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Parameter estimation in spatially extended systems: The Karhunen-Leve and Galerkin multiple
shooting approach
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Parameter estimation for spatiotemporal dynamics for coupled map lattices and continuous time domain
systems is shown using a combination of multiple shooting, KarhunémeLdecomposition and Galerkin's
projection methodologies. The resulting advantages in estimating parameters have been studied and discussed
for chaotic and turbulent dynamics using small amounts of data from subsystems, availability of only scalar
and noisy time series data, effects of space-time parameter variations, and in the presence of multiple time
scales.
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[. INTRODUCTION here is to demonstrate the potential of a different approach
that uses a multiple shooting algorithm for parameter and
In general, extensive systems exhibiting complex spastate variable estimations in analyzing spatiotemporal behav-
tiotemporal dynamics including chaos may be studied as proor-
cesses involving reaction-diffusion and convective mecha- In Sec. ll, the algorithm for spatiotemporal model param-
nisms[1]. Analysis of the dynamics of these systems is noteter estimation by a combination of Karhunen-.eelecom-
an easy task because of the large attractor dimensions iROSition, Galerkin's projection, and multiple shooting
volved. It would be desirable to develop ways of studyingKLGMS) methodology is presented for spatiotemporal sys-
spatiotemporal systems using reduced model descriptions #MS described by coupled map latti¢é$,17 and partial
conjunction with subsystem dynamics especially when it isdlfferentlal equations. lllustrative examples using the

; ; : o - . KLGMS approach are presented in Sec. lll for a single vari-
known that extensive scaling relationships in dynamics eX|st< ; )
as a function of subsystem sig2-5|. Methods developed able coupled map latticéCML) that possesses the basic

. . . reaction-diffusion and convection mechanisms that give rise
for low-dimensional systems may then become applicabl

?0 complex patterns including spatiotemporal chaos and con-
with the concomitant advantage of simplifying the data re- plex p g sp P

. . . . _vective turbulence. The use of the methodology in character-
quirements for studying the spatiotemporal dynamics. In th'?zing the model from subsystem data using limited number

paper, we show a profitable use of this approach for paramss gnapshots is shown and the adaptability of the method in
eter estimation with reduced model descriptions of spajnnomogeneous modélLg] identification using perturbation
tiotemporal systems and which uses subsystem data for thgrategies is also discussed. The formalism is then applied in
characterization. The low-dimensional models can be obsec. |v to an autocatalytic reaction-diffusion system de-
tained by projecting the governing equations onto relevangcribed by multivariable partial differential equatiofiRDE)
modes obtained by Karhunen-hae(KL) decompositiod6]  and exhibiting spatiotemporal chafk9]. Here we develop
along with Galerkin projection?7]. Efficient ways, such as the method further for use in stringent situations when only
multiple shooting boundary value algorithif&-10] that are  scalar and noisy data in a single variable from subsystems is
known to curtail error propagation for low-dimensional cha-available for parameter estimation.

otic and noisy data for continuous systef&], may be then

reformulat_ed, as shown here, to estimati_ng true parameter Il. KLGMS APPROACH

values using reduced models for the spatiotemporal dynam- _ o

ics. Given snapshots of spatiotemporal daté))(n,j), for
There has been a great deal of interest in forecasting spaariablesi=1,2, ... atdiscrete timesrf=1,2,... M) and

tiotemporal time series and model identification using poly-spatial nodesj=1,2, ... L), we may obtain the fluctuating

nomial and mixed functiongl2—14. Short-term prediction ~ components )(n,j) as

of spatiotemporal dynamics by reconstruction of local states A . A

[13], and KL decomposition using empirical basis functions vO(n,j)=u®(n,j)—ul(j) N

by training amplitude coefficients using genetic algorithms

for optimization[15] have been studied and assessed. Rathehere

than phase space reconstruction models, identification using

some knowledge of the system structure, along with nonlin-

ear parametric regressiofl4] has also been used for mod-

eling spatially extended systems. In this context, the attempt
represent temporal averages for tlenumber of snapshots
considered. The KL decomposition assumés(n,j) may

*Email address: ravi@che.ncl.res.in be expanded in a separable form as

M

. 1 )
u(l)(j): M z U(I)(n,j) (2)

n=1
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Mo _ A CML model with discrete space indgxand timen may
v(i’(n,j)szl al!(n) (), (3)  be written in a general form as
_ , , uOn+1j)=guP(n,j+j),u@(nj+j), ... w),
where by truncating the indekto an optimum value, say, (7)
it becomes possible to reconstruct #&(n,j) to a required
accuracy. In Eq(3), the a{’(n) are time-dependent coeffi- where, j’=...,—2,-1,0,1,2... andg is any function
cients while thep{(j) are spatial basis functions, satisfying With  ©#={x1,42, ... ,up} the model parameters. The
the orthonormality condition boundary conditions for Eq.7) are generally dependent on
the example being studied and in Sec. Ill we show cases
(¢|(i) ,¢§1i1)):5|m (4) involving periodic and open flowas in convectionbound-
ary conditions. In the KL-Galerkin’'s method we minimize
with the inner product defined as the residual by forcing the projection of the model on the

subspace of truncated basis functi@t{ﬁ(j) to be zero at all

‘ ' L _ ' time n and obtainN<M KL-Galerkin equations for the
(6", ¢t =2 ¢l (). (5) CML model described by Eq7) as
=1

N
g( 21 a®(n)¢M(j)+uD(j), ... .

L
The spatial basis functions can be empirical basis functionsa(k')(n+1): E
obtained from the spatial correlation matrj$], Fourier =1
modes, Chebyshev or other sets of orthogonal polynomials,
wavelets, etc[7,20,21. In particular, to obtain empirical ba- —u®(j)
sis functions the KL decomposition of the dat®(n,j) [Eq.

(3)] is carried out in an optimal fashiof¥] such that the

obtained¢, are eigenfunctions that maximize the associated/€re the use of the orthonormal property of the basis func-
eigenvaluesh, = ((¢y,v)?). Here (,-) denote the inner t|ons_[I_Eq.(4)] allows considerable simplification. The initial
product as defined in E@5) while (-) represents an averag- conditions for solving the mafEq. (8)] can be obtained by
ing procedure that commutes with the inner prodidt A [orcing the initial residual to(i)have Z€ro [()i;‘OJGF:tIO(ril) on the
factor 7y==N_,\, /=M |\, is a measure of the energy con- SPace of basis functions, i.e’(0)=2j_;v™"(0.)) ¢i’(1)-

tent for increasing mode indek and decides an indeX For coqtlnuous systems in 'both.spacand timet, the )
<M for which the series in Eq3) may be truncated. More m_athematlca_l model can be wntt_e_n n ge_neral form as PDE’s
often the spatial domain is much too large and estimation oYV'th appropriate boundary conditions, viz.,
eigenfunctions¢(k')(j) from a spatial correlation matrix can
become quite involved. The method of snapsh6iselps to
get over this practical difficulty by using instead the temporal
correlation matri>C,m=(1/M)EjL:1v(l ,J)v(m,j) as the ker-
nel and reduces the KL decomposition to solving a standar

V() ®)

uO(t,3)=hU®t ), u@(tx), ...w) (9

and the corresponding KL-Galerkin equations by projection
8btained as

eigenvalue problem of the for@,,,®,,=A®, with ® being N
the required set of eigenfunctiofé(’(j)}. From thes{(j) éfj)(t)=J h(z a®(t) pM(x)
the respective time-dependent coefficieaﬁg(n) may be =1

obtained from B
_ _ , _ FuD(x), ..o e (x)dx. (10)
b{’(n)=al’(n)=@"(n,j),#{(j)) (6)

Here againN<M equations form a simpler and reduced

and a full description of the dynamics as a series expansio ; .
model incorporating system parameteis Note that the

[Eq. (3)] becomes available. Note the introduction of nota- . : ;
tion b(n) in Eq. (6) [for a{’(n)] is to convey that the Summation in Eq.(5) for discrete systems becomes
time-d ok - an integral for continuous ones, ie., ¢{{,$%)
ime-dependent coefficients have been obtained solely frot” ; i 0 : 0PI o m
transformed snapshot datd’(n,j) [Eq. (1)]. The known = 01 *(X) ¢ (x)dx with the (-,-) now denoting the usual
values ofb{)(n) may, therefore, be used as time series for= ([0.1]) inner product spacgr] defined in spatial domain
model characterization and parameter estimation studies. 0=X=1. The initial conditions for solving E%.)(10)
Our next step is to obtain a simpler model of the spaM& @gain be independently obtained bg™(0)
tiotemporal system that can be used for the purposes of pa= Fo@(0x) (" () dx.
rameter estimation. Such a reduced description may be de- We next discuss the use of the simpler KL-Galerkin mod-
rived by Galerkin's projection of the model in conjunction €ls in the time-dependent coefficiew¥ (n) [i.e., Eq.(8) for
with the KL-Galerkin expansiofiEq. (3)] and we shall dis- CML or Eq. (10) for a continuous systefnalong with the
cuss the steps involved in this procedure separately for dignown coefficient values{’(n) obtained from the data by
crete CML-type systems and for continuous systems mod-Eq. (6)] for the estimation of parametefs for the respec-
eled by PDEs. tive spatiotemporal dynamids.e., Eq.(7) or Eq. (9)]. We
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show this is possible by using an effective algorithm in pa-=a((n,, ;)—s(I+1) we obtain a standard nonlinear
rameter estimation for low-dimensional nonlinear dynamicalminimization problen{22] of the type
systems, viz., the multiple shooting algorithm formulated as

a multipoint boundary value problem with nonlinear con-

straints for optimizatior}8,11]. The algorithm curtails error

propagation observed in chaotic dynamics and offers advan-
tages in terms of number of data points required, negatin
effects of noise, handling missing data situations, and stop:

ping at local minima during optimizatiof®,10].

For the CML model[Eqg. (7)], the observations in the
discrete time intervdln,,ny, ] may be chosen to form a grid
for M multiple shooting points ah;<n,<-..<n<--
<ny modes forming K —1) sets of initial value problems
in the form of[Eq. (8)] for each of the shooting nodes
with 1<I<M-—1. That is, on consideringg=1,2,... N
spatial basis modes fot<<M, we obtain for arith variable
N(M —1) maps to be solved

al(n+1)=6@aY(n), ¢ (1),uV(j), )

al’(n)=s(1), (1D
for an incremental time step—n+1. Here,s{’(1) denotes
the value of thath variable at théth shooting point foikth
basis mode and initial guesses for solvidgV — 1) maps of

Eq.(11) are taken to be the known valuest§f (1) [Eq. (6)].

It may be noted that for the system governed by PDE’s an

data available at shooting point§<7,---<7<---<my
and that are monitored at tinm\t, the corresponding set of
N(M —1) initial value problems may be written as

all(m)=s{(1).
(12)

We can construct an augmented vector of initial valsies
and parameterg for either model Eq(7) or Eq.(9), viz.,

al(=r@{ (1), s (x),uD(x), ),

z=(sM(1),sM(2), ... sPH(M),s2(1),

Sg_Z)(Z)v Y 27 L7 il-Lp) (13)
and attempt to minimize a least square cost functlgfr) of
the form

N M

i=12,-- k=1 n=1 g

Ly(2)= [b“(n —-FP@(n),w1?,

(14)

where, F{) is a function relating components ¢f in Eq.
(11) or H in Eq. (12) and comparing to the knowh{’(n)

with o) the square of the standard deviation. The minimi-

zation in Eq.(14) is carried out subject to satisfying

al(n;,)—sV(1+1)—0 (15)
so that the trajectories in the coefficiem®(n,, ;) become
continuous. Alternatively stated, by identifying,(2)

=r(s{(1),852(2), ... SP(M), 1,0, - - . tp) @ndys(2)

min{[lys(2)[13]y2(2)— 0} (16)

here the minimization of,(z) corresponds to minimizing
e cost function Eq(14) while that fory,(z) implies satis-
fying the constraints imposed by E@.5). The minimization
of Eq. (16) can be carried out by starting with initial guess

valuesz(o) and iterating forz using z{4" =z 4 (DA 2
where,»? €[0,1] are damping factors. In doing so, correc-
tions to the augmented vecter viz., AZ9 are obtained by
solving the linearized problem

Za)
min[ —yl( ) A7 (“)
z

lya( Z)
2

y1(29) +

N ay,(Z\D)
0z

AZ(q)—>0] . (17)

The above Eq(17) may be solved by a suitable nonlinear
optimization technique in the optimization variabled,Eq.
(13)] for arbitrary guess values for the parametgrsand
initial statess(ki)(l)=b(ki)(l). In the coding of the above
KLGMS approach, we have employed the successive qua-

airatic programming algorithmi23] coupled with numerical

differentiation for the sensitivity matrices. For illustration,
we have retained simplicity in the cost functipBqg. (14)]

but more effective functionalf24] may be adopted in the
optimizing for the parameterg. It is to be noted that the
methodology also allows optimizing for tha&')(l) even
when some values di{’(l) are initially not available and
arising due to missing snapshot data in say stim&ariable.
The illustrative examples presented in Sec. Ill and Sec. IV
bring out further the advantages offered by KLGMS ap-
proach when snapshot data availability is limited and possi-
bly noise contaminated.

Ill. PARAMETER ESTIMATION USING KLGMS
FOR CML

Because of their computational simplicity, CML'’s are a
popular and convenient paradigm for studying fully devel-
oped turbulenc¢16,17,25, chaos[26], and pattern forma-
tion [1] in systems. A CML model is a discrete space-time
system with continuous state space and studies the effects of
local nonlinear reaction dynamics, the coupling arising from
diffusion due to state space gradients as well as convective
effects by asymmetric couplinpl7]. Here, we consider a
CML involving a single spatial dimension and incorporating
these mechanisms as

u(n+1j)=(1-Dg=D)f(u(n,j))+Df(u(n,j—1))

D
+ 5 [FUnj+1)+funj-1)1, (19

where,u(n,j), j=1,2,... L is the state of the variable lo-
cated at sitg at timen for a lattice of size_, D4 the nearest
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20 (@ 5 (b) TABLE I. Significance of KL modes in CML.
15 15 Case Mode nok Nk Mk
n n
10 10 (a) Weakly 1 10.5467 0.9408
chaotic 2 0.3639 0.9733
B 3 3 0.2862 0.9988
@ 2 = & (b) Traveling 1 13.2207 0.9337
) wave 2 0.3712 0.9600
20, 20,
5 0.1098 0.9957
) = ) © Fully 1 3.8130 0.2690
10 chaotic 15 0.0661 0.9912
19 0.0217 0.9999
5
(d) Convective 1 4.0071 0.2950
1020 31.0 40 50 1020 3;? 4050 turbulence 15 0.0458 0.9929
19 0.0106 0.9999

FIG. 1. Evolved spatiotemporal datgn,j) for the CML (j
spatial grid withL=60; M =20 snapshots(a) Weak chaos F

ié'(7)3_Dd:foil4DJ:0io); (db) Lravelin_gZV\(/)ave_EO=41.512d0=00..5DCd Studies with KL-Galerkin Eq(8) for the CML Eq.(18)
(:j). ): (©) t_u yt ivel ope Ezagjsjﬁioﬁgd:o'spf 0);andising the KLGMS approach did accurately and simulta-
convective turbulenceR(=2.0D4=0.4D=0.3). neously estimate the unknown parametets)y,D.) from

neighbor diffusive coupling strength, ardi, denoting the @ fe_w snapsho_ts of thg dgta. The results of convergence for
asymmetric coupling constant. This being a single variablélrb'trar)_’ and different initial guesses for t_he parame;ers are
system we suppress the indéx in this section. FoD,=0 shown in Table Il for the(a) weakly chaotic,(b) traveling .
the system represents a reaction-diffusion system while fowave, andc) fully developed chaos cases. The robustness is
D.+0 mimics one with convective effects included. We as-S€€n when parameters were successfully estimated even for
sume the reaction dynamics on the lattice sites is governe@isy spatiotemporal data s¢able Il] obtained by additive

by the nonlinear logistic functiof(u)=1—Fu?, whereFis  noiseu(n,j)=u(n,j)+ 7 with Gaussian distribution noise
the nonlinearity parameter. Thus, depending on the paranw e N[0,e2]. The strength of the noise level used was deter-
eter values fofF, Dy, andD,, a variety of dynamical pat- mined by ogise/ 0gata @nd chosen to be 0.01. It may be
terns may be observed in E(L8) and characterized as in observed that noise in the data enters through the “coeffi-
[17]. We bring out the methodology for estimating param-cient trajectories”b,(l) that are obtained by the convolu-
eters for selected dynamics covering a broad range of comjons of the fluctuating data(n,j)=u(n,j)—u(j) with the
plexity, viz., () weak chaos{b) traveling wave;(c) fully  hasis functionsg{’(j) via Eq. (6). Note that although the
developed chaos; and) convective turbulence. Spatiotem- functional form of the CML in the form of Eq(18) is single
poral data for the different cases are obtained by eVOlVingjimensiona| and Sing'e Variab'e, the procedure may be ex-
Eq. (18). All the sites are given random initial conditions at tended to situations involving multivariable mappings Eqg.
n=0 and snapshots are stored after eliminating initial tran{7) and higher spatial dimensions. The effects of considering
sients. Case®a,b,9 are evolved with periodic boundary con- higher spatial dimensions do not change the methodology
ditions, i.e.,u(n,1)=u(n,L) while for the convective case pecause the KL expansion yields two or three-dimensional
(d) the left boundary is assumed fixed, i.e(n,1)=1, with  gspatial basis functionsgs(i,j,k) but the Galerkin equation
the right boundary open. The gray-scale images of the spasill retains the mapping form of Eq(8) in the time-
tiotemporal data with the parameter values yielding the dat@ependent coefficients (n). Applications of the method to

for a lattice size ofL=60 and forM=20 snapshots, is systems with multivariable coupling and scalar data are
shown in Fig. 1. In studies involving subsystems, only the

data corresponding to the evolution of the chosen subsystems
are stored.

We obtain a KL decomposition for the spatiotemporal
datav(n,j) and Table | shows the corresponding eigenval-

TABLE Il. Parameter estimation for the CML with varying dy-
namics. Error bounds for arbitrary initial guesses are shown.

ues\,, and the energy conter,, for the data shown in Case F D

Fig. 1(a—d. The results show that for the CML exhibiting  (a) Weakly chaotic 1.730.01 0.46:0.02
weak chaos and traveling wave, a smaller number of basis with noise 1.74:0.03 0.3%-0.02
modesN=3 andN=5, respectively, are required to capture (b) Traveling wave 1.580.01 0.5@-0.01
and reconstruct 99% of the data. For the more complex pat- with noise 1.54-0.03 0.53-0.04
terns, viz., fully developed chaos and convective turbulence (c) Fully chaotic 1.99-0.01 0.46:0.01
the number of basis modes significantly rise to 154®&9% with noise 2.030.04 0.38-0.03

and 19 for~100% accuracy.
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20 _ (a) TABLE lll. Parameter estimation from subsystem CML data for
‘.:._. convective turbulence. Error bounds for arbitrary initial guesses are
15 e shown.
n l.‘. .‘~
10 ':::....: Case F Dy D,
e .
5 ::‘.‘“ (@ Homogeneous 1.990.02 0.410.03 0.32:-0.03
i 1;‘”25 50 (b)  Inhomogeneous left 1.990.03 0.39-0.02 0.29-0.04
j () Inhomogeneous right 1.880.03 0.42:0.04 0.28-0.04
32 ®) (©) @
0.7
F o D other subsystems in the spatial domain.
P (0)-3 A number of real situations have inhomogeneous distribu-
' Oed tion of parameter values in space and/or slowly varying in
12 o 0.1 time domain. Studies in this context for parameter estimation
were carried out and the analysis of a simple example is
T 30 0 T discussed here. We evolve a CML such that the sites in the
q q q left half (i.e., 1=j=<256) haveF=2.0 while the right half

(i.e., 256 <j=<512) evolve data withF=1.9 for L=512.
Subsystem data from each héfig. 3) was used for param-
eter estimation. Since the local dynamics propagate in space,
the data obtained from both subsystems had composite fea-
tures leading to inconsistent and unreliable parameter esti-
mates. To overcome this difficulty we recorded data imme-
shown in the Sec. IV studying KLGMS for continuous time diately after giving a perturbation at time (i.e., noise of
systems. For brevity the results obtained with CML’s onstrength 0.01to the variableu(n,j) and then carried out
these aspects are not presented. KLGMS parameter estimation for each of the subsystems
The presence of scaling relationships in Lyapunov expo{left and righ}. The results presented in Table Il cagbs
nents as a function of subsystem size have been studigd) show that parameter estimation is now possible. Studies
[3-5]. For KL decomposition modes, using the spatial cor-were also carried out for situations modeliRgas a slowly
relation matrix, a linear relationship in KL dimensi¢@7]  varying parameter in time. The need to record subsystem
has also been seen. Our studies for subsystem scaling wittata at optimum time gaps was found necessary to monitor
the temporal correlation matri®,,, showed some interesting the slow parametric changes. In real situations, repeated pa-
features. We observe thd?r=maxN: m=<f} required to rameter estimations at sufficient time intervals can help in
capture a fractiori of the total variance showed scaling be- establishing relationships in the nature of parametric varia-
havior after an optimum subsystem size before saturatiortions and this can considerably aid system analysis.
The saturation occurs either due to the dynamics being not
complicated enough to warrant all modes to be included as a |\, pARAMETER ESTIMATION USING KLGMS FOR
function of subsystem size or alternatively when the dynam- REACTION-DIEEUSION SYSTEM
ics is sufficiently complex that all KL modd$imited by the
number of snapshotdl) are required. Therefore, depending A basic problem in studying spatially extended dynamical
on the complexity of the pattern and number of snapshotssystems is the quantitative comparison of experimental data
M, an optimum subsystem size exists beyond that only sys-

FIG. 2. Parameter estimation for convective turbule@eSub-
system data for the central 31 lattice sitéb;c,d simultaneous
convergence to parameter estimatesdpD 4, andD,, for arbitrary
initial guessegshown asy-axis label$ as iterationsy proceed for
minimizing the least square functional.

tem features can be extracted reliably. The feasibility of es- 20 e ™ | "
timating parameters by relaxing the need for data from the I...‘ o.ou.
entire spatial domain was then considered. Thus, on comput- I .u. M ‘.0 o‘
ing D+ for the convective CML datfFig. 1(d)] as a function 1 . [ '™
of subsystem sizg for L=80 we observed that beyond Al q'o

j =30 there is linear scaling and this determines the optimum n 10 '.‘. ‘ .'.“‘
subsystem size. For this subsystem size even with a lower W e “
number of modes<N=15), parameter values could be es- '\ ,’.".’
timated, while for larger subsystem size all KL modes need 5 ".'.‘ 0.'. \
to be considered. Figure(@ shows the subsystem data for .t.-h‘ H. .<
the central 31 lattice sites and used for parameter estimation & L
purposes foN=15. The accurate convergence of the esti- ! ] i

mated parameters, Dy, and D. with search iterations is /

shown in Fig. 2b—d) and reported as the homogeneous case FIG. 3. Data from the left E=2.0) and the right E=1.9)
(a) in Table lll. These studies suggest that when reliability ofsubsystems for the inhomogeneous CML. The vertical ling at
data is poor from certain regions, considerable information=256 marks the boundary; other parameter valDgs=0.4, D,
may be gained by using only authentic data available from=0.3.
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conditionsu®(t,0)=u™)(t,L) andu®(t,0)=u®(t,L) im-
posed. The initial conditions correspond to the stationary so-
lution uM(0x) =1 andu®(0,x)=0 except for a few central
sites that are given a random perturbation to break the sym-
metry.

Here we will also consider situations where only scalar
data in a single variable™)(t,x) is monitored. Because the
data in theu®)(t,x) is not available we need to use basis
functions other than empirical. In the present study, we
choose to exemplify KLGMS using Fourier basis functions

FIG. 4. Spatiotemporal data for the variahi€")(t,x) in the  defined as
autocatalytic reaction-diffusion system with parameter val@ies

=0.029,k=0.0535,D,=0.000 02,D, = 0.0001 with spatial length B (x) =2 sin(27kx) (20)
L=1 spanning 160 spatial sites alWt=128 snapshots recorded at o .

a time stepAt=0.1 is shown. with temporal coefficients obtained by

with quels based on partial differ_ential equations. For ex- b(ki)(t)za(ki)(t)z va(i)(t,X)d)(ki)(X)dX (21)
ample, in the study of pattern forming systems, the theoreti- 0

cal models usually take the form of reaction-diffusion equa- 4

tions that have been studied both theoretically ancind use theb{(t) as observables in evaluating the least
experimentally[1,28,29. For our study of parameter estima- square functional in E¢14). For the model Eq(19) the KL
tion we shall illustrate the methodology for a prototype Galerkin projection equations for the time-dependent coeffi-
reaction-diffusion model where one chemical species growsients, i.e., Eq(10), for modesk=1,2, ... N can be written
autocatalytically on another specigg0,19. This model is a  as[suppressingx) and )]

simplification of the model of glycolysis proposed by Selkov

[31] and it follows the reaction mechanishh+2V—3V; -(1)_f'-
V—P with a continuous supply of the reactadtand re- ar= 0
moval of productP. The model has been extensively studied

N

S algf+ )
k=1

D,V?

from the point of view of pattern formation and comparisons N 01— N _\?
) . ; 1 2) 4(2 2
with features observed in experimental data have also been - kzl afV (M +ul® gl al?p+u®
attempted 32].
The reaction-diffusion mechanism yields a two variable N _
PDE model involving concentrations)(t,x), u®(t,x) of +f1- > alg®M—uM| oM dx
U, V, respectively, and for a spatially one-dimensional sys- k=1
tem, we obtain ) N
(LX) a0 | {vaz( > aPl¢P+u®
———— =D, V2B (t,%) —u®(t,)[u®(t,x)]? ° 1
at
N N 2
+f[1—u®(t,x)] + k§=)l aVp®+u® k§=)l a@pP+u®
au®(t,x) N
—— =D, Vau®(t,x) +uD(t,x)[u@(t,x)]? —
ot » VUE(t,x) (tX)[ut(t,x)] —(F4K) k21 a@ @+ U@ || 2 dx 22)

—[f+KkJu(t,x). (19
and a reducedN<M set of ODE’s solved by integrating

Here,D, andD, are the diffusion coefficients of species using the initial conditions discussed for E40).
andV, with parameter$ andk related to the flow of reactant Our studies with the set of Galerkin equations E@R)
into the system and the kinetic rate constant. The parametevsith KLGMS for estimating system parameters using the
f,k form a pair of bifurcation parameters that may be variedspatiotemporally chaotic dat&ig. 4 showed two interesting
to obtain a host of spatiotemporal Turing patterns for unfeatures described below. First, accurate parameter estima-
equal diffusion coefficients of the chemical species as seen ition of the diffusion coefficients,,D,) did not particu-
[19]. larly depend on the choice ok(f) when initial transient

In our study, we consider the situation corresponding tadata were chosen as snapshots with the diffusion mechanism
system exhibiting spatiotemporal chaos, Fig. 4, as studieglaying a significant role. It was also observed that similar
in [19]. For obtaining the spatiotemporal data results in k,f) were obtained using snapshots after giving
u®(t,x),u@(t,x), Eq.(19) is solved numerically with Euler perturbation to the system stat€)(t,x) at any timet. The
discretization in the spatial domain, with spatial length second feature was that having evaluat&q, ([O,) in the
=1 spanning 160 spatial sites ald=40 snapshots are above fashion the other two parametefsk] could be suc-
stored at a time stept=0.1 and with periodic boundary cessfully estimated using post-transient data. These observa-
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TABLE IV. Parameter estimation for the autocatalytic reaction-diffusion system. Error bounds for arbi-

trary initial guesses are shown.

PHYSICAL REVIEW E64 056222

Case Data used Noise level f k
(a u®(x,t) 0.00 0.0296: 0.0001 0.053% 0.0001
u®(x,t) 0.02 0.029% 0.0001 0.0537 0.0001
0.05 0.0296-0.0003 0.0548 0.0003
(b) u®(x,t) 0.00 0.02910.0002 0.0538 0.0003
0.02 0.0296-0.0005 0.056% 0.0003
0.05 0.03030.0008 0.061@ 0.0003
(0 u(x,1t) 0.00 0.02950.0002 0.0548 0.0002
0.25<x<0.75 0.02 0.0307 0.0008 0.0578 0.0002
0.05 0.0321-0.0008 0.0614:0.0003

tions suggest that diffusion rates and reaction rates occur &(ng)=f[a{"(t)]? dt as a function of the subsystem size
differing time scales and clearly point to the need for suitable, ,n4 is shown ir: Fig. 5. The results indicate a near satura-
data sampling strategies. It may be noted that the values (?ifts)n beyondn,=80. The results of KLGMS carried out with

diffusion coefficients employed here lie in typical ranges. ¢ psystem scalar data available onlyui and with noise
The multiple time-scale features discussed above may, therée- Lo o
able IV case(c)] shows that parameter estimation within

fore, be expected to be frequently present in the dynamics of o .
spatiotemporal systems. Any methodology seeking moderI(:"""son"’lble error bounds is still possible.
identification would need to consider this relevant aspect for
parameter estimation.

Without any ambiguity, we discuss other features of the
KLGMS with reference to evaluatinigandk from monitored
post-transient data. The KL decomposition of the data set The results obtained using the KLGMS show that this
using Fourier modes for 40 snapshots showed that a singleasic framework has the necessary robustness for parameter
Fourier basis mode could reconstruct the data snapshots aestimation for spatiotemporal dynamics. We exemplify the
curately >99.8%). The results of parameter estimation withmethodology by simultaneously estimating all parameters of
this single mode considered showed that accurate convesx CML and a reaction-diffusion system. Importantly, for
gence was consistently possible even when the data was cafomplex dynamics and noise in the data we show that accu-
rupted with noise of the order of 5% and are summarized inate parameter estimates are possible even from small data
Table IV case(a). For the present reaction-diffusion system samples obtained from subsystems of optimal size. We show
we have ob_served that the use of ba5|s_funct|on_s with thg\,;leS of adapting the methodology for inhomogeneous situ-
known Fourier form allows tolerance for higher noise levelsgtions when parameters vary in space and time and by using

when compared to empirical basis functidusing correla- - yansient data soon after perturbing the system dynamics.
tion matrice$. A more practical problem arises in multivari-

able systems when only one dynamical variable is moni-
tored. We assume that?)(t,x) is not monitored and assign
initial guesses for the temporal coefficiert€)(t)=0.2 and

u®=0 for the multiple shooting algorithm. The least square
functional Eg.(14) and equality constraints are suitably
modified so as to take into account only terms in variables
u®(t,x). Results of the study presented in Table IV céye
showing accurate parameter estimation is again possible for
both f,k although with a small decrease in noise tolerance. It
may be seen that the parameter estimatiok pfesent only
in the u® equation of the PDE model E(L9) is also pos-
sible. Importantly, we have recovered the unmonitored vari-
able u®®(t,x) using Eq.(3) and estimated the values of
a®(t) by multiple shooting.

Similar to the studies using CML we attempted to evalu- 040 60, 80 100 120 190
ate parameters using subsystem data with only scalar vari- y
able data inu®(t,x) available. An indication of the opti- FIG. 5. PowerP(ny) in the first mode of the temporal coeffi-
mum subsystem size in this study using Fourier basigients, normalized to the maximum, is plotted as a function of sub-
functions was suggested on evaluating the normalized poweystem sizeng.

V. CONCLUSION
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The usefulness of this strategy especially when multiple ti-experiments for spatiotemporal systems that are often costly
mescales are present in the system dynamics has been disid difficult to perform.

cussed. The algorithm can be extended to situations when

only scalar data is available and has the capability to recover AU LS SIS

the dynamics of the unmonitored variable. The study pre- Authors wish to thank Unilever Research, Port Sunlight,
sented here should also help in the analysis and design &fK for financial assistance in carrying out the work.
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