in Figdbis the most efficient
from the progression point of view. Since our system is
piecewise linear, this periodic solution may be constructed

by matching linear solutions at points of discontinuitiesy.,
[25]). The other unknown is the time at this initial momergt

The following approach has been adopted here. Initially,This means that we need to evaluate a phase shift between
it is assumed that the displacement and velocity of the madée external force and the system response at the beginning
have certain(yet unknown values. Starting from these val- of the process
ues, the system operates in one of the phases described in
Sec. Il. The solutions for each phase are constructed. The o=t wTg. (21
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There are two periodic conditions for the mass displacemerfunctionF to monitor a difference between the exact periodic

and velocity solution and the one calculated for these arbitrary initial con-
ditions
X(7+T)=x(7)+A,
(22)
y(r+T)=y(7), F=IX(r+T)=x(1) - AP+ [y(r+T)—y(n)]% (24

whereT is the period and\ is progression of the slider per o ) o
period. We will look for the periodic regimes, where the If the minimum of this function is equal to zero, then the

period T is equal to the period of external loading periodic regime exists, and the durations of all four phases
may be determined. To provide a reader with more details
2 about how the solution is constructed, Phase | is carefully

T=— (23)  considered in the Appendix.

The constructed semianalytical solution gives a means to
investigate the dependence of the progression per period as a
function of the system parameters. Figure 10 shows the in-
fluence of the static forck on the progression per period for
different values of dynamic force under fixed damping co-
efficient ¢ and frequency of external loading. As may be
seen from the graphs, the progression reaches the maximum
values at some certain values of static force and close to this
maximum the periodic solution breaks dovdash ling. The
existence of this maximum is in a good agreement with the
numerical calculations, known experimental dg2&], and
the previous analytical mode[4,2].

Thus, three unknown functiong,, X,, andyy, may be
found from Eqs.(22) and(23). However, the arbitrary solu-
tion of these equations cannot guarantee Xgaandy, sat-
isfy Eq. (20). For this reason, we first substitukg by the
function ofy, [expression(20)], and then construct a special

160+
o
§
£41201
5}
o
g
g 80
Q
5
£ 40-
T . . .
0.1 0.2 03 0.4 0.5
FIG. 9. Four phases of a periodic response; solid line — dis- Static force, b

placement of the mass, dash line — displacement of the slider top,

dotted line — displacement of the slider bottom. The blow-up win-  FIG. 10. Influence of static force on progression fo+0.01,
dow shows the displacements of the mass, slider top, and bottom at=0.1, g=0.02, ¢ = /2 calculated using the developed semiana-
the beginning and at the end of the period. lytical method.
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a
V. CLOSING REMARKS y(7)= ~[siwr+ o) = sin(¢o) ]+ (b= 1) 7+yo.
In this paper, a model of an impact system with a dry (A2)
frictional slider was developed and analyzed. The system
operates with bounded progressive resporigedrift). The Having obtainedx(r) and taking into account that( 7)

system parameters were chosen to experience stick-slip phe=x(7) —g, the displacement of the slider bottom may be
nomenon, which is used to mimic dynamics of engineeringfound by solving of Eq(16)

systems(e.g., downhole drilling or ground moling The

model has been mathematically formulated and the equations T
of motion developed. A typical nonlinear dynamic analysis v(7)=X(7)—g—1+2¢&y, exp{ Y
has revealed a complex behavior ranging from periodic to
chaotic motion. The bifurcation diagrams were constructed . - .
using variation of the mass velocity as the displacement has_ When the progression condition, EG4) fails, another

a drift. It was found that the maximum progression coincided?hase. contact without progression, begins, and thus, the end

with the end of periodic regime and the beginning of chaotic®f the first phase may be found from the following equation:

motion (the largest Lyapunov exponent jumps froal0 ®

to 10 %). This information was used to construct a semiana-
lytical solution, which is useful to determine the conditions

for the best progression rates. It is hoped that this model,
having important practical applications, will be useful for gy supstituting Eq(A2) for Eq. (A4), we obtain
other physical application&.g., motion of suspended par-

ticles in fluid) and will stimulate further work on the dynam-

. (A3)

y(a)—Yq ex;{ — 215) =0. (A4)

. . . (%
ics of systems with drifts. ;[Sin(wa-i— o) —Sin(hg) ]+ (b—1)a+yo—VYo exp{ — 2_5)
=0. (A5)
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APPENDIX A=v(a)=x(a)—g—1+2¢&y, exp( - 2—). (A7)
In order to demonstrate the idea of construction of peri-

odic solution, let us consider in detail the first phdpeo- . . . -
gressiof of the period depicted in Fig. 9. The frargew%rk for At this point, the progression phase has finished and another

the remaining phases is similar. The adopted method aIIOWghase, contact without progression, has begun. Therefore, the

us to find step-by-step durations of all phases as functions d'F"t'al co_ndltlons for the second phase are calculated using
initial valuesxg, Yo, and ¢,. Then by satisfying the period- expressionsAl) and(A2)
icity condition as it is explained in Sec. IV, these values and
progression per period may be found. Xi=X(a), y=y(a). (A8)
We start our consideration from the progression phase in
the moment, when this phase has just befpupandyy are  The process should be continued by solving the equations of
connected by relation Eq20)]. Using the initial values of motion for the next phase with the initial conditioms,y;
Xo, Yo, andyy, we may construct the solution of EGL5) as  and phase shifif;=¢;_,+ew, wherei=LILIILIV and &
=a,B,7y,6. Finally, X, andy, may be found from the peri-
a 1 odicity conditions
X(1)= = —[cod T+ ) =~ Cod 4ho) ]+ 5 (b=1) 7 +yo7
@ Xy =X(8)=A+Xo,
(A9)

a
"o 7 St X, (A Yv=Y(8)=Yo.
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