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Semiclassical quantization of strongly chaotic vibrations in anM 7-like cluster

Atsuko Inoue-Ushiyama and Kazuo Takatsuka*
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902, Tokyo, J

~Received 2 February 2001; published 24 October 2001!

We report semiclassical energy spectra of vibrational state of a cluster composed of seven identical atoms
like Ar7 in terms of our previously developed semiclassical wave function, which we call the action-
decomposed function. The classical dynamics of this vibrational state is strongly chaotic and undergoes a large
amplitude motion due to structural isomerization, which demands a long run of trajectory calculation. Permu-
tation of identical particles should also be taken into account as a quantum effect, since a single molecular
shape can be shared by many permutational isomers. Furthermore, chaos causes a spurious divergence in the
amplitude factor of a correlation function in the initial value representation, which arises from the amplitude
factor ~prefactor! of a semiclassical wave function, while the final-state representation is suffered from the
well-known divergence arising at caustics. Both approaches therefore face tremendous difficulty in a long-time
calculation of the correlation functions. We challenge to extract some limited number of spectral lines from
such chaotic dynamics. We further apply a correlation function that is free of such a troublesome amplitude
factor. Numerical results from all these schemes are reported.

DOI: 10.1103/PhysRevE.64.056223 PACS number~s!: 05.45.Mt, 03.65.Sq, 33.20.Tp, 36.40.2c
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I. INTRODUCTION

Isomerization dynamics of clusters composed of ident
atoms shows many quite interesting features that const
some of the central notions in chemical dynamics. For
stance, anM7 cluster such as Ar7 on the Lennard-Jones po
tential has four structural isomers having the correspond
potential basins~local minima!, which are individually de-
generate among the very many permutation isomers. T
isomerization dynamics has been studied extensively fro
view point of a microcanonical analog of the first-ord
solid-liquid phase transition@1#. The statistical properties
arising from typically chaotic dynamics such as a Marko
type appearance of isomers in a high-energy region has
analyzed@2–6#. This isomerization dynamics may also b
viewed as a prototype of high-energy multichannel chem
reactions in which multiple channels leading to differe
products are wide open@7#. A recent finding in this aspect i
that the average lifetimes of the isomers bear an arrhen
like relation with a temperature, called the local microc
nonical temperature, that reflects a variational structure
the equi-energy plane in phase space for the individual
tential basins@8#.

It is extremely interesting and important to consider t
quantum effects in the above cluster dynamics, since it
give a theoretical foundation of how the quantum effects
survive~or fade away! in mesoscopic systems. In particula
eigenfunctions arising from structural isomerization can
flect superpositionof wave packets representing the ind
vidual molecularshapes. ~We abbreviate it assuperposition
of molecular shapes.! Quantum mechanics thereby mak
the classical notion of molecular shape vague. Besides,
highly nontrivial how the quantum vibrational spectra
isomerization may be formed from the superposition of m
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lecular shapes. With these analyses in mind as our final g
we in this paper begin with an attempt of semiclassi
evaluation of vibrational spectrum of anM7-cluster up to an
energy at which its classical counterpart undergoes struct
isomerization.

A pioneering work about quantum effects on cluster d
namics was made by Leitneret al. @9# for Ar3 in terms of the
level statistics. Chakravartyet al.studied the effects of three
body forces on quantum chaos in rare-gas trimers@10#. Re-
cently, quantum effects on large clusters have been explo
within the framework of the quantum Monte Carlo meth
by Rick, Neirotti, and their coworkers@11,12#. The group of
Chakravarty is also developing a path-integral Monte Ca
simulation method for clusters@13#. Our paper here is aimed
at quantization of strongly chaotic vibrational states of
seven-particle cluster, covering a high-energy region,
which the Lindemann index suggests occurrence of struct
isomerization.

It is expected that a full quantum calculation of the ener
spectrum of such a large chaotic system is prohibitively d
ficult. Even the standard semiclassical theory@14–19# should
be faced with extremely tough problems. A very rare exc
tion is a recent work of Breweret al. @20#, who quantized a
system of 15 coupled vibrational degrees of freedom. In
present paper, we apply a semiclassical wave function
has been developed and analyzed before by ourselves, w
we call the action decomposed wave function~ADF! @21#.
The ADF requires far less classical trajectories to calcula
time-correlation function, the Fourier transform of whic
gives rise to an energy spectrum. As a price, the ADF m
sacrifice accuracy to some extent in case of a highly quan
system, for which action integrals are relatively small co
pared to the magnitude of the Planck constant.

As a report of this series of semiclassical studies on c
ter dynamics, the present paper explores some basic sub
that should be taken into account in actual numerical ca
lations. The classical dynamics of anM7 cluster is hence
revisited from another point of view. For instance, the p

u-
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tern of isomerizations is to be classified in the context
particle permutation. Also, the localK entropy proposed by
Hinde, Berry, and Wales@22,23# is viewed as a quantity tha
practically limits the time length of the time-correlatio
function.

The semiclassical theory based on the ADF is also
examined so as to cope with strong chaos in a large sys
The main difficulty is spurious divergence in the amplitu
factor ~prefactor! of semiclassical wave functions or the ke
nel: not only the well-known divergence at caustics@16,19#
in the final value representation~FVR!, but also an exponen
tial growth of the amplitude factor in the initial value repr
sentation~IVR!. ~See Refs.@24–30# for the initial and final
value representations of the semiclassical kernels.! Both of
the divergences impose tough restrictions on the prac
integration of the correlation function. We here manage
extract the spectral information as much as possible.

Nevertheless, the spectrum we can obtain by a tact
application of both the IVR and FVR is limited in an energ
range where the exponential growth of the amplitude fac
in the IVR is sufficiently slow. We therefore apply our pr
viously formulated correlation function that is free of th
amplitude factor@31#. Numerical results with this correlatio
function are also reported.

The present paper is organized as follows. In Sec. II, c
sical dynamics of anM7 cluster is re-examined from
viewpoint of semiclassical application. The first half of Se
III briefly reviews the Maslov-type semiclassical theory a
then it is extended to take account of permutation of ident
particles. The last half presents some numerical result
vibrational spectrum. In Sec. IV, we show the numerical
sults given by the amplitude-free correlation function. Th
paper concludes in Sec. V with some remarks.

II. CLASSICAL DYNAMICS OF CLUSTER
ISOMERIZATION

We first review the classical dynamics of clusters bou
by the Morse potential, which undergo isomerization a
highly chaotic motion. A special focus is placed on practi
problems for semiclassical quantization. Many other intere
ing features may be found by consulting papers by
groups of Berry and Wales@1# and our previous paper
@2–8#.

A. System

A classical Hamiltonian of a cluster composed of sev
identical atoms has the following canonical form:

H5
m

2 (
i 51

7 F S dxi

dt D
2

1S dyi

dt D 2

1S dzi

dt D
2G1«(

i , j
~e22b(r i j 2r 0)

22e2b(r i j 2r 0)!, ~1!

wherer i j represents the distance between atomsi and j. The
potential parametersr 0 , «, and b are the equilibrium dis-
tance, potential depth, and the ‘‘range’’ of the isolated
atomic molecule. With the following rescaling:
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bx→ x̃, by→ ỹ, bz→ z̃,

br i j →r i j , br 0→r0 , S «b2

m D 1/2

t→t, ~2!

the total Hamiltonian is transformed to the dimensionle
form

H

«
5

1

2 (
i 51

7 F S dx̃i

dt
D 2

1S dỹi

dt
D 2

1S dz̃i

dt
D 2G1(

i , j
~e22(r i j 2r0)

22e2(r i j 2r0)!. ~3!

In what follows, our numerical results are all represented
these dimensionless~absolute! units. In Eq. ~3!, only one
parameterr0 is left to control the Hamiltonian. The range o
physically accessibler0 is @32# about 1.5,r0,7.0.

Braier and Berry@32# have studied the effects of the po
tential ranger0 in the above Morse function, deducing th
following qualitative results: The number of distinct pote
tial minima and transition states depends onr0; the larger is
r0, the shorter~more compact! is the potential range and th
more are geometrically different potential minima. For e
ample, the Ar7 cluster, to whichr056.0 should be assigned
has four stable local structures~isomers! as in the Lennard-
Jones potential@33#. These stable structures are labeled p
tagonal bipyramid~PBP!, capped octahedron~COCT!, tri-
capped tetrahedron, and bicapped trigonal bipyram
~SKEW! with the potential minimum of 216.208«,
215.564«, 215.248«, and215.216«, respectively. On the
other hand, for smallerr0, say,r053.0, only two structures,
the PBP and COCT are present. The energies at the bo
of their basins are217.553« and 217.276«, respectively.
~See Ref.@5# for the dependence of dynamics onr0.! To
identify the molecular structure among possible isomers,
a usual practice to use the so-called quenching technique
to Stillinger and Weber@34#.

In what follows, we confine ourselves to a system ofr0
53.0 to quantize the vibrational states under a rather sim
situation as stated above. In thisM7-like system of appropri-
ate molecular parameters (r 0 , «, andb), the unit time ap-
proximately corresponds to 0.8 ps, and the Plank consta
about 0.08. The relative energy is to be measured from
bottom of the PBP structure217.553«.

B. Isomerization

It is well known from cumulative studies on small cluste
@1,33,35,36# that a single cluster, such as the Ar7-like cluster,
undergoes ‘‘melting’’ from solidlike to liquidlike states a
the total energy increases. Such a transition may be w
monitored by the Lindemann index

d5
2

N~N21! (
i , j

~^r i j
2 & t2^r i j & t

2!1/2

^r i j & t
, ~4!

which detects the stiffness of a cluster by measuring the
viation of the bond length from their average values. Here
Eq. ~4!, N is the number of composite particles,r i j is a dis-
3-2
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SEMICLASSICAL QUANTIZATION OF STRONGLY . . . PHYSICAL REVIEW E64 056223
tance between thei th andj th particles, and̂ & t means a time
average. The time interval over which to take the averag
usually taken to be long enough to attain a converge.

Figure 1 shows the Lindemann curve starting from
PBP basin. Three stages are observed; the ‘‘solidlike’’ ph
below about 0.6« that is called ‘‘freezing point,’’ and the
‘‘liquidlike’’ phase above about 1.1« called ‘‘melting
point,’’ and the coexistence region in between. Below
freezing point, a cluster displays a bounded motion~small
and local oscillation! in the PBP basin and seldom comes o
of the basin. As the total energy increases over the mel
point, a drastic structural change, namely, the transition fr
one basin to another begins to start. Therefore, the bo
states above the freezing point must be generated by tra
tories undergoing isomerization.

The periods of the vibrational motions in the solidlik
state~low-energy extreme! are often estimated in terms o
the normal modes at the bottoms of the basins. In Table I,
frequencies, periods, and eigenenergies thus obtained fo
PBP basin are listed. The period of the PBP structure ran
from 2.050t to 5.955t ~from 1.654 to 4.806 ps! and the
eigenenergy from 0.086« to 0.249«. The zero-point energy
of this system in theharmonic approximationis then given
as high as 1.2849«, which is higher than the melting energ
(1.1«). This fact simply indicates that the present molec
is far from a harmonic system. Similarly, Leitneret al. @9#
found that the zero-point energy of the Ar3 cluster was al-
ready in the energy range of classical chaos.

The dissociation energy of the presentM7 cluster is
roughly estimated as 9.0«, which is much higher than the
melting energy and therefore even higher than that of
transition state. Although the cluster dissociates directly w
an energy higher than 12.0«, those in between 9.0« and
12.0« remain bounded with a long induction time befo
dissociation.

FIG. 1. The Lindemann index versus the total energy of theM7

cluster (r053.0) in absolute units. The freezing and melting poin
are about 0.6« and 1.1«, respectively.
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C. Two types of isomerization and permutation of atoms

One of the important quantum effects in the study of clu
ters composed of identical atoms is the permutation sym
try. There are quite a lot of permutation isomers, whi
roughly amounts to the order of 7! for aM7 cluster for indi-
vidual structural isomers.~Note that the number of the per
mutation isomers heavily depends on the molecular sym
try, although semiclassical quantization does not care ab
instantaneous molecular symmetries appearing along cla
cal trajectories.! Since the quenching method@34# alone does
not distinguish permutation isomers, we need a conventio
indicator to identify them. A method devised by Sawada a
Sugano using a distance index should work well for t
purpose@37#. We here consider a similar method.

Let qt be a point of a classical trajectory at timet in
3N-dimensional Cartesian configuration space.~However,
we actually fix the motion of the center of mass and the to
rotation.! A point qt also specifies the molecular geometry
identifying the potential basin@34#. Then, the molecular size
at each time may be measured with a hyper-radiusR(qt)

R~qt!5uqt2qPBPu, ~5!

where, for instance,qPBPdenotes the molecular configuratio
at the bottom of the PBP basin. For a given coordinateqt ,
one may create its permutation isomersP̂iqt ( i 51, . . . ,7!)
by applying the permutation operatorsP̂i on the atomic co-
ordinates. It is obvious that operation ofP̂i does not change
the potential and geometry. However,uP̂iqt2qPBPu may be
different from each other. Then let us assume a traject
that starts from the PBP basin and comes back to the P
basin with an atomic permutation after a series of isomer
tions. It is then expected that

uqt2qPBPu@uqt502qPBPu. ~6!

TABLE I. Frequencies, periods, and assumed eigenenergie
the normal modes.

Frequency (t21) Period (t) Period~ps! Eigenenergy («)

3.063 2.050 1.654 0.249
3.038 2.069 1.669 0.247
3.038 2.069 1.669 0.247
2.743 2.291 1.849 0.223
2.743 2.291 1.849 0.223
2.386 2.631 2.123 0.194
2.386 2.631 2.123 0.194
2.226 2.816 2.273 0.181
1.697 3.706 2.991 0.138
1.697 3.706 2.991 0.138
1.500 4.196 3.386 0.122
1.500 4.196 3.386 0.122
1.464 4.280 3.454 0.119
1.058 5.955 4.806 0.086
1.058 5.955 4.806 0.086
3-3
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On the other hand, one may find a permutation operatoP̂j
that recovers

uP̂jqt2qPBPu5uqt2 P̂j
21qPBPu.uqt502qPBPu. ~7!

Thus, if such aP̂j is found, we can approximately judge th
a cluster has undergone a permutation after isomeriza
Since it is tedious to find such aP̂j , we alternatively deter-
mine the following distance along a trajectory, which we c
the shape distance, as

Rp~qt!5min$uP̂iqt2qPBPuu i 51, . . . ,7!%. ~8!

Thus, if

R~qt!5uqt2qPBPu@Rp~qt! ~9!

is observed, we judge that a permutation has occurred.
Detecting the occurrence of permutation isomerization

one thing and incorporating the effect of permutation exp
itly in the semiclassical theory is another, since we will do
without the use ofR(qt) or Rp(qt) as shown in the nex
section. However, one may say that if such permutati
occur frequently, the quantum effect due to permutat
symmetry~boson or fermion! should be taken into accoun
If, conversely, permutation isomerization rarely occurs
classical dynamics, this quantum effect on a spectrum sh
not be significant. We will show that this is really the case
the next section.

We next show selected examples to see how often per
tations may occur after structural isomerizations.Rp(qt) and
R(qt) for trajectories of three different energy 0.18«, 1.12«,
and 3.82« are sampled in Fig. 2. It is observed that~a! Rp
does not become larger than about 5, and~b! Rp(qt)
5R(qt) for trajectories in lower energy (;2.5« for t
,100t). It is thus observed thatRp(qt) andR(qt) are mu-
tually similar for lower-energy trajectories (0.18« and
1.12«), while they deviate significantly from each other f
the high-energy trajectory (3.82«). It turns out numerically
that in the energy lower than;2.5«, a cluster getting out of
a basin returns mostly to the permutationally same basin
was before isomerization~note that the melting energy i
about 1.1«). This motion is called swinging motion. On th
other hand, if the total energy exceeds;2.5«, a cluster be-
comes to start a long journey, wanders among basins,
comes back to the same shape but in a permutationally
ferent basin. We call such a motion ‘‘wandering motion
Trajectories of wandering motion should be required to ta
account of permutation of particles for a quantum correlat
function to be able to count a correct value. In other wor
the quantum effect arising from the particle permutat
should become vital in quantizing such high-energy sta
On the other hand, for a quantum system whose main c
tributions come from the swinging motion, the permutati
symmetry must play only a marginal role.
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D. Measure of the extent of chaos

In our semiclassical approximation arises an amplitu
factor u]qt /]q0u1/2 along a trajectory@see Eq.~41!#. This
value generally oscillates but its envelope grows expon
tially in a strongly chaotic system, which deteriorates t
semiclassical approximation. We, thus, should check the
of this divergence beforehand. A standard way to meas
the instability of a classical trajectory is to calculate the
genvalues of the so-called stability matrix@38–40# Z,

Z5F ]~qt ,pt!

]~q0 ,p0!G , ~10!

which satisfies the following equation of motion,

Ż5JHZ , ~11!

whereH is the Hessian matrix of the classical Hamiltonia
and the symplectic matrixJ is

J5S 0 1

21 0D . ~12!

~See Ref.@41# for an accurate calculation ofZ.! From Eq.
~11!, the equation of motion for one of the submatrices,

D[@]qt /]q0#, ~13!

is obtained in the following form:

FIG. 2. The hyper-radius~curves! and shape distance~points
indicated with squares and so on! for selected trajectories in abso
lute units. For trajectories of energies as low as 0.18« and 1.12«,
the shape distance continues to coincide with the hyper-rad
whereas the high-energy trajectory is associated with a large de
tion between the two. The latter indicates an occurrence of per
tation isomerization.
3-4
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D̈52VD, ~14!

whereV is the Hessian of the potential, namely,

V5
]V

]qt]qt
. ~15!

With the diagonal matrixL[U(2Hxx)U
21, Eq. ~14! is rep-

resented as

UD̈U215L~UDU21!. ~16!

Consequently, the determinant of matrix (UDU21), namely,
D5det(D) is roughly estimated as

D;e* [a(t)1 ib(t)]dt, ~17!

wherea and b denote the sum over the square root of t
positive and negative eigenvalues, respectively, ofL at each
time. That is, the average value ofa is regarded as the Kol
mogolov entropy at timet, so that

D;exp@K̄t#, ~18!

whereK̄ is a time average ofa(t).
The localK entropy due to Hindeet al. and Hinde and

Berry @22,23# is a quantity that represents the magnitude
the negative curvature at a point on the potential-energy
face, defined as

K5 (
v j

2
,0

uv j
2u1/2, ~19!

wherev j
2 denotes the eigenvalue of the local Hessian ma

of the potential functionV. ~Here, we have disregarded
factor 1/log102 appearing in the original definition@22,23#!.
A trajectory becomes unstable when it passes over a n
tively curved portion of the potential-energy surface. T
larger K indicates the more separation in the bundle of t
jectories.K̄ defined above is essentially the same quantity
K. More precisely, the time average of the localK entropy
along the trajectory

^K& t5
1

TE0

T

Kdt5
1

T (
i 51

T/nt

Knt ~20!

is regarded asK̄ for simplicity.
Figure 3 shows the time averaged localK entropy from

10 000 sample trajectories, where the time averaging is
ried out with nt50.5t and T51000t. It is seen that̂ K& t
becomes larger almost linearly with the total energy in
range from about 1« up to 8«. The abrupt fall seen in the
very high-energy region beyond 8«;9« is due to dissocia-
tion ~break! of the clusters. In addition, it has been nume
cally confirmed that̂ K& t does not strongly depend onT and
nt in the energy range@;1«, ;8«#. Thus, we see that th
present system exhibits a strong and ‘‘uniform chaos.’’
uniform we mean that the localK entropy depends on th
total energy alone but not much on the individual trajector
05622
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and the length of the integration time. Below the melti
point ~about 1.1«), however, the behavior of̂K& t is rather
complicated~see Fig. 3!. In fact, the energy dependence
theK entropy in Ar3 is reported to be not monotonic aroun
the energy range of phase change@9#. Berry and his co-
workers and Hinde and Berry have analyzed the localK en-
tropy by comparing it with the potential topography, an
found a remarkable fact that it takes relatively small va
~suggesting dynamical stability! around the transition state
@1,22,23#.

As seen in Fig. 3,K̄ ranges from 0 to 2 for theM7-like
cluster with the total energy up to the dissociation limit 9.0«.
Thus, the magnitude ofD in Eq. ~18! may range from the
order of 100 to 10200 in t5100t, depending on the tota
energy. In evaluating the semiclassical correlation functi
many trajectories having different energies and such trem
dously different magnitudes in the amplitude have to
taken into account@see Eq.~28!#, which causes a seriou
difficulty in the numerical integration.

III. SEMICLASSICAL VIBRATIONAL SPECTRA WITH
THE ACTION DECOMPOSED FUNCTION

We next present a brief review of the formulation of
Maslov-type semiclassical wave function, with which w
calculate the correlation functions@21#. An extension to take
account of the permutation is made.

A. The action decomposed function

Maslov and Feodoriuk@17# have established a systemat
theory to generate a class of wave functions in the form

C~q,t !5F~q,t !expF i

\
SclG , ~21!

FIG. 3. The localK entropy vs the total energy in units of«,
averaged over 10 000 trajectories.
3-5
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where Scl denotes the classical action satisfying t
Hamilton-Jacobi equation

]Scl

]t
1HS q,

]Scl

]q
,t D50. ~22!

The lowest-order semiclassical equation of motion for
amplitude functionF(q,t) is

]F

]t
1v•¹F1

1

2
~¹•v !F50, ~23!

which has neglected (i\/2)¹2F from the right-hand side of
the full ~rigorous! equation of motion forF. An explicit so-
lution to Eq.~23! may be readily obtained as

F~qt ,t !5F~q0,0!S ]qt

]q0
D 21/2

5F~q0,0!U ]qt

]q0
U21/2

3expF2
ipM

2 G , ~24!

where the Jacobian determinant]qt /]q0 is taken under a
fixed initial momentump0, andM is the Maslov index in this
representation that counts the number of zeros of]qt /]q0 up
to degeneracy@16#. The classical action in Eq.~21! has natu-
rally been chosen as theF2-type generating function o
Goldstein@42# ~denoted asS2 hereafter!. In other words, all
the classical paths representing Eq.~21! lie on a single action
surface, the initial momentum of which isp0 everywhere.
This is why we call this function as the action-decompos
function ~ADF!. Having this action function as a phase, t
initial form of ADF at t50 is rewritten as

Cp0
~q,t !5F~q,0!expF i

\
p0qG . ~25!

Any arbitrary wave function may be expanded in terms
the ADF’s ~see below!. Among others, a wave function tha
consists of a single ADF is called single ADF~SADF!. A
SADF is rewritten in a little more global form as

Cp0
~q,t !5E dqtd~q2qt!F~q0 ,t !

3U ]qt

]q0
U21/2

expF i

\
S2~qt ,p0 ;t !2

ipM

2 G . ~26!

For the later convenience, we also call this the final va
representation~FVR!. As is well known, the amplitude facto
u]qt /]q0u21/2 diverges at every caustic, where]qt /]q050.
Besides, the sampling of trajectories is not easy to have
integral of Eq.~26! be accurate, since the pointsqt result
only after running trajectories ofp(0)5p0. They are not
necessarily good quadrature points. To overcome these
ficulties, one may transform the integration variables as

E •••dqt5E •••U ]qt

]q0
Udq0 , ~27!
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which was first proposed by Miller@24# to treat the Feynman
kernel in the initial value representation~IVR!. The result is

Cp0
~q,t !5E dq0d@q2qt~q0 ,p0!#F~q0 ,t !

3U ]qt

]q0
U1/2

expF i

\
S2~qt ,p0 ;t !2

ipM

2 G . ~28!

After Miller we call this form the IVR. In this representation
the initial sampling is much easier, and the amplitude fac
u]qt /]q0u1/2 becomes zero at caustics.

B. Propagation of an arbitrary wave function in terms of ADF

An arbitrary wave function may be evolved in time
terms of the ADF as follows@21#. Suppose we have a de
composition for an arbitrary wave function such that

C~q!5F~q!G~q!, ~29!

under a condition thatG(q) has a momentum representatio

G̃~p!5
1

~2p\!NE G~q!expS 2
i

\
pqDdq. ~30!

We assume thatF(q) is a slowly varying function inq space.
The total wave function thus decomposed is rewritten as

C~q!5E dp0G̃~p0!F~q!expS i

\
p0qD , ~31!

which is regarded as a superposition of many ADF’s of E
~25!. The semiclassical time propagation of this wave fun
tion is described in a straightforward manner as

C~q!5E dp0G̃~p0!E dqtd~q2qt!F~q0,0!U ]qt

]q0
U21/2

3expF2
ipM

2 G , ~32!

whereq05]S2(q,p0 ;t50)/]p0.
As an extreme example of this wave function, the sem

classical Feynman kernel in the coordinate-momentum r
resentation̂ quexp@2(i/\)Ht#up0&5K(q,p0;t) is reproduced by
setting

F~q!51 ~constant!; G~q!5C~q!~wave function itself!,
~33!

and hence,

G̃~p!5C̃~p!

3~momentum representation of the wave functio!.

~34!

We then have
3-6
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C~q,t !5
1

~2p\!NE E dq0dp0d~q2qt!U ]qt

]q0
U1/2

3expF2
ipM

2 GexpF i

\
S2~qt ,p0 ;t !GC̃~p0!.

~35!

This is nothing but

C~q,t !5E dp0K~q,p0 ;t !C̃~p0! ~36!

except for a minor difference in the constant phase facto
The other extreme side of the action decomposition is

single action-decomposed function~SADF!. Let

F5F~q!G5expS i

\
p0qD , G̃~p!5d~p2p0!, ~37!

and we simply come back to Eq.~28!. The most significant
difference between the kernel and SADF is in the distrib
tion in momentum space, namely, Eqs.~34! and ~37!.

C. Correlation function with SADF

As was stressed previously@21#, difference in the dimen-
sionality of the integrals of Eqs.~28! and ~35! is enormous.
The former expression involves onlyN-dimensional integral,
while the latter does 2N-dimensional integral. A price is tha
the SADF is a little less accurate, but it performs much fas
convergence with respect to the number of classical traje
ries required. In fact, the efficiency of the SADF has be
numerically evidenced under certain conditions@21#. That is,
if the Planck constant is small, and/or when a potential un
study is anharmonic, the SADF may reproduce sufficien
accurate quantum energy spectra with far fewer classical
jectories than those that are required by the semiclass
kernel. Since theM7 system is very large from the
viewpoint of quantum and semiclassical dynamics, we c
fine our following calculations only to the SADF scheme.

A time-correlation function represented in the SADF is

C~ t !5^Cp0
~0!uCp0

~ t !&5E dq0F* ~qt,0!F~q0,0!

3U ]qt

]q0
U1/2

expF2
i

\
p0qt1

i

\
S2~qt ,p0 ;t !2

ipM

2 G .
~38!

Again, this expression involves only anN-dimensional inte-
gration. This is in a marked contrast to the correlation fu
tion represented in terms of the semiclassical Feynman
nel, which consists of at least 2N-fold integrals. Therefore
the SADF is anticipated to provide quantum spectra with
fewer classical trajectories. On the other hand, the SADF
a clear limitation beyond which the theory is not valid. Ta
ing this limitation into care, however, one may utilize th
SADF as a very powerful tool to calculate spectra of rat
large systems.
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The energy spectrum may be extracted from the Fou
transform of the time-correlation function C(t)
5^C(0)uC(t)&,

S~E!5
1

2p\E C~ t !expF iEt

\ Gdt. ~39!

C(t) is written with a SADF such that

CFVR~ t !5^Cp0
~0!uCp0

~ t !&5E dqtF* ~qt,0!F~q0,0!

3U ]qt

]q0
U21/2

expF i

\
S2~qt ,p0 ;t !2

i

\
p0qt2

ipM

2 G
~40!

in the FVR or

CIVR~ t !5E dq0F* ~qt,0!F~q0,0!U ]qt

]q0
U1/2

expF i

\
S2~qt ,p0 ;t !

2
i

\
p0qt2

ipM

2 G ~41!

in the IVR.

D. Permutation symmetry in semiclassical correlation function

We next treat the permutation of identical particles in
simplified way. A wave function, symmetrized or antisym
metrized, should have the form

C5
1

AN!
(
i 51

N!

e i P̂iF~x1 , . . . ,xN![PF~x1 , . . . ,xN!,

~42!

whereF(x1 , . . . ,xN) is a primitive function to be symme
trized. P̂i ( i 51, . . . ,N!) denote all the possible permuta
tions, andepi

are their associated parity.epi
521 for odd

permutations for fermions, and otherwise they are sim
positive unity. For bosons,epi

51. The time-correlation
function for such a symmetrized wave function is written

^C~0!uC~ t !&5 K PF~0!UexpF2
i

\
HtGUPF~0!L . ~43!

SinceP commutes with the HamiltonianH, and with the help
of a relationP25AN!P, Eq. ~43! may be written as

^C~0!uC~ t !&5 K P2F~0!UexpF2
i

\
HtGUF~0!L

5AN! ^PF~0!uF~ t !&. ~44!

This way of incorporating the permutation is particular
convenient, since one does not have to care about perm
tion in propagating a primitive wave functionF(t). The
symmetry operation comes in only when we take an over
integral after the time propagation. As an example, letF0(q)
be an initial Gaussian function
3-7
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F0~q!5N expF2
a

2
~q2qc!

2G[N expF2
a

2
R2~q!G .

~45!

Then, our semiclassical time-correlation function is writt
as

^C~0!uC~ t !&5E dqtAN! 3$PF0* ~qt!%F~qt ,t !

5N 2E dqt(
i 51

N! S epi
P̂iexpF2

a

2
R2~qt!G D

3U ]qt

]q0
U21/2

expF2
a

2
R2~q0!GexpF i

\
S2~qt!

2
ipM

2 G . ~46!

Thus, it is sufficient to operate the permutation operat
only to F0* (qt), which is not propagated semiclassically. T
corresponding correlation function disregarding the permu
tion is

^C~0!uC~ t !&5N 2E dqtexpF2
a

2
R2~qt!GU ]qt

]q0
U21/2

3expF2
a

2
R2~q0!GexpF2

i

\
S2~qt!

2
ipM

2 G . ~47!

Through comparison between Eqs.~46! and~47!, it is there-
fore readily predicted that the time-correlation function
considerably underestimated without the permutation w
the shape distance is shorter than the simple hyper-radiu
as in Eq.~9!.

E. On tunneling trajectories

One may incorporate the tunneling effects to all the se
classical theories described above and the amplitude-
correlation function to be discussed below. We have pre
ously proposed a semiclassical tunneling theory by find
nonclassical paths in the real-valued configuration sp
along which complex-valued solutions to the Hamilto
Jacobi equation is generated@43#. These paths may b
adopted into any semiclassical theory@44#. Without these
nonclassical paths, neither potential tunneling nor dynam
tunneling@45# is taken into account well, and therefore, t
tunneling splitting is not produced. In the present pap
however, we do not intend to consider such nonclass
paths in the calculations of the semiclassical correlat
functions, simply because our system is highly chaotic a
since we are mainly interested in relatively high-energy
namics. We here avoid adding complexity to such an alre
complicated dynamic. This aspect is a subject in our fut
work.
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F. Spectra

We now show numerical results for semiclassical qua
zation of the M7 cluster, to which the single action
decomposed function~SADF! is applied. An action surface
p050 is selected to generate an SADF. The Gaussian w
packet is adopted as an initial wave packet with the form

F0~q!5N expF2
a

2
~q2qc!

2G , ~48!

where the center of the Gaussianqc is located at the bottom
of the PBP basin. The parametera is chosen to be unity tha
is small enough for the SADF to be valid. This valuea51,
is actually far smaller than the exponent of an assum
eigenfunction of the lowest normal mode in Table I, whi
corresponds toa;13.

The numerical integration in Eq.~41! has been carried ou
with the multidimensional Monte Carlo integration, in whic
the initial configurationsq0 are picked by means of a multi
dimensional importance sampling method. The importa
sampling is indispensable to avoid energies high enough
the cluster to dissociate. The translational and the rotatio
momentum of the cluster is set to 0. Figure 4 shows
energy distribution of 16 000 classical trajectories thus
tained. The number of samples decrease as the energy
comes higher according to the weighting function. Nonet
less, the energy distribution has a long tail that reaches
dissociation limit. The wide range of energy may be nec
sary to obtain accurate spectra on one hand, but the
energy components necessarily bring about an extremely
ficult practice on the other.

1. Initial value representation and divergence due to chaos

We first attempt to take a Fourier spectrum from the c
relation function in the initial value representation, Eq.~41!.
As noted above, the amplitude factorD1/25u]qt /]q0u1/2 be-
haves asD;exp@K̄t#, although it is free from divergence a

FIG. 4. Energy distribution arising from the multidimension
importance sampling to represent the initial Gaussian wave pa
in absolute units.
3-8
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caustics. The exponential growth of the amplitude fac
brings two difficulties into the calculation:~1! The resultant
Fourier spectra should form Lorentzian peaks at best ra
than a delta-functionlike spikes.~2! More seriously, one has
to give up continuing the calculation of the correlation fun
tion itself due to the numerical overflow.

To illustrate the divergence of the autocorrelation fun
tion in the IVR, we show in Fig. 5 a relatively short tim
evolution of C(t)5^C(0)uC(t)& of Eq. ~41! (0,t,6t).
Recall that the time interval 6t is quite short and is compa
rable to the periods of the normal modes~see Table 1!. Fig-
ure 6 displays the Fourier spectra of the time-correlat
function taken in three different time intervals; the solid, t
short dashed, and the long dashed curves representing
power spectrum of the Fourier transformation ofC(t) for 0
,t,40.96, 40.3,t,40.96, and 40.6,t,40.96, respec-
tively. The evolution timet;40.96t has been a limit of the
present IVR calculation that the SADF can offer.

To quantize a relatively weak chaotic system, Kay p
posed a method in which strongly chaotic trajectories are
abandoned if the pre-exponential factor exceeds a thres
value predetermined@46#. However, this procedure is un
likely to work in our system, since almost all the trajectori
have uniformly a diverging contribution and should
forced to be removed from the calculation~see Fig. 3!. Thus,
we may conclude that it is impossible to quantize a hig
chaotic system like ours by a straightforward application
the IVR. By contrast, the final value representation~FVR! of
Eq. ~40! must be more appropriate because contributi
from unstable trajectories damp due to the inverse form
the pre-exponential factoru]qt /]q0u21/2.

2. Final value representation and divergence due to caustics

Apparent difficulties adherent to the FVR, on the oth
hand, are~1! there is no guarantee whether the integrat

FIG. 5. The time evolution of the absolute value of an autoc
relation function estimated with 16 000 trajectories. An expon
tially divergent behavior due to strong chaos is apparent in the l
time.
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pointsqt in Eq. ~40! give good quadrature points~recall that
p0 is fixed as an initial condition! and~2! it is suffered from
divergence at caustic points. As for the first item, however
is expected thatqt in a strongly chaotic system are random
distributed in space, so random that they may be regarde
sampling points for Monte Carlo integration. We therefo
approximate the FVR correlation function using such
Monte Carlo-type summation overqt without any quadrature
weight.

Figure 7 shows the behavior of the pre-exponential fact
D21/2[u]qt /]q0u21/2 in a logarithmic plot versus time
(log10D21/2 at rather long interval grid points has been co
nected with straight lines!. In Fig. 7~a!, a typical example of
those of low-energy trajectories for 0,t,10t ~the energies
are 0.05« and 0.20«) are shown. The signatures of singula
ties due to caustics are seen quite frequently. These si
larities obviously mar the calculation of the correlation fun
tion. On the other hand, the typical behavior of the p
exponential factors of relatively high-energy trajectori
(1.12« and 3.82«) are shown in Fig. 7~b! for 0,t,45t
along with that for 0.20« for comparison. It appears on on
hand that the exponential decrease ofu]qt /]q0u21/2 due to
chaospractically suppresses the divergence due to caust
On the other hand,D21/2 under too strong chaos becomes
small very quickly that it cannot make an effective contrib
tion to the correlation functionC(t).

A natural tactic to cope with this tough situation should
as follows:~i! First remove the bad effects arising from th
singularity at caustics by imposing a cutoff condition on t
FVR and then~ii ! calculateC(t) to extract a spectrum. This
spectrum will be made up by trajectories of appropriat
weak chaos. This is becauseD21/2 of strongly chaotic trajec-
tories damp for themselves and trajectories of too we
chaos, which cannot cancel the singularity at caustics, m

-
-
er

FIG. 6. The power spectra from the autocorrelation function
the IVR in absolute units. The solid curve, short-chained, and lo
chained curves represent the Fourier transforms of time inter
@0,40.96t#, @40.3t,40.96t#, and@40.6t,40.96t#, respectively.
3-9
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ATSUKO INOUE-USHIYAMA AND KAZUO TAKATSUKA PHYSICAL REVIEW E 64 056223
be cut off. The spectrum arising from low-energy trajec
ries, which are either regular~nonchaotic! or very weakly
chaotic in the above sense, will be recovered later with us
the IVR. The very high-energy spectrum will not be pr
duced anyway in the present procedure. We set a cutoff c
dition so that all the contributions fromD21/2.1.0 is simply
set to zero.

We now report the resultant spectra that have been
tained by means of the FVR with the cutoff. The tim
correlation functions of Eq.~47! for the initial wave-packet
Eq. ~48! have been carried out with 16 000 trajectories ru
ning up to a timeT5140t. The trajectories, their associate
stability matrix, and so on have been integrated by mean
the locally analytic integrator@41#. 140t is short to cover the
typical time scale of the wandering motions (0.6«,E
,2.5«), but is about 30 times as long as the periods
normal modes and the swinging mode~see Table I for the
normal mode and Fig. 2!.

The time-correlation function based on Eq.~47!, which is
denoted asCFVR(t), is shown in Fig. 8. We also have calcu
lated the correlation function, Eq.~46!, in which the atoms
are treated as boson (« i51). It turns out numerically that the
effect of the permutation is negligibly small in this ener
range. The difference between Eqs.~47! and ~46! has been
only about 1%. This is because dynamics in the relev
energy region is utterly dominated by the swinging motion
because trajectories are confined in a basin. It is obse
that CFVR(t) is very small fort,5t;10t, which suggests
that the cutoff condition~rejection whenD21/2.1) may
work too hard in the early time. Incidentally, a reasona
convergence of the correlation function with respect to
number of trajectories has been attained with the use
16 000 trajectories.

Figure 9 shows the resultant energy spectra ofCFVR(t)

FIG. 7. ~a! A typical time evolution of the amplitude factor in
the FVR for trajectories of energy as low as 0.05« ~solid curve! and
0.20« ~dotted curve!. ~b! Exponentially diminishing of the relevan
amplitude factor for higher-energy trajectories.~Time in units oft.!
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thus obtained. Noticeable difference has not been obtaine
the boson spectrum. Two of the distinct peaks are s
around 0.83« and 1.26«, which should have arisen from th
swinging motion, namely, 0.6«,E,2.5«. The broad peak a
;1.26« suggests that it may consist of nearly degener

FIG. 8. The absolute value of the correlation function in t
FVR with the cutoff.~Time in units oft.!

FIG. 9. Energy spectrum in the FVR with the cutoff~setting
zero whenD21/2.1), which eliminates the low-energy compo
nents.~Energy in units of«.! Also, the high-energy spectrum cann
be produced by the FVR, since the amplitude factorsD21/2 are
quickly damped to zero due to strong chaos.
3-10
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peaks. It is important to analyze how these lines are form
This aspect will be discussed in greater detail in our fut
publication.

3. Recovery of the low-energy contributions in IVR with a cutof

As stated above, it is practically impossible for both t
IVR and FVR to produce good spectra arising from hig
energy trajectories that are of largeK entropy. On the other
hand, the low-energy trajectories may be well treated by
IVR as long as their instability is small enough. We, hen
try to recover information from the low-energy trajectori
including those that have been cut off in the FVR by impo
ing a condition of rejection ifD21/2.1. In doing so, we note
that the amplitude factorD1/2 associated with even a chaot
trajectory is still oscillatory even though its global feature
divergent. More precisely,D1/2 changes in an oscillatory
manner between zero and an exponentially diverging va
Hence, one may be able to extract a ‘‘periodic nature’’ fro
a chaotic trajectory by taking account ofD1/2 only in time
intervals during which it takes small values. As a practi
procedure, we nullified the contributions whenD1/2.1 is
satisfied.~Note, however, that the maximum value ofD1/2

eventually overflows in the computer, which disables co
tinuation of the computation. Hence, even with this presc
tion, the time length for the Fourier transform of the corr
lation function is limited.! The energy spectrum thus attaine
in the IVR is shown in Fig. 10. Three panels display t
Fourier spectra arising from three different time interva
namely, ~a! 100,t,131, ~b! 50,t,131, and ~c! 0,t
,131. Very complicated spectral feature has come up.
Lindemann index in Fig. 1 indicates that the dense spect
below the energy about 0.7« should arise from intrabasin
motions in the PBP basin.

IV. AMPLITUDE-FREE CORRELATION FUNCTION

By making use of both the initial and final representatio
of the ADF, we have managed to extract some of the vib
tional spectral lines in the energy range where the expon
tial growth of u]qt /]q0u1/2 is sufficiently slow. It is still true,
however, that the amplitude factor common to the semic
sical theories blocks us to proceed further. We therefore
ply a representation of an approximate correlation funct
that has been devised in the companion paper@31#, in which
such a troublesome amplitude factor is not present. V
recently, Shao and Makri have developed a semiclass
theory to estimate a general correlation function in their o
form that is also free of the amplitude factor~prefactor! @47#.
Our theoretical scheme is different from theirs and no co
parative study is given here.

A. Correlation function

A minimal review for the correlation function we are go
ing to apply is given first@31#. We begin with a rather pecu
liar looking but general form of the correlation function re
resented in terms of the ADF, namely,
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Cp0
~s,t !5^Cp0

~s!uCp0
~ t !&5E expF i

\
S2~qt ,p0 ,t !

2
i

\
S2~qt ,p0 ,s!GF* ~qt ,s!F~qt ,t !dqt

5E E d~qs2qt!F* ~q01,0!

3F~q02,0!expF i

\
S1~qt ,q02,t !1

i

\
p0q02

2
i

\
S1~qs ,q01,s!

2
i

\
p0q01Gdq01

1/2* dq02
1/2dqs

1/2dqt
1/2* . ~49!

FIG. 10. Energy spectrum in the IVR, recovering the low
energy components ofD1/2,1. ~Energy in units of«.! The spectra
in the panels~a!, ~b!, and~c! have been obtained from time interva
@100t,131t#, @50t,131t#, and@0t,131t#, respectively.
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In this expression, the square root of the volume element
dqt

1/2 is defined as@31#

dqt5dqt
1/2dqt

1/2* ~50!

under two rules: One is

dqt
1/25expF i

p

2
N~qt!G udqtu1/2, ~51!

whereN(qt) is the sum of zeros up to the degeneracy of
following determinant picked up by the determinant

]qt

]qt5X
~52!

along a classical path. It is convenient to set the referenc
time t5X at a far remote past, symbolically denoted asX
52`. The other one is

F~qt ,t !dqt
1/25F~q0,0!dq0

1/2, ~53!

which is to be applied only when the two points are co
nected by a trajectory.

From the above expression, a useful representation o
correlation function may be extracted by settings52t, p0
50, andq015q01, resulting in

C̃0~2t,t !5E E d~q2t

2qt!F* ~q01,0!F~q01,0!expF i

\
S1~qt ,q01,t !

2
i

\
S1~q2t ,q01,2t !Gdq01

1/2* dq01
1/2dq2t

1/2dqt
1/2* ,

~54!

where a trajectory now connectsq2t and qt in such a way
that

q2t~q01,p050!5qt~q01,p050!, ~55!

whereqt(q01,p0) is an end point in configuration space
time t of a trajectory starting from (q01,p0) at t50. After a
simple manipulation,C̃0(2t,t) appears to be a simpler form

C̃0~2t,t !5E dq01uF~q01,0!u2expF2
i

\
S1~qt ,q01,t !

2 i
p

2
M ~q2t→qt!G , ~56!

where the Maslov index is defined such thatM (q2t→qt)
5N(qt)2N(q2t) . In this expression, we notice that the a
noying amplitude factor, such asu]qt /]p0u21/2 ~exponen-
tially diminishes! or u]qt /]q01u1/2 ~exponentially grows!, dis-
appears. Note, however, that the Maslov index does ap
in the correlation function. We may call Eq.~56! an interme-
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diate representation, since the trajectories are specified a
middle pointt50 in the time interval@2t,t#.

The energy spectra extracted from the correlation funct
of Eq. ~56!

S~E!5
2

T
Re lim

T→`
E

0

T/2

C̃0~2t,t !expS 2
i

\
EtDdt

5
2

T
lim

T→`
E

0

T/2

dtE dq01uF~q01,0!u2cosF2

\
S1~qt ,q01,t !

2
p

2
M ~q2t→qt!1

2

\
EtG ~57!

does not have a formal distinction between chaotic and in
grable systems. It is well established that the energy spe
in integrable systems are quantized in terms of informat
only of the action integral and the Maslov index, as typica
realized in the EBK condition. On the other hand, it is nev
trivial that those spectra arising from Eq.~57! cover the en-
tire spectrum, sinceC̃0(2t,t) is an extraction from the full
correlation function. The condition considered inC̃0(2t,t)
that all the trajectories are fixed atp050 at t50 must be
appropriate to represent standing or stationary waves, s
standing waves are generally formed in a fixed boundary

B. Spectra

An application of the above amplitude-free correlati
function is presented below to see how the above spectra
improved. Before that, we have numerically confirmed us
a one- and two-dimensional Morse oscillators th
C̃0(2t,t) actually gives spectral lines at correct energy v
ues. Also, the exact quantum-mechanical spectra for
modified Hénon-Heiles system high in the chaotic ener
range have been accurately reproduced@48#. On the other
hand, the amplitudes of these spectral lines~or the enve-
lopes! are deformed to some extent from the true one tha
expected from the full propagation of the initial wave pack
of Eq. ~25!. This is not surprising in view of the definition o
C̃0(2t,t).

SinceC̃0(2t,t) does not involve the diverging or dimin
ishing amplitude factor in it, one may run the trajectories
computeC̃0(2t,t) for a far longer time than the standar
correlation functions considered in the preceding section.
instance,t5131t is the longest we could manage in the IV
as described in the preceding section, while no numer
problem has occurred inC̃0(2t,t) even fort.262t. Conse-
quently, spectral lines with far narrower widths, practica
‘‘line spectra,’’ may be obtained, which is in marked contra
to the previous spectra. We thus check the convergenc
the spectrum with respect to the time length~T! of the Fou-
rier transform withN56000. Figure 11 shows three spect
arising fromT566t, 131t, and 262t. No qualitatively sig-
nificant difference between the spectra ofT5131t and 262t
is noticed. Thus, the spectrum ofT5262t must be long
enough to judge that a convergence has been practicall
tained.
3-12
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We next check the convergence ofC̃0(2t,t) with respect
to the number of classical trajectories. Since there is no
orous method to judge whether the full convergence is
tained, all we may do here is to look at the behavior
C̃0(2t,t) as a function ofN examining the invariance of th
spectrum with respect to an increase ofN. In Fig. 12, we
compare the spectra arising fromC̃0(2t,t) with N54000
andN56000. It turns out that an increase of the trajector
from N54000 to 6000 makes virtually no significant chan
in the spectral feature. Thus, we regard that the spectrum
N56000 as the converged spectrum.

Finally, we compare, in Fig. 13, the spectrum arising fro
the FVR in the ADF, the upper panel, and that based
C̃0(2t,t), the lower panel. The two prominent peaks in t
FVR have been well reproduced by theC̃0(2t,t). This fact
clearly evidences that there are spectral lines arising f
strong classical chaos, for which the magnitude of the a
plitude factor, except for the Maslov phase thereof, does
make an essential contribution to quantization. This is
pressive if we recall again that the individual spectral lin
arising from each periodic orbit necessarily result in
Lorentzian-like shape, the width of which is given by th
imaginary part of the stability exponent@49–51#.

Furthermore, theC̃0(2t,t) spectrum bears many rela
tively high peaks along with the bushlike features. As sta

FIG. 11. Convergence of the spectrum based on the amplit
free correlation function with respect to the time length of the F
rier transform.~Energy in units of«.! The upper, middle, and lowe
panels display the spectra arising fromT566t, 131t, and 262t,
respectively. The number of trajectories is 6000.
05622
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above, these features are not lowered either by increasing
number of trajectories or by lengthening the run time of t
correlation functions. Nonetheless, more study should
necessary to assign these spectral lines. Another impo
point to note here is that we do not see prominent peak
the high-energy region, where isomerization should be do
nant in classical mechanics. This aspect will be one of
most intensive analyses in our forthcoming study on qu

e-
-

FIG. 12. Convergence of the spectrum based on the amplitu
free correlation function with respect to the number of trajectori
~Energy in units of«.! The upper panel shows the spectrum w
4000 trajectories, while the lower one with 6000 trajectories.

FIG. 13. The final energy spectrum based on the amplitude-
correlation function, the lower panel.~Energy in units of«.! The
upper panel shows the spectrum given by the FVR.
3-13
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tum and classical correspondence@48#.

V. CONCLUDING REMARKS

We have studied semiclassical spectrum of vibratio
motion of M7 cluster, the classical dynamics of which
highly and uniformly chaotic. The presence of strong cha
makes it extremely hard to calculate the spectrum. Vari
conditions on which to carry out semiclassical evaluation
the chaotic spectrum have been explored. In particular,
roles of singularities due to chaos and caustics in the I
and FVR have been closely examined. To remove hig
chaotic components arising from high-energy trajector
one needs to impose an appropriate cutoff condition. T
relatively low-energy components may be evaluated us
the IVR.

A simple and practical method to incorporate the parti
permutation into the correlation function has also been p
sented. The effect of the particle permutation could not
clearly observed in this study, simply because we were o
successful to access the spectrum of low-energy isome
tion, for which only the swinging motion is dominant. If w
could have well-treated high-energy trajectories of the w
dering motion, the permutation should have shown its pro
nent role.
.
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Nevertheless, the spectrum we could obtain by use of b
the IVR and FVR is limited in an energy range where t
exponential growth of the amplitude factor in the IVR
sufficiently slow. We therefore applied a correlation functi
that is free of the amplitude factor but with the Maslov ind
being involved. Much finer spectrum than the above FV
and IVR has been obtained. The most prominent peaks
nonetheless reproduced by all the representations. The s
trum based on the amplitude-free correlation function is w
we can do best at the present moment.

The analysis of the spectral peaks has not yet been
formed. For instance, the energyE51.28 at which the most
significant peak is in the domain of the liquidlike phas
where most of the trajectories should undergo isomerizat
Unfortunately, however, the analysis is not necessarily ea
and this aspect will be discussed in full details in our futu
publication@48#.
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