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Semiclassical quantization of strongly chaotic vibrations in anV,-like cluster
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We report semiclassical energy spectra of vibrational state of a cluster composed of seven identical atoms
like Ar; in terms of our previously developed semiclassical wave function, which we call the action-
decomposed function. The classical dynamics of this vibrational state is strongly chaotic and undergoes a large
amplitude motion due to structural isomerization, which demands a long run of trajectory calculation. Permu-
tation of identical particles should also be taken into account as a quantum effect, since a single molecular
shape can be shared by many permutational isomers. Furthermore, chaos causes a spurious divergence in the
amplitude factor of a correlation function in the initial value representation, which arises from the amplitude
factor (prefactoj of a semiclassical wave function, while the final-state representation is suffered from the
well-known divergence arising at caustics. Both approaches therefore face tremendous difficulty in a long-time
calculation of the correlation functions. We challenge to extract some limited number of spectral lines from
such chaotic dynamics. We further apply a correlation function that is free of such a troublesome amplitude
factor. Numerical results from all these schemes are reported.
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I. INTRODUCTION lecular shapes. With these analyses in mind as our final goal,
we in this paper begin with an attempt of semiclassical
Isomerization dynamics of clusters composed of identicakvaluation of vibrational spectrum of ah,-cluster up to an
atoms shows many quite interesting features that constitutenergy at which its classical counterpart undergoes structural
some of the central notions in chemical dynamics. For inisomerization.
stance, arM cluster such as Aron the Lennard-Jones po- A pioneering work about quantum effects on cluster dy-
tential has four structural isomers having the correspondingamics was made by Leitnet al.[9] for Arg in terms of the
potential basinglocal minima, which are individually de- level statistics. Chakravarst al. studied the effects of three-
generate among the very many permutation isomers. Thisody forces on quantum chaos in rare-gas trinj@. Re-
isomerization dynamics has been studied extensively from aently, quantum effects on large clusters have been explored
view point of a microcanonical analog of the first-order within the framework of the quantum Monte Carlo method
solid-liquid phase transitiofil]. The statistical properties by Rick, Neirotti, and their coworkes1,12. The group of
arising from typically chaotic dynamics such as a Markov-Chakravarty is also developing a path-integral Monte Carlo
type appearance of isomers in a high-energy region has beaimulation method for clustefd3]. Our paper here is aimed
analyzed[2-6]. This isomerization dynamics may also be at quantization of strongly chaotic vibrational states of a
viewed as a prototype of high-energy multichannel chemicaseven-particle cluster, covering a high-energy region, in
reactions in which multiple channels leading to differentwhich the Lindemann index suggests occurrence of structural
products are wide op€dr?]. A recent finding in this aspect is isomerization.
that the average lifetimes of the isomers bear an arrhenius- It is expected that a full quantum calculation of the energy
like relation with a temperature, called the local microca-spectrum of such a large chaotic system is prohibitively dif-
nonical temperature, that reflects a variational structure oficult. Even the standard semiclassical thed®—19 should
the equi-energy plane in phase space for the individual pobe faced with extremely tough problems. A very rare excep-
tential basing8]. tion is a recent work of Brewegt al.[20], who quantized a
It is extremely interesting and important to consider thesystem of 15 coupled vibrational degrees of freedom. In the
guantum effects in the above cluster dynamics, since it capresent paper, we apply a semiclassical wave function that
give a theoretical foundation of how the quantum effects caras been developed and analyzed before by ourselves, which
survive (or fade awayin mesoscopic systems. In particular, we call the action decomposed wave functigDF) [21].
eigenfunctions arising from structural isomerization can re-The ADF requires far less classical trajectories to calculate a
flect superpositionof wave packets representing the indi- time-correlation function, the Fourier transform of which
vidual molecularshapes(We abbreviate it asuperposition gives rise to an energy spectrum. As a price, the ADF may
of molecular shapes Quantum mechanics thereby makessacrifice accuracy to some extent in case of a highly quantum
the classical notion of molecular shape vague. Besides, it isystem, for which action integrals are relatively small com-
highly nontrivial how the quantum vibrational spectra of pared to the magnitude of the Planck constant.
isomerization may be formed from the superposition of mo- As a report of this series of semiclassical studies on clus-
ter dynamics, the present paper explores some basic subjects
that should be taken into account in actual numerical calcu-
*Corresponding author. Email address: kaztak@mns2.c.ukations. The classical dynamics of an, cluster is hence
tokyo.ac.jp revisited from another point of view. For instance, the pat-
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tern of isomerizations is to be classified in the context of

X—X, Yy, Bz—z,
particle permutation. Also, the loc#l entropy proposed by px= Ry=y. Be=

Hinde, Berry, and Waleg22,23 is viewed as a quantity that £ 82|12
practically limits the time length of the time-correlation Brij—pij» Bro—po, (—) t—r, 2
function. m

The semiclassical theory based on the ADF is also rege tota) Hamiltonian is transformed to the dimensionless
examined so as to cope with strong chaos in a large syste

The main difficulty is spurious divergence in the amplitude

factor (prefactoy of semiclassical wave functions or the ker- H 1./ ax | 2 d?/- 2 dEi 2

nel: not only the well-known divergence at caustit$,19 —=2> (—') + (—' + == [+ (e 2kij=r0)
in the final value representatidRVR), but also an exponen- € 2=\ dr dr dr <]

tial growth of the amplitude factor in the initial value repre- —2e (b r0)). 3

sentation(IVR). (See Refs[24-3( for the initial and final
value_representat_lons of the semlclags_lcal kerm@sth of . In what follows, our numerical results are all represented in
Fhe dlvergences impose Fough restrictions on the practicghgge dimensionles@bsolutg units. In Eq.(3), only one
integration of the correlation function. We here manage (G,arametep, is left to control the Hamiltonian. The range of
extract the spectral information as much as possible. qhysically accessiblg, is [32] about 1.5 py<7.0.

a

Nevertheless, the spectrum we can obtain by a tactical Brajer and Berry32] have studied the effects of the po-
application of both the IVR and FVR is limited in an energy gniia| rangep,, in the above Morse function, deducing the

range where the exponential growth of the amplitude factofyjo\ing qualitative results: The number of distinct poten-
in the IVR is sufficiently slow. We therefore apply our pre- 45 minima and transition states dependsggnthe larger is
viously formulated correlation function that is free of the po, the shortefmore compatis the potential range and the
amplitude factof31]. Numerical results with this correlation m(;re are geometrically different potential minima. For ex-
function are also repo_rted. . ample, the Ay cluster, to whichpg=6.0 should be assigned,

_ The prese_nt paper is organized as follows. _In Sec. Il, clashaS four stable local structurésomers as in the Lennard-
s!cal dynamlcs Qf ari\_/l7 clustgr IS re—examlned from a Jones potentidl33]. These stable structures are labeled pen-
viewpoint of semiclassical application. The first half of Sec'tagonal bipyramid(PBP), capped octahedrofCOCT), tri-

[l briefly reviews the Maslov-type semiclassical theory and apped tetrahedron, and bicapped trigonal bipyramid
then it is extended to take account of permutation ofidenticaESKE\M with the ;)otential minimum  of — 16.208:

p_artic!es. The last half presents some numerical re_sults o 15564 —15248. and—15.216, respectively. On the
vibrational spectrum. In Sec. IV, we show the numerical re-

. : . ) _ other h f Il =3. I
sults given by the amplitude-free correlation function. Thlsfgee;Bgn:r’]do(r:gga}r E:roe’ Z?gég%t %géogn)ért;\ilg:gr frtwlér%%ttom
paper concludes in Sec. V with some remarks. '

of their basins are-17.553 and —17.276&, respectively.
(See Ref.[5] for the dependence of dynamics @g.) To
Il. CLASSICAL DYNAMICS OF CLUSTER identify the molecular structure among possible isomers, it is
ISOMERIZATION a usual practice to use the so-called quenching technique due
) . . . to Stillinger and Webef34].
We first review the classical dynamics of clusters bound |, \vhat follows, we confine ourselves to a systempgf

EY rt]re rl\l/lors_e potential, Whi9h| ?”defgo ilsomerization ‘,"‘”C:: 3.0 to quantize the vibrational states under a rather simple
ighly chaotic motion. A special focus is placed on practicalgy ation as stated above. In tik;-like system of appropri-

problems for semiclassical quantization. Many other interestélte molecular parameters,| &, and 8), the unit time ap-
Ing featu][es may bg foulnd by c(;)nsultlng Papers by thef)roximately corresponds to 0.8 ps, and the Plank constant is
groups of Berry and Walegl] and our previous papers i, 0.08. The relative energy is to be measured from the

[2-8]. bottom of the PBP structure 17.553:.
A. System B. Isomerization
A classical Hamiltonian of a cluster composed of seven |t is well known from cumulative studies on small clusters
identical atoms has the following canonical form: [1,33,35,36that a single cluster, such as the,Aike cluster,
) 5 5 undergoes “melting” from solidlike to liquidlike states as
=TS dx)° [dvi|" (dz 163 (e-26y-r9  the total energy increases. Such a transition may be wel
2 <)\ dt dt dt =i monitored by the Lindemann index
—2e Al 10), (D e 2y (rie (rid) ™ "
N(N-1) &5 (rip '

wherer;; represents the distance between atomsdj. The

potential parameters,, e, and 8 are the equilibrium dis- which detects the stiffness of a cluster by measuring the de-
tance, potential depth, and the “range” of the isolated di-viation of the bond length from their average values. Here, in
atomic molecule. With the following rescaling: Eqg. (4), N is the number of composite particles; is a dis-

056223-2



SEMICLASSICAL QUANTIZATION OF STRONGLY ... PHYSICAL REVIEW E54 056223

025 T ' T ' TABLE I. Frequencies, periods, and assumed eigenenergies of
the normal modes.
y ozl Frequency ¢ 1) Period () Period(ps Eigenenergy £)

= zero point 3.063 2.050 1.654 0.249
A= 3.038 2.069 1.669 0.247
g 0.5 F . 3.038 2.069 1.669 0.247
g " - 2.743 2.291 1.849 0.223
g mettimg poin 2.743 2.291 1.849 0.223
g o b | 2.386 2.631 2.123 0.194
~ freezing poiht 2.386 2.631 2.123 0.194
2.226 2.816 2.273 0.181
1.697 3.706 2.991 0.138
0.05 [ iy 1.697 3.706 2,991 0.138
1.500 4.196 3.386 0.122
1.500 4.196 3.386 0.122
0 ! t L . 1.464 4.280 3.454 0.119
° 05 ‘ ' 2 2@ 1.058 5.955 4.806 0.086
Energy 1.058 5.955 4.806 0.086

FIG. 1. The Lindemann index versus the total energy of\the
cluster (pp=3.0) in absolute units. The freezing and melting points

. C. Two types of isomerization and permutation of atoms
are about 0.6 and 1.k, respectively.

One of the important quantum effects in the study of clus-
tance between thigh andjth particles, and ); means a time ters composed of identical atoms is the permutation symme-
average. The time interval over which to take the average igy. There are quite a lot of permutation isomers, which
usually taken to be long enough to attain a converge. roughly amounts to the order of 7! forM- cluster for indi-

Figure 1 shows the Lindemann curve starting from theyjdual structural isomergNote that the number of the per-
PBP basin. Three stages are observed; the “solidlike” phasgtation isomers heavily depends on the molecular symme-
below about 0.6 that is called “freezing point,” and the v ajthough semiclassical quantization does not care about
“liquidlike” phase above about 14 called “melting  instantaneous molecular symmetries appearing along classi-
point,” and the coexistence region in between. Below thecy trajectories.Since the quenching meth¢@4] alone does
freezing point, a cluster displays a bounded motismall ot gistinguish permutation isomers, we need a conventional
and local oscillationin the PBP basin and seldom comes outjngicator to identify them. A method devised by Sawada and
of the basin. As the total energy increases over the meltinggano using a distance index should work well for this
point, a drastic structural change, namely, the transition fro”iburpose[S?]. We here consider a similar method.
one basin to another begins to start. Therefore, the bound | gt g be a point of a classical trajectory at timen
states above the freezing point must be generated by trajegn-dimensional Cartesian configuration spaelowever,
tories undergoing isomerization. o . we actually fix the motion of the center of mass and the total

The periods of the vibrational motions in the solidlike 4ati0n) A point g, also specifies the molecular geometry by
state (low-energy extremeare often estimated in terms of jgenifying the potential basif84]. Then, the molecular size

the normal modes at the bottoms of the basins. In Table |, thgt each time may be measured with a hyper-ra@i(s)
frequencies, periods, and eigenenergies thus obtained for the

PBP basin are listed. The period of the PBP structure ranges R(d,)=|d;— 9peds (5
from 2.050- to 5.955 (from 1.654 to 4.806 psand the

eigenenergy from 0.086to 0.24%. The zero-point energy . , ,
of this system in théharmonic approximatioris then given where, for mstanceqpspdenote_s the moleqular conflg_uratlon
as high as 1.2849 which is higher than the melting energy &t the bottom of.the PBP ba.sm.. For a given coordirgte
(1.1e). This fact simply indicates that the present moleculeone may create its permutation isomérg), (i=1,....7!)

is far from a harmonic system. Similarly, Leitnet al. [9] by applying the permutation operatdPs on the atomic co-
found that the zero-point energy of thesAcluster was al-  ordinates. It is obvious that operation ®f does not change

ready in the energy range of classical chaos. the potential and geometry. H0W6V¢|%’,iQt—CIpBF4 may be

TT\T d|s?ocut;1t|é)n er:;:rgyh_ofh t_he preﬁelr?lbh cluts;[er Iti different from each other. Then let us assume a trajectory
roughly estimated as %0 which is much higher than the that starts from the PBP basin and comes back to the PBP

meltlr_1_g energy and therefore even h_|gher_ than _that of t.h asin with an atomic permutation after a series of isomeriza-
transition state. Although the cluster dissociates directly Wlﬂ‘hons It is then expected that

an energy higher than 120 those in between 9¢0and
12.C¢ remain bounded with a long induction time before

dissociation. |Gt — Aped>|Gt=0— Oped - (6)
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On the other hand, one may find a permutation oper‘éyor N N
that recovers Al i\
R \ Ji AN,
6l 3.82¢ {,/ Voo N 3
v \
& 5- ' \ /
|Pth_QPBP|:|Qt_Pj quBF’|:|qt:O_qPBF’|- (7) " l'l v
5t I\ J
A~ l ’ ] d’q;-_b
Thus, if such &P; is found, we can app_roximatelyjudge_ that o f\ AT ’!@@FD :’Zu o Jlimsy
a cluster has undergone a permutation after isomerizationg' 4r I = 8% g e = e o
Since it is tedious to find such I%j , We alternatively deter- = J’# @ & ®
mine the following distance along a trajectory, which we call 8 sb g |
the shape distance, as & i 1.12¢
/
Rp()=min{|Pig— dpged[i =1, ... 71 ®
Thus, if
0 P bl A V“’;Tv’vwﬁ'mf‘m‘h‘f’"ﬂ’ ialean oy
R(qt):|qt_qPBP|>Rp(qt) (9) 0 5 10 15 20 25 30 35 40 45 (1)
time
is observed, we judge that a permutation has occurred. FIG. 2. The hyper-radiugcurves and shape distancgoints

Detecting the occurrence of permutation isomerization isngicated with squares and so)dor selected trajectories in abso-
one thing and incorporating the effect of permutation explic-ute units. For trajectories of energies as low as 8.28d 1.12,
itly in the semiclassical theory is another, since we will do Sothe shape distance continues to coincide with the hyper-radius,
without the use ofR(q;) or Ry(q;) as shown in the next whereas the high-energy trajectory is associated with a large devia-
section. However, one may say that if such permutationsion between the two. The latter indicates an occurrence of permu-
occur frequently, the quantum effect due to permutationation isomerization.
symmetry(boson or fermioh should be taken into account.
If, conversely, permutation isomerization rarely occurs in D. Measure of the extent of chaos

classica! dynamics, this_quantum effec_t on a spectrum ShO.UId In our semiclassical approximation arises an amplitude
not be significant. We will show that this is really the case ing, o, |aq, /g, Y2 along a trajectory[see Eq.(41)]. This

the next section. value generally oscillates but its envelope grows exponen-
Lﬂ|'ally in a strongly chaotic system, which deteriorates the
. . ) semiclassical approximation. We, thus, should check the rate
R(qy) for trajectories of three different energy 0e181.1%, ¢ iq givergence beforehand. A standard way to measure
and 3.82 are sampled in Fig. 2. It is observed tHal R, ¢ instability of a classical trajectory is to calculate the ei-

does not become larger than about 5, ai Rpy(q) genvalues of the so-called stability matf38—4Q Z,
=R(q;) for trajectories in lower energy ~2.5¢ for t

<100r). It is thus observed tha&,(q;) andR(q,) are mu- (0 ,pr)
tually similar for lower-energy trajectories (0.48and = m
1.12), while they deviate significantly from each other for

the high-energy trajectory (3.8%. It turns out numerically \yhjch satisfies the following equation of motion,

that in the energy lower thaty 2.5¢, a cluster getting out of

a basin returns mostly to the permutationally same basin as it 7 —JHZ (11)
was before isomerizatiofnote that the melting energy is '

T e ot = ot sy molen. O 1 wherer st Hessian mats of e clasial Hartoriar
comes to start a long journey, wanders among basins, arid’ the symplectic matrid is

tations may occur after structural isomerizatioRg(q;) and

, (10

comes back to the same shape but in a permutationally dif-

: L : P 01
ferent basin. We call such a motion “wandering motion. J= _ (12)
Trajectories of wandering motion should be required to take -1 0

account of permutation of particles for a quantum correlation
function to be able to count a correct value. In other words(See Ref[41] for an accurate calculation &.) From Eg.
the quantum effect arising from the particle permutation(11), the equation of motion for one of the submatrices,
should become vital in quantizing such high-energy states.

On the other hand, for a quantum system whose main con- D=[4dq;/dqp], (13
tributions come from the swinging motion, the permutation
symmetry must play only a marginal role. is obtained in the following form:
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.. 2 T T T T T T T T

D=-VD, (14) .
& 1
whereV is the Hessian of the potential, namely,
V= N (15 ° °
99,9,

With the diagonal matrix\ =U(—H,,)U ™%, Eq.(14) is rep-
resented as

<K>,

UDU '=A(UDU™Y). (16)

Consequently, the determinant of matrid@U 1), namely,
D=det(D) is roughly estimated as

D~ e/l +iAmdt (17)

wherea and 8 denote the sum over the square root of the
positive and negative eigenvalues, respectively\ @t each
time. That is, the average value efis regarded as the Kol- Energy

mogolov entropy at time, so that FIG. 3. The localk entropy vs the total energy in units ef

D~ ex p:it], (18) averaged over 10 000 trajectories.

whereK is a time average of(t). and the length of the integration time. Below the melting

The localK entropy due to Hindeet al. and Hinde and point (about 1.%), however, the behavior afK), is rather
Berry [22,23 is a quantity that represents the magnitude ofcomplicated(see Fig. 3. In fact, the energy dependence of
the negative curvature at a point on the potential-energy suithe K entropy in Ag is reported to be not monotonic around
face, defined as the energy range of phase char@. Berry and his co-
workers and Hinde and Berry have analyzed the Iécah-
tropy by comparing it with the potential topography, and
found a remarkable fact that it takes relatively small value

(suggesting dynamical stabilityaround the transition states
2

wherew; denotes the eigenvalue of the local Hessian matrit1:22:23: S .

of the potential functionV. (Here, we have disregarded a  AS seen in Fig. 3K ranges from 0 to 2 for thé/7-like
factor 1/log,2 appearing in the original definitioj22,23). ~ cluster with the total energy up to the dissociation limite3.0

A trajectory becomes unstable when it passes over a negdhus, the magnitude db in Eq. (18) may range from the
tively curved portion of the potential-energy surface. Theorder of 16 to 10 in t=100r, depending on the total
larger K indicates the more separation in the bundle of tra-€nergy. In evaluating the semiclassical correlation function,
jectoriesK defined above is essentially the same quantity adnany trajectories having different energies and such tremen-

: ; dously different magnitudes in the amplitude have to be
K. More precisely, the time average of the lo&lkentropy . . :
along the trajectory taken into accounfsee Eq.(28)], which causes a serious

difficulty in the numerical integration.

K= 2> |w?*? (19

u)j2<0

1T T/IAt
(K)ETJ Kdt== > KAt (20)
0 i=1 Ill. SEMICLASSICAL VIBRATIONAL SPECTRA WITH
_ THE ACTION DECOMPOSED FUNCTION
is regarded a& for simplicity.

Figure 3 shows the time averaged lo¢@lentropy from We next present a brief review of the formulation of a
10000 sample trajectories, where the time averaging is caMaslov-type semiclassical wave function, with which we
ried out with At=0.5r and T=1000r. It is seen thatK), calculate the correlation_fun;tio@gl]. An extension to take
becomes larger almost linearly with the total energy in theaccount of the permutation is made.
range from about 4 up to 8. The abrupt fall seen in the
very high-energy region beyonc8-9¢ is due to dissocia-
tion (break of the clusters. In addition, it has been numeri-
cally confirmed thatK), does not strongly depend dnand Maslov and Feodoriukl7] have established a systematic
At in the energy range~1e, ~8¢]. Thus, we see that the theory to generate a class of wave functions in the form of
present system exhibits a strong and “uniform chaos.” By _
uniform we mean that the loc# entropy depends on the W(q.t)=F(q t)exp{l—
total energy alone but not much on the individual trajectories ' ’

A. The action decomposed function

, (21)

i SCl
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where S; denotes the classical action satisfying thewhich was first proposed by Milld24] to treat the Feynman

Hamilton-Jacobi equation kernel in the initial value representatiotvVR). The result is
IS¢ IS¢
o THLa aq "t =0. (22) Vo (a,t)= | dgodla—0a(do.Po) IF(do.t)

The lowest-order semiclassical equation of motion for the
amplitude functionF(q,t) is

1/2 I
o eXF{gSz(Qt ypo:t)—T . (28

J 1 After Miller we call this form the IVR. In this representation,
- T VE+5(V-0)F=0, (23 the initial sampling is much easier, and the amplitude factor
|aq, /900> becomes zero at caustics.

which has neglected £/2)V2F from the right-hand side of . ' o
the full (rigorous equation of motion folF. An explicit so-  B. Propagation of an arbitrary wave function in terms of ADF

lution to Eq.(23) may be readily obtained as An arbitrary wave function may be evolved in time in

terms of the ADF as follow$21]. Suppose we have a de-

—1/2 -1/2

F(q,t)= F(q°’0)<(9_q; =F(qo,0) (9_q; composition for an arbitrary wave function such that
. ¥(q)=F(aq)G(aq), (29
7™
Xexp{ T2 } (24 under a condition thaB(q) has a momentum representation

where the Jacobian determinad,/dq, is taken under a ~
fixed initial momentunpg, andM is the Maslov index in this G(p)=
representation that counts the number of zeragpfdqgg up
to degeneracj16]. The classical action in E¢21) has natu-
rally been chosen as thE,-type generating function of
Goldstein[42] (denoted asS, hereaftey. In other words, all
the classical paths representing E2fl) lie on a single action i
surface, the initial momentum of which s, everywhere. \P(q)zf dpoé(pO)F(q)ex;{gpoq), (3D
This is why we call this function as the action-decomposed

function (ADF). Having this action function as a phase, the
initial form of ADF att=0 is rewritten as

(M)NJ G(q)exp( —;L—pq)dq- (30

We assume thdt(q) is a slowly varying function irg space.
The total wave function thus decomposed is rewritten as

which is regarded as a superposition of many ADF’s of Eq.
(25). The semiclassical time propagation of this wave func-
tion is described in a straightforward manner as

. (25

i
‘pro(q,t)=F(q,0)eXF{%Poq

-1/2

~ Jq
. . . ‘I’(q)=f dpoG(po)j da8(a— a0 F(do,0)| "
Any arbitrary wave function may be expanded in terms of Qo

the ADF’s (see below. Among others, a wave function that ey

consists of a single ADF is called single ADSADF). A Xex;{ - —} (32

SADF is rewritten in a little more global form as 2
wheredo=dS,(q,Po;t=0)/dpo.

\Ppo(q,t)=j dg;6(g—qy)F(do,t) As an extreme example of this wave function, the semi-
classical Feynman kernel in the coordinate-momentum rep-

aq,| ~12 i M resentation{q|exd — (i/4)Ht]|po)=K(q,po;t) is reproduced by
X Eo ex gSZ(qt'pO;t)_T' (260 setting

eF(q) =1 (constant; G(q)=W(q)(wave function itself,

For the later convenience, we also call this the final valu 33)

representatiofFVR). As is well known, the amplitude factor

|oa,/9qo| ~Y? diverges at every caustic, whefe,/dqo=0. and hence
Besides, the sampling of trajectories is not easy to have the '
integral of Eq.(26) be accurate, since the poings result ~, =
only after running trajectories gb(0)=p,. They are not G(p)=¥(p)

necessarily good quadrature points. To overcome these dif- X (momentum representation of the wave function
ficulties, one may transform the integration variables as (34)

[ dan|

dqy

5 dgo, (27)  We then have
do
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|12 The energy spectrum may be extracted from the Fourier
Y(qg,t)= o(q— qt) transform of the time-correlation function C(t)
(2m 5 =(¥(0)[ ¥ (1)),
x r{ il p[isx t)}ﬁw ) N Et
exp — ——|exg +S,(q;,Po; Po)- — i
2 5 Mo 0 S(E) ZwﬁfC(t)exr{ 7 }dt. (39
(35 . . .
C(t) is written with a SADF such that
This is nothing but
~ CFVR(t):<‘I’pO(0)|‘I’pO(t)>:J daF* (a1,0F(q,0)
‘I’(q,t)=J dpoK(d,Po;t) ¥ (po) (36)
" aq,|~Y? i _ i7™
except for a minor difference in the constant phase factor. dqo ex h S2(0r:Poit) - ﬁ 7 Pode™

The other extreme side of the action decomposition is the (40)
single action-decomposed functi¢BADF). Let

| in the FVR or
F=F(q)G=eer(gpoq), G(p)=d(p—po), (37

0qt 1/2 i
CIVR(t):f dQOF*(Qt'O)F(QOaO)‘&_% exl{%sz((hapo;t)
and we simply come back to E(R8). The most significant
difference between the kernel and SADF is in the distribu- i iT™™M
tion in momentum space, namely, E¢34) and (37). = 7 Polt— } (41)

C. Correlation function with SADF in the IVR.

As was stressed previoudl21], difference in the dimen-
sionality of the integrals of Eq$28) and (35) is enormous.
The former expression involves onN+dimensional integral, We next treat the permutation of identical particles in a
while the latter does I9-dimensional integral. A price is that simplified way. A wave function, symmetrized or antisym-
the SADF is a little less accurate, but it performs much fastemetrized, should have the form
convergence with respect to the number of classical trajecto-
ries required. In fact, the efficiency of the SADF has been

D. Permutation symmetry in semiclassical correlation function

N!
€j P@ Xl’ P ,XN)EP(D(X:L, P ,XN),

numerically evidenced under certain conditi¢p@]. That is, \/_ “~

if the Planck constant is small, and/or when a potential under (42)
study is anharmonic, the SADF may reproduce sufficiently

accurate quantum energy spectra with far fewer classical trawhere ® (x4, ... Xy) is a primitive function to be symme-
jectories than those that are required by the semiclassic@lized. P, (i=1,... N!) denote all the possible permuta-

kernel. Since theM; system is very large from the tjons, and.sp are their associated parity, = —1 for odd
nggﬁ;nfgﬁgvg;zngﬂjggoii”gﬁ:;‘iz'iﬁLngaDn;'gih‘é’ri;onpermutatlons for fermions, and otherwise they are simply
positive unity. For bosonsEpi—l The time-correlation

A time-correlation function represented in the SADF is . . L .
function for such a symmetrized wave function is written as

C(t)= (W, (0)[ W (1) = f daoF* (0,0 F(do,0) ex;{_ L
h

(V(0)|W(t)= <P<I> (0) ’P(I>(O)>. (43

a9, |2 i i i ™™
X 8_q[ exp — 7 Poti+ 7 S2(0r . Poit) = —— |- SinceP commutes with the Hamiltoniald, and with the help
0 . of a relationP?>= \/N!P, Eq. (43) may be written as
38
i

Again, this expression involves only atdimensional inte- (P(0)|W(1)= < P?d(0) EXF{ - %HtH‘D(O)>
gration. This is in a marked contrast to the correlation func-
tion represented in terms of the semiclassical Feynman ker- = N<P(I)(O)|(I)(t)>_ (44)

nel, which consists of at least\2fold integrals. Therefore,

the SADF is anticipated to provide quantum spectra with fafThis way of incorporating the permutation is particularly
fewer classical trajectories. On the other hand, the SADF hasonvenient, since one does not have to care about permuta-
a clear limitation beyond which the theory is not valid. Tak-tion in propagating a primitive wave functio®(t). The

ing this limitation into care, however, one may utilize the symmetry operation comes in only when we take an overlap
SADF as a very powerful tool to calculate spectra of rathelintegral after the time propagation. As an exampledig{q)

large systems. be an initial Gaussian function
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- g a2|= Y =
Do(q)=Nex 2(q go)%[=Nex 2R ().
(45) 2000 =

Then, our semiclassical time-correlation function is written

as 1500 B

Number

<\I’(O)|\I’(t)>:j th\/mX{P(I)S(Qt)}q)(q“t) 1000 .

N!
ZNZJ th; (epiﬁiex;{— ng(qt)D 500 1

0qt —d/2 o 2 | o
X 3_(10 exp — ER (go) |eX %Sz(qo % 2 4 6 8 10 ©
Ener
i™™ BY
T o (46) FIG. 4. Energy distribution arising from the multidimensional

importance sampling to represent the initial Gaussian wave packet

Thus, it is sufficient to operate the permutation operatord? absolute units.
only to®j (q,), which is not propagated semiclassically. The
corresponding correlation function disregarding the permuta-
tion is We now show numerical results for semiclassical quanti-
zation of the M, cluster, to which the single action-
a a0t decomposed functiofSADF) is applied. An action surface
<\If(0)|\lf(t)>=/\/ﬂ dqtexp{ - ERz(qt)} % Po=0 is selected to generate an SADF. The Gaussian wave
packet is adopted as an initial wave packet with the form

F. Spectra

-1/2

@ i
Xexr{— ERZ(QO) exr{— gsz(qt) a )
dy(q)=Nex _E(q_qc) : (48)
iTM 4
2 “7) where the center of the Gaussignis located at the bottom

of the PBP basin. The parametetis chosen to be unity that
Through comparison between E@46) and(47), it is there-  is small enough for the SADF to be valid. This value= 1,
fore readily predicted that the time-correlation function isis actually far smaller than the exponent of an assumed
considerably underestimated without the permutation wherigenfunction of the lowest normal mode in Table I, which
the shape distance is shorter than the simple hyper-radius isprresponds tax~ 13.
as in Eq.(9). The numerical integration in E¢41) has been carried out
with the multidimensional Monte Carlo integration, in which
E. On tunneling trajectories the initial configurationsy, are picked by means of a multi-
.dimensional importance sampling method. The importance

One may incorporate the tunneling effects to all the semisympjing is indispensable to avoid energies high enough for

classical theories described above and the amplitude-frégg ciyster to dissociate. The translational and the rotational
correlation function to be discussed below. We have previz,omentum of the cluster is set to 0. Figure 4 shows the

ously proposed a semiclassical tunneling theory by findingnergy distribution of 16 000 classical trajectories thus ob-
nonclassw;al paths in the reaI—vaIged configuration SPaCRjined. The number of samples decrease as the energy be-
along which complex-valued solutions to the Hamilton- .omeg higher according to the weighting function. Nonethe-

Jacobi equation is generatgd3]. These paths may be |esq the energy distribution has a long tail that reaches the
adopted into any semiclassical thedd4]. Without these  gjissociation limit. The wide range of energy may be neces-

nonclassical paths, neither potential tunneling nor dynamicaéary to obtain accurate spectra on one hand, but the high

tunneling[45] is taken into account well, and therefore, the onergy components necessarily bring about an extremely dif-
tunneling splitting is not produced. In the present papersq it practice on the other.

however, we do not intend to consider such nonclassical

paths_ in th_e calculations of the Sem?classical Corre_lation 1. Initial value representation and divergence due to chaos
functions, simply because our system is highly chaotic and ) ]

since we are mainly interested in relatively high-energy dy- We first attempt to take a Fourier spectrum from the cor-
namics. We here avoid adding complexity to such an alreadfgelation function in the initial value representation, &4fl).
complicated dynamic. This aspect is a subject in our futuré’S noted above, the amplitude factdr’*= |, /aqo|* be-
work. haves ad ~exdKt], although it is free from divergence at
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T T T T Y

N=16000

ICHI

Power Spectrum

. Ener

time gy
FIG. 5. The time evolution of the absolute value of an autocor- /G- 6. The power spectra from the autocorrelation function in

relation function estimated with 16 000 trajectories. An exponen-1€ VR in absolute units. The solid curve, short-chained, and long-

tially divergent behavior due to strong chaos is apparent in the lateghained curves represent the Fourier transforms of t.ime intervals
time. [0,40.96-], [40.37,40.96r], and[40.6r,40.96r], respectively.

caustics. The exponential growth of the amplitude factor . . . .
brings two difficulties into the calculatiorfl) The resultant POINtSG; in Eq. (40) give good quadrature poinsecall that

Fourier spectra should form Lorentzian peaks at best rathd?o is fixed as an initial conditionand (2) it is suffered from
than a delta-functionlike spike§2) More seriously, one has divergence at caustic points. As for the first item, however, it
to give up continuing the calculation of the correlation func-is expected that, in a strongly chaotic system are randomly
tion itself due to the numerical overflow. distributed in space, so random that they may be regarded as
To illustrate the divergence of the autocorrelation func-sampling points for Monte Carlo integration. We therefore
tion in the IVR, we show in Fig. 5 a relatively short time approximate the FVR correlation function using such a
evolution of C(t)=(W¥(0)|¥(t)) of Eqg. (41) (0<t<67). Monte Carlo-type summation over without any quadrature
Recall that the time interval 6is quite short and is compa- weight.
rable to the periods of the normal modsge Table 1. Fig- Figure 7 shows the behavior of the pre-exponential factors
ure 6 displays the Fourier spectra of the time-correlatiorD ~?=|dq,/dq,| 2 in a logarithmic plot versus time
function taken in three different time intervals; the solid, the(log;oD ~ /2 at rather long interval grid points has been con-
short dashed, and the long dashed curves representing thected with straight lingsiIn Fig. 7(a), a typical example of
power spectrum of the Fourier transformation@ift) for 0  those of low-energy trajectories fot <107 (the energies
<t<<40.96, 40.3t<40.96, and 40.8t<40.96, respec- are 0.03 and 0.2@) are shown. The signatures of singulari-
tively. The evolution time~40.96r has been a limit of the ties due to caustics are seen quite frequently. These singu-
present IVR calculation that the SADF can offer. larities obviously mar the calculation of the correlation func-
To quantize a relatively weak chaotic system, Kay pro-tion. On the other hand, the typical behavior of the pre-
posed a method in which strongly chaotic trajectories are aléxponential factors of relatively high-energy trajectories
abandoned if the pre-exponential factor exceeds a threshold..12c and 3.82) are shown in Fig. (b) for 0<t<45r
value predetermined46]. However, this procedure is un- along with that for 0.28 for comparison. It appears on one
likely to work in our system, since almost all the trajectorieshand that the exponential decrease| i, /dqo| *? due to
have uniformly a diverging contribution and should be chaospractically suppresses the divergence due to caustics.
forced to be removed from the calculatitsee Fig. 3. Thus,  On the other hand) ~ 2 under too strong chaos becomes so
we may conclude that it is impossible to quantize a highlysmall very quickly that it cannot make an effective contribu-
chaotic system like ours by a straightforward application oftion to the correlation functioi©(t).
the IVR. By contrast, the final value representat{BiWR) of A natural tactic to cope with this tough situation should be
Eg. (400 must be more appropriate because contributionsas follows: (i) First remove the bad effects arising from the
from unstable trajectories damp due to the inverse form oingularity at caustics by imposing a cutoff condition on the
the pre-exponential factdeq,/dqo| Y2 FVR and thenii) calculateC(t) to extract a spectrum. This
spectrum will be made up by trajectories of appropriately
weak chaos. This is becauBe 2 of strongly chaotic trajec-
Apparent difficulties adherent to the FVR, on the othertories damp for themselves and trajectories of too weak
hand, are(1) there is no guarantee whether the integrationchaos, which cannot cancel the singularity at caustics, must

2. Final value representation and divergence due to caustics
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FIG. 7. (a) A typical time evolution of the amplitude factor in FIG. 8. The absolute value of the correlation function in the

the FVR for trajectories of energy as low as &:05olid curvé and  FVR with the cutoff.(Time in units of.)

0.2C (dotted curve (b) Exponentially diminishing of the relevant

amplitude factor for higher-energy trajectori€gime in units ofr.)  thus obtained. Noticeable difference has not been obtained in
the boson spectrum. Two of the distinct peaks are seen

be cut off. The spectrum arising from low-energy trajecto-around 0.83 and 1.2&, which should have arisen from the

ries, which are either regulagnonchaoti¢ or very weakly  swinging motion, namely, 066<E<2.5. The broad peak at

chaotic in the above sense, will be recovered later with use of-1.26 suggests that it may consist of nearly degenerate

the IVR. The very high-energy spectrum will not be pro-

duced anyway in the present procedure. We set a cutoff con

dition so that all the contributions fro ~Y?>1.0 is simply

set to zero.

We now report the resultant spectra that have been ob
tained by means of the FVR with the cutoff. The time-
correlation functions of Eq(47) for the initial wave-packet
Eq. (48) have been carried out with 16 000 trajectories run-
ning up to a timer =140r. The trajectories, their associated
stability matrix, and so on have been integrated by means o
the locally analytic integratdé1]. 1407 is short to cover the
typical time scale of the wandering motions (&6E
<2.5), but is about 30 times as long as the periods of
normal modes and the swinging mo¢tkee Table | for the
normal mode and Fig.)2

The time-correlation function based on E47), which is
denoted a€ryg(t), is shown in Fig. 8. We also have calcu-
lated the correlation function, E446), in which the atoms
are treated as bosom;& 1). It turns out numerically that the
effect of the permutation is negligibly small in this energy
range. The difference between E@47) and (46) has been
only about 1%. This is because dynamics in the relevant
energy region is utterly dominated by the swinging motion or
because trajectories are confined in a basin. It is observel
that Ceyg(t) is very small fort<57~ 107, which suggests
that the cutoff condition(rejection whenD ~Y?>1) may
work too hard in the early time. Incidentally, a reasonable FiG, 9. Energy spectrum in the FVR with the cutdetting
convergence of the correlation function with respect to the;ero whenD~2>1), which eliminates the low-energy compo-
number of trajectories has been attained with the use ofents(Energy in units ok.) Also, the high-energy spectrum cannot
16 000 trajectories. be produced by the FVR, since the amplitude factors*? are

Figure 9 shows the resultant energy spectraCp{r(t) quickly damped to zero due to strong chaos.

- (a) i

trum

Power Spec

Energy
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peaks. It is important to analyze how these lines are formed.
This aspect will be discussed in greater detail in our future
publication.

3. Recovery of the low-energy contributions in IVR with a cutoff

As stated above, it is practically impossible for both the
IVR and FVR to produce good spectra arising from high-
energy trajectories that are of larffeentropy. On the other
hand, the low-energy trajectories may be well treated by the
IVR as long as their instability is small enough. We, hence,
try to recover information from the low-energy trajectories
including those that have been cut off in the FVR by impos-
ing a condition of rejection iD ~>>1. In doing so, we note
that the amplitude factdd'? associated with even a chaotic
trajectory is still oscillatory even though its global feature is
divergent. More preciselyD'? changes in an oscillatory
manner between zero and an exponentially diverging value.
Hence, one may be able to extract a “periodic nature” from
a chaotic trajectory by taking account B*2 only in time
intervals during which it takes small values. As a practical ) , , A :
procedure, we nullified the contributions whé&n/>>1 is 0 02 04 06 08 1 12 14 16 18 2
satisfied.(Note, however, that the maximum value Bf/? 1.2798
eventually overflows in the computer, which disables con-
tinuation of the computation. Hence, even with this prescrip-
tion, the time length for the Fourier transform of the corre-
lation function is limited. The energy spectrum thus attained
in the IVR is shown in Fig. 10. Three panels display the
Fourier spectra arising from three different time intervals,
namely, (a) 100<t<131, (b) 50<t<131, and(c) 0<t
< 131. Very complicated spectral feature has come up. The
Lindemann index in Fig. 1 indicates that the dense spectrum
below the energy about G:7should arise from intrabasin
motions in the PBP basin.

Spectrum

Power

Energy

IV. AMPLITUDE-FREE CORRELATION FUNCTION FIG. 10. Energy spectrum in the_ IVR, recovering the low-
energy components @< 1. (Energy in units ofs.) The spectra

By making use of both the initial and final representationsin the panel€a), (b), and(c) have been obtained from time intervals
of the ADF, we have managed to extract some of the vibraf100r,131r], [507,131r], and[07,131r], respectively.
tional spectral lines in the energy range where the exponen-
tial growth of|9q,/dqo|*? is sufficiently slow. It is still true,
however, that the amplitude factor common to the semiclas- i
sical theories blogks us to proceeq further. We therefore ap- Cpo(s,t):<xpp0(s)|quo(t)>:f eX;{gSz(qt,po.t)
ply a representation of an approximate correlation function
that has been devised in the companion p&pg}, in which i
such a troublesome amplitude factor is not present. Very - —5,(Q¢,Po,S)
recently, Shao and Makri have developed a semiclassical h
theory to estimate a general correlation function in their own
form that is also free of the amplitude fact@refactoy [47]. = f f 8(9s— ) F* (do1,0)
Our theoretical scheme is different from theirs and no com-
parative study is given here.

F*(q:,8)F(q;,t)da;

i i
X F(QOZaO)eXF{gSl(qt +Joz,1) + 7 Podo2

A. Correlation function

i
A minimal review for the correlation function we are go- B gSl(qs,qm,S)
ing to apply is given firsf31]. We begin with a rather pecu- )
liar looking but general form of the correlation function rep- ! 2% 4 L1124 (1/2 4 1/2%
resented in terms of the ADF, namely, 7, Podloz| oy ddoz d s "d g™ - (49
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In this expression, the square root of the volume element likeliate representation, since the trajectories are specified at the

dqgl? is defined a$31] middle pointt=0 in the time interva[ —t,t].
The energy spectra extracted from the correlation function
dg,=dqg?dq* (50 of Eq. (56)
. . 2 T2, i
under two rules: One is S(E)= 2Re "mJ CO(—t,t)ex;{ 2—Et>dt
T 1. h
LT
do;*= exr{n §N<qt>} |da|* (51) )

. T/2 ) 2
= ?Ilm J’O dtj dq01|F(q0110)| CO{%Sl(qtqulat)

g

whereN(q,) is the sum of zeros up to the degeneracy of the

following determinant picked up by the determinant T 2
— 5 M(g-1—q)+ Et (57)
2 h
9% (52)
dQi=x does not have a formal distinction between chaotic and inte-

grable systems. It is well established that the energy spectra
along a classical path. It is convenient to set the reference Gi integrable systems are quantized in terms of information
time t=X at a far remote past, symbolically denotedXas only of the action integral and the Maslov index, as typically
= —x. The other one is realized in the EBK condition. On the other hand, it is never
trivial that those spectra arising from E@7) cover the en-

tire spectrum, sinc€,(—t,t) is an extraction from the full
which is to be applied only when the two points are con-correlation function. The condition considered@g(—t,t)
nected by a trajectory. that all the trajectories are fixed pt=0 att=0 must be

From the above expression, a useful representation of tH&PPropriate to represent standing or stationary waves, since
correlation function may be extracted by settsg —t, po standing waves are generally formed in a fixed boundary.

=0, andqgy;=qpz, resulting in

F(a.,t)dai”=F(go,0dag?, (53)

B. Spectra

ao(_t’t):J' f 8(q_, An application of the above amplitude-free correlation
function is presented below to see how the above spectra are
i improved. Before that, we have numerically confirmed using
—QJF*(CI0110)F(%1,0)6XF{g51(Qt Jo1,t) a one- and two-dimensional Morse oscillators that
Co(—t,t) actually gives spectral lines at correct energy val-
i ues. Also, the exact quantum-mechanical spectra for the
_%Sl(qtvq01-_t)}dqééz*dqéé_qul/%dqg-/z* : modified Haon-Heiles system high in the chaotic energy
range have been accurately reprodu¢éd]. On the other
(54 hand, the amplitudes of these spectral liies the enve-
lopes are deformed to some extent from the true one that is
expected from the full propagation of the initial wave packet
of Eq. (25). This is not surprising in view of the definition of
Co(—t,1).

SinceCy(—t,t) does not involve the diverging or dimin-
whereq,(do;,Po) is an end point in configuration space at ishing amplitude factor in it, one may run the trajectories to
timet of a trajectory starting fromdy;,pg) att=0. After a computeéo(—t,t) for a far longer time than the standard
simple manipulationf:o(—t,t) appears to be a simpler form correlation functions considered in the preceding section. For

instancet=131r is the longest we could manage in the IVR

where a trajectory now conneadts ; andq; in such a way
that

d-t(do1,Po=0)=0(do1,P0=0), (55

~ 5 i as described in the preceding section, while no numerical
Co(—t,t)=f ddoylF(go1,0)[*ex 25-51(0t,Gox 1) problem has occurred i6,(—t,t) even fort>262r. Conse-
quently, spectral lines with far narrower widths, practically
_ izM (q_—q )} (56) “line spectra,” may be obtained, which is in marked contrast
2 —toAvp to the previous spectra. We thus check the convergence of

the spectrum with respect to the time lengih of the Fou-
where the Maslov index is defined such tha(q_;—q;) rier transform withN=6000. Figure 11 shows three spectra
=N(dy) —N(g_yy . In this expression, we notice that the an- arising fromT=667, 1317, and 262. No qualitatively sig-
noying amplitude factor, such d9q,/dpo| Y% (exponen- nificant difference between the spectralef 1317 and 262
tially diminishes or |dq,/dqq, % (exponentially growks dis-  is noticed. Thus, the spectrum @f=262r must be long
appears. Note, however, that the Maslov index does appeanough to judge that a convergence has been practically at-
in the correlation function. We may call E(h6) an interme-  tained.
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FIG. 12. Convergence of the spectrum based on the amplitude-
free correlation function with respect to the number of trajectories.
(Energy in units ofs.) The upper panel shows the spectrum with
4000 trajectories, while the lower one with 6000 trajectories.

above, these features are not lowered either by increasing the

FIG. 11. Convergence of the spectrum based on the amplitudeyymper of trajectories or by lengthening the run time of the
free correlation function with respect to the time length of the Fou-qrrelation functions. Nonetheless. more study should be

rier transform(Energy in units of.) The upper, middle, and lower
panels display the spectra arising froiw=667, 131r, and 262,
respectively. The number of trajectories is 6000.

We next check the convergence®§(—t,t) with respect

necessary to assign these spectral lines. Another important
point to note here is that we do not see prominent peaks in
the high-energy region, where isomerization should be domi-
nant in classical mechanics. This aspect will be one of the
most intensive analyses in our forthcoming study on quan-

to the number of classical trajectories. Since there is no rig-
orous method to judge whether the full convergence is at-
tained, all we may do here is to look at the behavior of

Co(—t,t) as a function oN examining the invariance of the
spectrum with respect to an increasefIn Fig. 12, we

compare the spectra arising froﬁb(—t,t) with N=4000
andN=6000. It turns out that an increase of the trajectories
from N=4000 to 6000 makes virtually no significant change
in the spectral feature. Thus, we regard that the spectrum of
N=6000 as the converged spectrum.

Finally, we compare, in Fig. 13, the spectrum arising from
the FVR in the ADF, the upper panel, and that based on

Co(—t,1), the lower panel. The two prominent peaks in the

FVR have been well reproduced by tBg(—t,t). This fact
clearly evidences that there are spectral lines arising from
strong classical chaos, for which the magnitude of the am-
plitude factor, except for the Maslov phase thereof, does not
make an essential contribution to quantization. This is im-
pressive if we recall again that the individual spectral lines
arising from each periodic orbit necessarily result in a
Lorentzian-like shape, the width of which is given by the

Intensity

N=16000

N= 6000

0.0

0.5

1.0
Energy

1.5

2.0

imaginary part of the stability exponet9-51].

FIG. 13. The final energy spectrum based on the amplitude-free

Furthermore, theCo(—t,t) spectrum bears many rela- correlation function, the lower panelEnergy in units ofs.) The
tively high peaks along with the bushlike features. As statedipper panel shows the spectrum given by the FVR.
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tum and classical corresponderideé]. Nevertheless, the spectrum we could obtain by use of both
the IVR and FVR is limited in an energy range where the
V. CONCLUDING REMARKS exponential growth of the amplitude factor in the IVR is

) . . ~sufficiently slow. We therefore applied a correlation function

We have studied semiclassical spectrum of vibrationatpa; js free of the amplitude factor but with the Maslov index
motion of M+ cluster, the classical dynamics of which is peing involved. Much finer spectrum than the above FVR
highly and uniformly chaotic. The presence of strong chaogng |VR has been obtained. The most prominent peaks are
makes it extremely hard to calculate the spectrum. Variougonetheless reproduced by all the representations. The spec-
conditions on which to carry out semiclassical evaluation ofrym pased on the amplitude-free correlation function is what
the chaotic spectrum have been explored. In particular, th@e can do best at the present moment.
roles of singularities due to chaos and caustics in the IVR The analysis of the spectral peaks has not yet been per-
and FVR have been closely examined. To remove highlformed. For instance, the enery=1.28 at which the most
chaotic components arising from high-energy trajectoriesgjgnificant peak is in the domain of the liquidlike phase,
one needs to impose an appropriate cutoff condition. Thgyhere most of the trajectories should undergo isomerization.
relatively low-energy components may be evaluated usingjnfortunately, however, the analysis is not necessarily easy,

the IVR. _ _ ~and this aspect will be discussed in full details in our future
A simple and practical method to incorporate the particleypjication[48].

permutation into the correlation function has also been pre-
sented. The effect of the particle permutation could not be
clearly observed in this study, simply because we were only
successful to access the spectrum of low-energy isomeriza- This work has been supported in part by the Grant-in-Aid
tion, for which only the swinging motion is dominant. If we from the Ministry of Education, Science, and Culture of Ja-
could have well-treated high-energy trajectories of the wanpan. We are grateful to Professor W. H. Miller for continu-
dering motion, the permutation should have shown its promious discussions on the ADF and the amplitude-free correla-
nent role. tion function.
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