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Parameter estimation in spatially extended systems: The Karhunen-Lo´eve and Galerkin multiple
shooting approach
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Parameter estimation for spatiotemporal dynamics for coupled map lattices and continuous time domain
systems is shown using a combination of multiple shooting, Karhunen-Loe´ve decomposition and Galerkin’s
projection methodologies. The resulting advantages in estimating parameters have been studied and discussed
for chaotic and turbulent dynamics using small amounts of data from subsystems, availability of only scalar
and noisy time series data, effects of space-time parameter variations, and in the presence of multiple time
scales.
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I. INTRODUCTION

In general, extensive systems exhibiting complex s
tiotemporal dynamics including chaos may be studied as
cesses involving reaction-diffusion and convective mec
nisms@1#. Analysis of the dynamics of these systems is n
an easy task because of the large attractor dimension
volved. It would be desirable to develop ways of studyi
spatiotemporal systems using reduced model description
conjunction with subsystem dynamics especially when i
known that extensive scaling relationships in dynamics e
as a function of subsystem size@2–5#. Methods developed
for low-dimensional systems may then become applica
with the concomitant advantage of simplifying the data
quirements for studying the spatiotemporal dynamics. In
paper, we show a profitable use of this approach for par
eter estimation with reduced model descriptions of s
tiotemporal systems and which uses subsystem data fo
characterization. The low-dimensional models can be
tained by projecting the governing equations onto relev
modes obtained by Karhunen-Loe´ve ~KL ! decomposition@6#
along with Galerkin projection@7#. Efficient ways, such as
multiple shooting boundary value algorithms@8–10# that are
known to curtail error propagation for low-dimensional ch
otic and noisy data for continuous systems@11#, may be then
reformulated, as shown here, to estimating true param
values using reduced models for the spatiotemporal dyn
ics.

There has been a great deal of interest in forecasting
tiotemporal time series and model identification using po
nomial and mixed functions@12–14#. Short-term prediction
of spatiotemporal dynamics by reconstruction of local sta
@13#, and KL decomposition using empirical basis functio
by training amplitude coefficients using genetic algorith
for optimization@15# have been studied and assessed. Ra
than phase space reconstruction models, identification u
some knowledge of the system structure, along with non
ear parametric regression,@14# has also been used for mod
eling spatially extended systems. In this context, the atte
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here is to demonstrate the potential of a different appro
that uses a multiple shooting algorithm for parameter a
state variable estimations in analyzing spatiotemporal beh
ior.

In Sec. II, the algorithm for spatiotemporal model para
eter estimation by a combination of Karhunen-Loe´ve decom-
position, Galerkin’s projection, and multiple shootin
~KLGMS! methodology is presented for spatiotemporal s
tems described by coupled map lattices@16,17# and partial
differential equations. Illustrative examples using t
KLGMS approach are presented in Sec. III for a single va
able coupled map lattice~CML! that possesses the bas
reaction-diffusion and convection mechanisms that give
to complex patterns including spatiotemporal chaos and c
vective turbulence. The use of the methodology in charac
izing the model from subsystem data using limited num
of snapshots is shown and the adaptability of the metho
inhomogeneous model@18# identification using perturbation
strategies is also discussed. The formalism is then applie
Sec. IV to an autocatalytic reaction-diffusion system d
scribed by multivariable partial differential equations~PDE!
and exhibiting spatiotemporal chaos@19#. Here we develop
the method further for use in stringent situations when o
scalar and noisy data in a single variable from subsystem
available for parameter estimation.

II. KLGMS APPROACH

Given snapshots of spatiotemporal data,u( i )(n, j ), for
variablesi 51,2, . . . atdiscrete times (n51,2, . . . ,M ) and
spatial nodes (j 51,2, . . . ,L), we may obtain the fluctuating
componentsv ( i )(n, j ) as

v ( i )~n, j !5u( i )~n, j !2ū( i )~ j ! ~1!

where

ū( i )~ j !5
1

M (
n51

M

u( i )~n, j ! ~2!

represent temporal averages for theM number of snapshots
considered. The KL decomposition assumesv ( i )(n, j ) may
be expanded in a separable form as
©2001 The American Physical Society22-1
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v ( i )~n, j !5 (
k51

M

ak
( i )~n!fk

( i )~ j !, ~3!

where by truncating the indexk to an optimum value, sayN,
it becomes possible to reconstruct thev ( i )(n, j ) to a required
accuracy. In Eq.~3!, the ak

( i )(n) are time-dependent coeffi
cients while thefk

( i )( j ) are spatial basis functions, satisfyin
the orthonormality condition

~f l
( i ) ,fm

( i )!5d lm ~4!

with the inner product defined as

~f l
( i ) ,fm

( i )!5(
j 51

L

f l
( i )~ j !fm

( i )~ j !. ~5!

The spatial basis functions can be empirical basis functi
obtained from the spatial correlation matrix@6#, Fourier
modes, Chebyshev or other sets of orthogonal polynom
wavelets, etc.@7,20,21#. In particular, to obtain empirical ba
sis functions the KL decomposition of the datav ( i )(n, j ) @Eq.
~3!# is carried out in an optimal fashion@7# such that the
obtainedfk are eigenfunctions that maximize the associa
eigenvalueslk5^(fk ,v)2&. Here (•,•) denote the inner
product as defined in Eq.~5! while ^•& represents an averag
ing procedure that commutes with the inner product@7#. A
factor hN5( l 51

N l l /(k51
M lk is a measure of the energy co

tent for increasing mode indexk and decides an indexN
,M for which the series in Eq.~3! may be truncated. More
often the spatial domain is much too large and estimation
eigenfunctionsfk

( i )( j ) from a spatial correlation matrix ca
become quite involved. The method of snapshots@6# helps to
get over this practical difficulty by using instead the tempo
correlation matrixClm5(1/M )( j 51

L v( l , j )v(m, j ) as the ker-
nel and reduces the KL decomposition to solving a stand
eigenvalue problem of the formClmFm5lF l with F being
the required set of eigenfunctions$fk

( i )( j )%. From thefk
( i )( j )

the respective time-dependent coefficientsak
( i )(n) may be

obtained from

bk
( i )~n!5ak

( i )~n!5„v ( i )~n, j !,fk
( i )~ j !… ~6!

and a full description of the dynamics as a series expan
@Eq. ~3!# becomes available. Note the introduction of no
tion bk

( i )(n) in Eq. ~6! @for ak
( i )(n)# is to convey that the

time-dependent coefficients have been obtained solely f
transformed snapshot datav ( i )(n, j ) @Eq. ~1!#. The known
values ofbk

( i )(n) may, therefore, be used as time series
model characterization and parameter estimation studies

Our next step is to obtain a simpler model of the sp
tiotemporal system that can be used for the purposes of
rameter estimation. Such a reduced description may be
rived by Galerkin’s projection of the model in conjunctio
with the KL-Galerkin expansion@Eq. ~3!# and we shall dis-
cuss the steps involved in this procedure separately for
crete CML-type systems and for continuous systems m
eled by PDEs.
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A CML model with discrete space indexj and timen may
be written in a general form as

u( i )~n11,j !5g„u(1)~n, j 1 j 8!,u(2)~n, j 1 j 8!, . . . ,m…,
~7!

where, j 85 . . . ,22,21,0,1,2, . . . and g is any function
with m5$m1 ,m2 , . . . ,mp% the model parameters. Th
boundary conditions for Eq.~7! are generally dependent o
the example being studied and in Sec. III we show ca
involving periodic and open flow~as in convection! bound-
ary conditions. In the KL-Galerkin’s method we minimiz
the residual by forcing the projection of the model on t
subspace of truncated basis functionsfk

( i )( j ) to be zero at all
time n and obtainN,M KL-Galerkin equations for the
CML model described by Eq.~7! as

ak
( i )~n11!5(

j 51

L FgS (
l 51

N

al
(1)~n!f l

(1)~ j !1ū(1)~ j !, . . . ,m D
2ū( i )~ j !Gfk

( i )~ j ! ~8!

where the use of the orthonormal property of the basis fu
tions @Eq. ~4!# allows considerable simplification. The initia
conditions for solving the map@Eq. ~8!# can be obtained by
forcing the initial residual to have zero projection on t
space of basis functions, i.e.,ak

( i )(0)5( j 51
L v ( i )(0,j )fk

( i )( j ).
For continuous systems in both spacex and time t, the

mathematical model can be written in general form as PD
with appropriate boundary conditions, viz.,

u̇( i )~ t,x!5h„u(1)~ t,x!,u(2)~ t,x!, . . . ,m… ~9!

and the corresponding KL-Galerkin equations by project
obtained as

ȧk
( i )~ t !5E hX(

l 51

N

al
(1)~ t !f l

(1)~x!

1ū(1)~x!, . . . ,m Cfk
( i )~x!dx. ~10!

Here againN,M equations form a simpler and reduce
model incorporating system parametersm. Note that the
summation in Eq. ~5! for discrete systems become
an integral for continuous ones, i.e., (f l

( i ) ,fm
( i ))

5*0
1f l

( i )(x)fm
( i )(x)dx with the (•,•) now denoting the usua

L2(@0,1#) inner product space@7# defined in spatial domain
0<x<1. The initial conditions for solving Eq.~10!
may again be independently obtained byal

( i )(0)
5*v ( i )(0,x)f l

( i )(x)dx.
We next discuss the use of the simpler KL-Galerkin mo

els in the time-dependent coefficientsak
( i )(n) @i.e., Eq.~8! for

CML or Eq. ~10! for a continuous system#, along with the
known coefficient valuesbk

( i )(n) obtained from the data by
@Eq. ~6!# for the estimation of parametersm for the respec-
tive spatiotemporal dynamics@i.e., Eq. ~7! or Eq. ~9!#. We
2-2
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show this is possible by using an effective algorithm in p
rameter estimation for low-dimensional nonlinear dynami
systems, viz., the multiple shooting algorithm formulated
a multipoint boundary value problem with nonlinear co
straints for optimization@8,11#. The algorithm curtails error
propagation observed in chaotic dynamics and offers adv
tages in terms of number of data points required, nega
effects of noise, handling missing data situations, and s
ping at local minima during optimization@9,10#.

For the CML model@Eq. ~7!#, the observations in the
discrete time interval@n1 ,nM# may be chosen to form a gri
for M multiple shooting points atn1,n2,•••,nl,•••

,nM modes forming (M21) sets of initial value problems
in the form of @Eq. ~8!# for each of the shooting nodesnl
with 1< l<M21. That is, on consideringk51,2, . . . ,N
spatial basis modes forN,M , we obtain for ani th variable
N(M21) maps to be solved

ak
( i )~n11!5G„ak

( i )~n!,fk
( i )~ j !,ū( i )~ j !,m…

ak
( i )~nl !5sk

( i )~ l !, ~11!

for an incremental time stepn→n11. Here,sk
( i )( l ) denotes

the value of thei th variable at thel th shooting point forkth
basis mode and initial guesses for solvingN(M21) maps of
Eq. ~11! are taken to be the known values ofbk

( i )( l ) @Eq. ~6!#.
It may be noted that for the system governed by PDE’s
data available at shooting pointst1,t2•••,t l,•••,tM
and that are monitored at timenDt, the corresponding set o
N(M21) initial value problems may be written as

ȧk
( i )~ t !5H„ak

( i )~ t !,fk
( i )~x!,ū( i )~x!,m…, ak

( i )~t l !5sk
( i )~ l !.

~12!

We can construct an augmented vector of initial values
and parametersm for either model Eq.~7! or Eq. ~9!, viz.,

z5„s1
(1)~1!,s1

(1)~2!, . . . ,s1
(1)~M !,s1

(2)~1!,

s1
(2)~2!, . . . ,m1 ,m2 , . . . ,mp… ~13!

and attempt to minimize a least square cost functionL2(z) of
the form

L2~z!5 (
i 51,2,•••

(
k51

N

(
n51

M
1

skn
( i ) @bk

( i )~n!2F k
( i )
„a~n!,m…#2,

~14!

where,F k
( i ) is a function relating components ofG in Eq.

~11! or H in Eq. ~12! and comparing to the knownbk
( i )(n)

with skn
( i ) the square of the standard deviation. The minim

zation in Eq.~14! is carried out subject to satisfying

a( i )~nl 11!2s( i )~ l 11!→0 ~15!

so that the trajectories in the coefficientsa( i )(nl 11) become
continuous. Alternatively stated, by identifyingy1(z)
5r „s1

( i )(1),s2
( i )(2), . . . ,sN

( i )(M ),m1 ,m2 , . . . ,mp… and y2(z)
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5a( i )(nl 11)2s( i )( l 11) we obtain a standard nonlinea
minimization problem@22# of the type

min
z

$iy1~z!i2
2uy2~z!→0% ~16!

where the minimization ofy1(z) corresponds to minimizing
the cost function Eq.~14! while that fory1(z) implies satis-
fying the constraints imposed by Eq.~15!. The minimization
of Eq. ~16! can be carried out by starting with initial gues
valuesz(0) and iterating forz usingz(q11)5z(q)1v (q)Dz(q)

where,v (q)P@0,1# are damping factors. In doing so, corre
tions to the augmented vectorz, viz., Dz(q) are obtained by
solving the linearized problem

min
z

H I y1~z(q)!1
]y1~z(q)!

]z
Dz(q)I

2

2

uy2~z(q)!

1
]y2~z(q)!

]z
Dz(q)→0J . ~17!

The above Eq.~17! may be solved by a suitable nonline
optimization technique in the optimization variables,z @Eq.
~13!# for arbitrary guess values for the parametersm, and
initial states sk

( i )( l )5bk
( i )( l ). In the coding of the above

KLGMS approach, we have employed the successive q
dratic programming algorithm@23# coupled with numerical
differentiation for the sensitivity matrices. For illustratio
we have retained simplicity in the cost function@Eq. ~14!#
but more effective functionals@24# may be adopted in the
optimizing for the parametersm. It is to be noted that the
methodology also allows optimizing for thesk

( i )( l ) even
when some values ofbk

( i )( l ) are initially not available and
arising due to missing snapshot data in say somei th variable.
The illustrative examples presented in Sec. III and Sec.
bring out further the advantages offered by KLGMS a
proach when snapshot data availability is limited and po
bly noise contaminated.

III. PARAMETER ESTIMATION USING KLGMS
FOR CML

Because of their computational simplicity, CML’s are
popular and convenient paradigm for studying fully dev
oped turbulence@16,17,25#, chaos@26#, and pattern forma-
tion @1# in systems. A CML model is a discrete space-tim
system with continuous state space and studies the effec
local nonlinear reaction dynamics, the coupling arising fro
diffusion due to state space gradients as well as convec
effects by asymmetric coupling@17#. Here, we consider a
CML involving a single spatial dimension and incorporatin
these mechanisms as

u~n11,j !5~12Dd2Dc! f „u~n, j !…1Dcf „u~n, j 21!…

1
Dd

2
@ f „u~n, j 11!…1 f „u~n, j 21!…#, ~18!

where,u(n, j ), j 51,2, . . . ,L is the state of the variable lo
cated at sitej at timen for a lattice of sizeL, Dd the nearest
2-3
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neighbor diffusive coupling strength, andDc denoting the
asymmetric coupling constant. This being a single varia
system we suppress the index~i! in this section. ForDc50
the system represents a reaction-diffusion system while
DcÞ0 mimics one with convective effects included. We a
sume the reaction dynamics on the lattice sites is gover
by the nonlinear logistic functionf (u)512Fu2, where,F is
the nonlinearity parameter. Thus, depending on the par
eter values forF, Dd, andDc , a variety of dynamical pat-
terns may be observed in Eq.~18! and characterized as i
@17#. We bring out the methodology for estimating para
eters for selected dynamics covering a broad range of c
plexity, viz., ~a! weak chaos;~b! traveling wave;~c! fully
developed chaos; and~d! convective turbulence. Spatiotem
poral data for the different cases are obtained by evolv
Eq. ~18!. All the sites are given random initial conditions
n50 and snapshots are stored after eliminating initial tr
sients. Cases~a,b,c! are evolved with periodic boundary con
ditions, i.e.,u(n,1)5u(n,L) while for the convective case
~d! the left boundary is assumed fixed, i.e.,u(n,1)51, with
the right boundary open. The gray-scale images of the s
tiotemporal data with the parameter values yielding the d
for a lattice size ofL560 and for M520 snapshots, is
shown in Fig. 1. In studies involving subsystems, only t
data corresponding to the evolution of the chosen subsys
are stored.

We obtain a KL decomposition for the spatiotempo
datav(n, j ) and Table I shows the corresponding eigenv
ueslk , and the energy contenthk , for the data shown in
Fig. 1~a–d!. The results show that for the CML exhibitin
weak chaos and traveling wave, a smaller number of b
modesN53 andN55, respectively, are required to captu
and reconstruct 99% of the data. For the more complex
terns, viz., fully developed chaos and convective turbule
the number of basis modes significantly rise to 15 for'99%
and 19 for'100% accuracy.

FIG. 1. Evolved spatiotemporal datau(n, j ) for the CML (j
spatial grid with L560; M520 snapshots.~a! Weak chaos (F
51.73,Dd50.4,Dc50.0); ~b! traveling wave (F51.5,Dd50.5,Dc

50.0); ~c! fully developed chaos (F52.0,Dd50.4,Dc50.0); and
~d! convective turbulence (F52.0,Dd50.4,Dc50.3).
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Studies with KL-Galerkin Eq.~8! for the CML Eq. ~18!
using the KLGMS approach did accurately and simul
neously estimate the unknown parameters (F,Dd ,Dc) from
a few snapshots of the data. The results of convergence
arbitrary and different initial guesses for the parameters
shown in Table II for the~a! weakly chaotic,~b! traveling
wave, and~c! fully developed chaos cases. The robustnes
seen when parameters were successfully estimated eve
noisy spatiotemporal data sets@Table II# obtained by additive
noise û(n, j )5u(n, j )1h with Gaussian distribution noise
hPN@0,«2#. The strength of the noise level used was det
mined by snoise/sdata and chosen to be 0.01. It may b
observed that noise in the data enters through the ‘‘coe
cient trajectories’’bk( l ) that are obtained by the convolu
tions of the fluctuating datav(n, j )5u(n, j )2ū( j ) with the
basis functionsfk

( i )( j ) via Eq. ~6!. Note that although the
functional form of the CML in the form of Eq.~18! is single
dimensional and single variable, the procedure may be
tended to situations involving multivariable mappings E
~7! and higher spatial dimensions. The effects of consider
higher spatial dimensions do not change the methodol
because the KL expansion yields two or three-dimensio
spatial basis functionsf( i , j ,k) but the Galerkin equation
still retains the mapping form of Eq.~8! in the time-
dependent coefficientsak(n). Applications of the method to
systems with multivariable coupling and scalar data

TABLE I. Significance of KL modes in CML.

Case Mode no.k lk hk

~a! Weakly 1 10.5467 0.9408
chaotic 2 0.3639 0.9733

3 0.2862 0.9988

~b! Traveling 1 13.2207 0.9337
wave 2 0.3712 0.9600

5 0.1098 0.9957

~c! Fully 1 3.8130 0.2690
chaotic 15 0.0661 0.9912

19 0.0217 0.9999

~d! Convective 1 4.0071 0.2950
turbulence 15 0.0458 0.992

19 0.0106 0.9999

TABLE II. Parameter estimation for the CML with varying dy
namics. Error bounds for arbitrary initial guesses are shown.

Case F Dd

~a! Weakly chaotic 1.7360.01 0.4060.02
with noise 1.7460.03 0.3960.02

~b! Traveling wave 1.5060.01 0.5060.01
with noise 1.5460.03 0.5360.04

~c! Fully chaotic 1.9960.01 0.4060.01
with noise 2.0360.04 0.3860.03
2-4
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shown in the Sec. IV studying KLGMS for continuous tim
systems. For brevity the results obtained with CML’s
these aspects are not presented.

The presence of scaling relationships in Lyapunov ex
nents as a function of subsystem size have been stu
@3–5#. For KL decomposition modes, using the spatial c
relation matrix, a linear relationship in KL dimension@27#
has also been seen. Our studies for subsystem scaling
the temporal correlation matrixClm showed some interestin
features. We observe thatDT5max$N: hN<f% required to
capture a fractionf of the total variance showed scaling b
havior after an optimum subsystem size before saturat
The saturation occurs either due to the dynamics being
complicated enough to warrant all modes to be included
function of subsystem size or alternatively when the dyna
ics is sufficiently complex that all KL modes~limited by the
number of snapshotsM ) are required. Therefore, dependin
on the complexity of the pattern and number of snapsh
M, an optimum subsystem size exists beyond that only s
tem features can be extracted reliably. The feasibility of
timating parameters by relaxing the need for data from
entire spatial domain was then considered. Thus, on com
ing DT for the convective CML data@Fig. 1~d!# as a function
of subsystem sizej for L580 we observed that beyon
j 530 there is linear scaling and this determines the optim
subsystem size. For this subsystem size even with a lo
number of modes ('N515), parameter values could be e
timated, while for larger subsystem size all KL modes ne
to be considered. Figure 2~a! shows the subsystem data f
the central 31 lattice sites and used for parameter estima
purposes forN515. The accurate convergence of the es
mated parametersF, Dd , and Dc with search iterations is
shown in Fig. 2~b–d! and reported as the homogeneous c
~a! in Table III. These studies suggest that when reliability
data is poor from certain regions, considerable informat
may be gained by using only authentic data available fr

FIG. 2. Parameter estimation for convective turbulence.~a! Sub-
system data for the central 31 lattice sites;~b,c,d! simultaneous
convergence to parameter estimates forF, Dd , andDc for arbitrary
initial guesses~shown asy-axis labels! as iterationsq proceed for
minimizing the least square functional.
05622
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other subsystems in the spatial domain.
A number of real situations have inhomogeneous distri

tion of parameter values in space and/or slowly varying
time domain. Studies in this context for parameter estimat
were carried out and the analysis of a simple example
discussed here. We evolve a CML such that the sites in
left half ~i.e., 1< j <256) haveF52.0 while the right half
~i.e., 257< j <512) evolve data withF51.9 for L5512.
Subsystem data from each half~Fig. 3! was used for param
eter estimation. Since the local dynamics propagate in sp
the data obtained from both subsystems had composite
tures leading to inconsistent and unreliable parameter e
mates. To overcome this difficulty we recorded data imm
diately after giving a perturbation at timen ~i.e., noise of
strength 0.01! to the variableu(n, j ) and then carried ou
KLGMS parameter estimation for each of the subsyste
~left and right!. The results presented in Table III cases~b!,
~c! show that parameter estimation is now possible. Stud
were also carried out for situations modelingF as a slowly
varying parameter in time. The need to record subsys
data at optimum time gaps was found necessary to mon
the slow parametric changes. In real situations, repeated
rameter estimations at sufficient time intervals can help
establishing relationships in the nature of parametric va
tions and this can considerably aid system analysis.

IV. PARAMETER ESTIMATION USING KLGMS FOR
REACTION-DIFFUSION SYSTEM

A basic problem in studying spatially extended dynami
systems is the quantitative comparison of experimental d

TABLE III. Parameter estimation from subsystem CML data f
convective turbulence. Error bounds for arbitrary initial guesses
shown.

Case F Dd Dc

~a! Homogeneous 1.9960.02 0.4160.03 0.3260.03
~b! Inhomogeneous left 1.9960.03 0.3960.02 0.2960.04
~c! Inhomogeneous right 1.8860.03 0.4260.04 0.2860.04

FIG. 3. Data from the left (F52.0) and the right (F51.9)
subsystems for the inhomogeneous CML. The vertical line aj
5256 marks the boundary; other parameter valuesDd50.4, Dc

50.3.
2-5
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with models based on partial differential equations. For
ample, in the study of pattern forming systems, the theor
cal models usually take the form of reaction-diffusion equ
tions that have been studied both theoretically a
experimentally@1,28,29#. For our study of parameter estima
tion we shall illustrate the methodology for a prototy
reaction-diffusion model where one chemical species gro
autocatalytically on another species@30,19#. This model is a
simplification of the model of glycolysis proposed by Selk
@31# and it follows the reaction mechanismU12V→3V;
V→P with a continuous supply of the reactantU and re-
moval of productP. The model has been extensively studi
from the point of view of pattern formation and compariso
with features observed in experimental data have also b
attempted@32#.

The reaction-diffusion mechanism yields a two variab
PDE model involving concentrationsu(1)(t,x), u(2)(t,x) of
U, V, respectively, and for a spatially one-dimensional s
tem, we obtain

]u(1)~ t,x!

]t
5Du¹2u(1)~ t,x!2u(1)~ t,x!@u(2)~ t,x!#2

1 f @12u(1)~ t,x!#

]u(2)~ t,x!

]t
5Dv¹2u(2)~ t,x!1u(1)~ t,x!@u(2)~ t,x!#2

2@ f 1k#u(2)~ t,x!. ~19!

Here,Du andDv are the diffusion coefficients of speciesU
andV, with parametersf andk related to the flow of reactan
into the system and the kinetic rate constant. The parame
f ,k form a pair of bifurcation parameters that may be var
to obtain a host of spatiotemporal Turing patterns for u
equal diffusion coefficients of the chemical species as see
@19#.

In our study, we consider the situation corresponding
system exhibiting spatiotemporal chaos, Fig. 4, as stud
in @19#. For obtaining the spatiotemporal da
u(1)(t,x),u(2)(t,x), Eq.~19! is solved numerically with Euler
discretization in the spatial domain, with spatial lengthL
51 spanning 160 spatial sites andM540 snapshots are
stored at a time stepDt50.1 and with periodic boundary

FIG. 4. Spatiotemporal data for the variableu(1)(t,x) in the
autocatalytic reaction-diffusion system with parameter valuef
50.029,k50.0535,Du50.000 02,Dv50.0001 with spatial length
L51 spanning 160 spatial sites andM5128 snapshots recorded
a time stepDt50.1 is shown.
05622
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conditionsu(1)(t,0)5u(1)(t,L) andu(2)(t,0)5u(2)(t,L) im-
posed. The initial conditions correspond to the stationary
lution u(1)(0,x)51 andu(2)(0,x)50 except for a few centra
sites that are given a random perturbation to break the s
metry.

Here we will also consider situations where only sca
data in a single variableu(1)(t,x) is monitored. Because th
data in theu(2)(t,x) is not available we need to use bas
functions other than empirical. In the present study,
choose to exemplify KLGMS using Fourier basis functio
defined as

fk
( i )~x!5A2 sin~2pkx! ~20!

with temporal coefficients obtained by

bk
( i )~ t !5ak

( i )~ t !5E
0

L

v ( i )~ t,x!fk
( i )~x!dx ~21!

and use thebk
( i )(t) as observables in evaluating the lea

square functional in Eq.~14!. For the model Eq.~19! the KL
Galerkin projection equations for the time-dependent coe
cients, i.e., Eq.~10!, for modesk51,2, . . . ,N can be written
as @suppressing~x! and (t)#

ȧi
(1)5E

0

LFDu¹2S (
k51

N

ak
(1)fk

(1)1ū(1)D
2S (

k51

N

ak
(1)fk

(1)1ū(1)D S (
k51

N

ak
(2)fk

(2)1ū(2)D 2

1 f S 12 (
k51

N

ak
(1)fk

(1)2ū(1)D Gf i
(1) dx

ȧi
(2)5E

0

LFDv¹2S (
k51

N

ak
(2)fk

(2)1ū(2)D
1S (

k51

N

ak
(1)fk

(1)1ū(1)D S (
k51

N

ak
(2)fk

(2)1ū(2)D 2

2~ f 1k!S (
k51

N

ak
(2)fk

(2)1ū(2)D Gf i
(2) dx ~22!

and a reducedN,M set of ODE’s solved by integrating
using the initial conditions discussed for Eq.~10!.

Our studies with the set of Galerkin equations Eqs.~22!
with KLGMS for estimating system parameters using t
spatiotemporally chaotic data~Fig. 4! showed two interesting
features described below. First, accurate parameter est
tion of the diffusion coefficients (Du ,Dv) did not particu-
larly depend on the choice of (k, f ) when initial transient
data were chosen as snapshots with the diffusion mecha
playing a significant role. It was also observed that simi
results in (k, f ) were obtained using snapshots after givi
perturbation to the system stateu(1)(t,x) at any timet. The
second feature was that having evaluated (Du ,Dv) in the
above fashion the other two parameters (f ,k) could be suc-
cessfully estimated using post-transient data. These obse
2-6
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TABLE IV. Parameter estimation for the autocatalytic reaction-diffusion system. Error bounds for
trary initial guesses are shown.

Case Data used Noise level f k

~a! u(1)(x,t) 0.00 0.029060.0001 0.053560.0001
u(2)(x,t) 0.02 0.029160.0001 0.053760.0001

0.05 0.029660.0003 0.054060.0003

~b! u(1)(x,t) 0.00 0.029160.0002 0.053860.0003
0.02 0.029660.0005 0.056560.0003
0.05 0.030360.0008 0.061060.0003

~c! u(1)(x,t) 0.00 0.029560.0002 0.054060.0002
0.25,x,0.75 0.02 0.030760.0008 0.057860.0002

0.05 0.032160.0008 0.061460.0003
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ub-
tions suggest that diffusion rates and reaction rates occu
differing time scales and clearly point to the need for suita
data sampling strategies. It may be noted that the value
diffusion coefficients employed here lie in typical range
The multiple time-scale features discussed above may, th
fore, be expected to be frequently present in the dynamic
spatiotemporal systems. Any methodology seeking mo
identification would need to consider this relevant aspect
parameter estimation.

Without any ambiguity, we discuss other features of
KLGMS with reference to evaluatingf andk from monitored
post-transient data. The KL decomposition of the data
using Fourier modes for 40 snapshots showed that a si
Fourier basis mode could reconstruct the data snapshot
curately (.99.8%). The results of parameter estimation w
this single mode considered showed that accurate con
gence was consistently possible even when the data was
rupted with noise of the order of 5% and are summarized
Table IV case~a!. For the present reaction-diffusion syste
we have observed that the use of basis functions with
known Fourier form allows tolerance for higher noise lev
when compared to empirical basis functions~using correla-
tion matrices!. A more practical problem arises in multivar
able systems when only one dynamical variable is mo
tored. We assume thatu(2)(t,x) is not monitored and assig
initial guesses for the temporal coefficientsa(2)(t)50.2 and
ū(2)50 for the multiple shooting algorithm. The least squa
functional Eq. ~14! and equality constraints are suitab
modified so as to take into account only terms in variab
u(1)(t,x). Results of the study presented in Table IV case~b!
showing accurate parameter estimation is again possible
both f ,k although with a small decrease in noise tolerance
may be seen that the parameter estimation ofk present only
in the u(2) equation of the PDE model Eq.~19! is also pos-
sible. Importantly, we have recovered the unmonitored v
able u(2)(t,x) using Eq. ~3! and estimated the values o
a(2)(t) by multiple shooting.

Similar to the studies using CML we attempted to eva
ate parameters using subsystem data with only scalar
able data inu(2)(t,x) available. An indication of the opti-
mum subsystem size in this study using Fourier ba
functions was suggested on evaluating the normalized po
05622
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P(ns)5*@a1
(1)(t)#ns

2 dt as a function of the subsystem siz

ns and is shown in Fig. 5. The results indicate a near satu
tion beyondns580. The results of KLGMS carried out with
subsystem scalar data available only inu(1) and with noise
@Table IV case~c!# shows that parameter estimation with
reasonable error bounds is still possible.

V. CONCLUSION

The results obtained using the KLGMS show that th
basic framework has the necessary robustness for param
estimation for spatiotemporal dynamics. We exemplify t
methodology by simultaneously estimating all parameters
a CML and a reaction-diffusion system. Importantly, f
complex dynamics and noise in the data we show that ac
rate parameter estimates are possible even from small
samples obtained from subsystems of optimal size. We s
ways of adapting the methodology for inhomogeneous s
ations when parameters vary in space and time and by u
transient data soon after perturbing the system dynam

FIG. 5. PowerP(ns) in the first mode of the temporal coeffi
cients, normalized to the maximum, is plotted as a function of s
system sizens .
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The usefulness of this strategy especially when multiple
mescales are present in the system dynamics has been
cussed. The algorithm can be extended to situations w
only scalar data is available and has the capability to reco
the dynamics of the unmonitored variable. The study p
sented here should also help in the analysis and desig
,

f
st

A

ev

05622
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dis-
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of

experiments for spatiotemporal systems that are often co
and difficult to perform.
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