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Effect of evanescent modes and chaos on deterministic scattering in electron waveguides
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Statistical properties of Wigner delay times and the effect of evanescent modes on the deterministic scat-
tering of an electron matter wave from a classically chaotic two-dimensional electron waveguide are studied
for the case of 2, 6, and 16 propagating modes. Deterministic reaction matrix theory for this system is
generalized to include the effect of evanescent modes on the scattering process. The statistical properties of the
Wigner delay times for the deterministic scattering process are compared to the predictions of random reaction
matrix theory.
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I. INTRODUCTION in acoustic and microwave resonatpi$], under conditions
in which these systems are thought to have classically cha-
In the 1950s it was observed that nuclear scattering prosetic dynamics. These predictions, in turn, can be compared
cesses can have statistical properties indistinguishable frot® the scattering properties of chaotic systems. RRMT, as it
random scattering procesgds. The first hint that these ran- is currently formulated, neglects some possibly important ef-
dom elements in the nuclear scattering data might be due f§cts in the scattering process, namely, the effect of evanes-
underlying chaos in the nuclear dynamics, appeared in a p&ent modes and some of the energy dependence of resonance
per by McDonald and Kauffmaf2], who studied the energy Poles.
level statistics for closed quantum billiards whose classical I this paper, we will study the deterministic scattering of
counterparts are either integrable or chaotic. They found tha@n €lectron in a two-dimensional electron waveguide, which
the quantized energy levels of the chaotic billiard had a stabas a classically chaotic cavity formed by a ripple billiard
tistical distribution that matched predictions of random ma-connected to a lead at one efsee Fig. 1. We will compare
trix theory. The first studies of the scattering properties ofthe results of deterministic scattering from the chaotic cavity
completely chaotic quantum systems with few degrees of0 the predictions of random matrix theory. The ripple bil-
freedom were due to Smilansky and co-workgs$, and  liard is particularly well suited to the use of reaction matrix
since then a number of papers have appepted] analyzing ~ theory, because a simple coordinate transformation allows us
guantum scattering using semiclassical technigi6e§], and 0 construct a Hamiltonian matrix and thus an eigenvalue
focused on the semiclassical regime. Recently 9}estudied equation for the basis states inside the cavity. This has not
deterministic quantum scattering from a chaotic billiard, in abeen done for any other form of chaotic billiard that we
regime where only a few channels are open, using finite elknow of.. . _ _
ement techniques and found random signatures in the We will generalize the reaction matrix theory for two-
Wigner delay times. dimensional waveguides to include the effect of evanescent
The analysis of fully quantum-mechanical scattering pro-modes explicitly and exactly in our expression for hma-
cesses, in systems where only a few channels are open, is fe. (The effect of evanescent modes on scattering processes
easily accessible because this regime is numerically demand-
ing. This fact has led to renewed interest in the reaction
matrix formulation of scattering theory that was developed
by Wigner and Eisenbud.0] in the late 1940§11]. The idea l
behind reaction matrix theory is to decompose configuration 3

space into a reaction regignavity) and an asymptotic scat- T :
tering region(lead. The exact wave function in the reaction i
region can be expanded in terms of any convenient complete i
set of states with fixed boundary conditions on the surface of d !
the reaction region, provided the coupling between the reac- T :
tion region(cavity) and asymptotic scattering region is sin- ;
gular[12,13.

Reaction matrix theory provides a convenient framework
for predicting the scattering properties of systems governed gy, 1, Geometry of the two-dimensional electron waveguide
by random Hamiltonian matrices. We shall call the theoryysed in our calculations. The rippled waveguide is the region de-
that uses reaction matrices to predict the scattering propertigged by solid lines, rectangular waveguide is the region whose
of systems with Gaussian random Hamiltoniaagdom re-  upper boundary is given by the dotted line. The dotted-dashed line
action matrix theory(RRMT). The predictions of RRMT shows the interference between leads and scattering region. Here
have been compared to experimental nuclear scattering data” is the width of the ripple, ‘ds’ is the width of the rectangular
[14], scattering in electron waveguidgks|, and resonances waveguide, scattering cavity extends froms 0 to x=L

x=0 x=L
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has been studied for nuclear scattering proce$$8s20  andy. The projection operator® and P have the property
using approximate theorigd/Ne will show that for the wave- thatO=02, P=P2, andOP=PO=0

guide we consider, evanescent modes dominate the scatter- ’ y .
ing properties of the waveguide in energy regions where new
propagating channels open. Ay o o "

We begin, in Sec. Il, by developing the reaction matrix H=Haq*Hpp*HaptHeo. @
theory of deterministic scattering in our electron waveguide;pe HamiltonianHQQ in the cavity(region | in Fig. 2, can
starting from a configuration space formulation rather tharyg \yritten
the usual eigenmode formulation, and we construct the
Hamiltonians for the cavity(reaction regioh and leads - I [ S A
(asymptotic scattering regipmf an electron waveguide. In Hoo=Q| 55 (Px+ Py +V(Xy)|Q, ()
Sec. lll, we derive the reaction matrix. In Sec. IV, we derive
the scattering matrix. In Sec. V, we describe the method W& herep, andp, are momentum operatons) is the mass of
use to obtain a complete set of basis states for a cavity wit . Y BTN .
arippled wall. In Sec. VI, we discuss the effect of evanescent € particle, and the_ potennM(x,)_/) dgteirmlngs the pgten—
modes on the scattering process, and in Sec. VIl we compaf#! walls of the cavity. The Hamiltoniakiqq is Hermitian
the statistical properties of the Wigner delay times for deternd, therefore, it will have a complete, orthonormal set of
ministic scattering in the waveguide with predictions of eigenstates that we denote@fp;). We can write the eigen-
RRMT. Finally, in Sec. VIII, we make some concluding re- value equation ablooQ|d;)=\;Q|4;), where\ is thejth
marks. energy eigenvalue dfigo andj=1,2,...M (we will later

let M—o). The eigenstates'),-(x,y)E<x,y|Q|¢j> must be
Il. SCATTERING HAMILTONIAN zero at the walls of the cavitwhich are assumed infinitely
We will consider the scattering properties of an electron@rd- We will require that the eigenstateg, (x,y), have

with massm in the waveguide shown in Fig. 1. The electron 2€r0 slope a=0 so thatd¢;/dx|;_o=0. Singular cou-
enters from the left with energi along an infinitely long pling, between the cavity and the lead, will correct for the

straight lead that has infinitely hard walls. The electron wave@ct that the actual wave function does not have zero slope at
is reflected back to the left by an infinitely hard wall locatedx=0. The completeness of the stat@¢;) allows us to
atx=L. The scattering is strongly affected by the region Owrite the completeness relatioB, Q| ¢;)( ;| Q=Q. Ortho-
<x<L (the cavity in which the upper wall is rippled, and normality requires tha¢¢j|Q|¢j,>= 8-

the dynamics inside the cavity can be chaotic. N . . .
The Schroedinger equation, which describes propagatiot}eg:)en l;!lai?lllztic;nlf];l)rii;pgp}\;gr;[hbeyasymptotlc scattering region

of a particle wave¥(x,y,t), for all timest is given by

ﬁ2< 2 P

The total Hamiltonian can be written

- I I NS
LIV Hpp=P| 5 (P Py) +V(X,Y) | P, @

" V)

Y(xy,t),

(1)  whereV(x,y) locates the infinitely hard walls of the lead.

Because the leads are assumed to be straight, the transverse
where# is Planck’s constant. The potentid(x,y) has the parts of the energy eigenstates, in the leads, decouple from
following properties: V(x,y) = for (L<x<=); V(x,0)  the longitudinal part. The eigenstates lafp are denoted
=0 for (mee<x<L); V[x,y=g(x)]=» for (0<x<L);  p|p, ) and satisfy the eigenvalue equation
and V(x,y=a+d)=o for (—»<x<0); where g(x)=d n
+acos(4mx/L) gives the contour of the ripplélis the aver- . 52
age width of the cavityL is the length, ana is the ripple HPPP|<I>kn'n):Ekn,nP|<bkn,n>=m
amplitude. Throughout this paper, we take the electron mass
to be the effective mass of an electron in GaAs,
=0.06"m,, wherem, is the free electron mass.

We can introduce projection operators,

amiad gy

n\? |5
W) |q)kn,n>'
)

wherew is the width of the lead. The eigenstétécbkn o in
configuration space can be written

P=/0,dx/".dy |xy)}xyl ) 7 nmy
<X’y|P|<Dkn,n>:Xk'n(X) WS"] T

2
ky+

(6)
and
5= (*dx[*_d The statel5|<l>kn n) is called thenth channel state.
Q=fodx/Z.dy  [x.y){xy| The coupling between the cavity and the lead is given by
that satisfy the completeness relati@r P=1, and separate Hop=CQ3a(X)pxP and Hpo=CP3(x)p,Q, (7)

the cavity region from the asymptotic scattering region. Here
Ix,y) is the simultaneous eigenstate of position operators where(x|pyx’)=7#/i §(x—x')d/dx.
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The waveguide energy eigenstal&s satisfy the eigen-

A a, . b, .
value equatiorH|E)=E|E). The stategE) can be decom- Lnxn(X)= \/_kie KX+ \/—kle'knx, (15
posed into their contributions from the two regions of con- n n
figuration space, so that
where
M N
[E)=2, %Qlg)+ X T'PPy), ® 2mE 2
=1 n=0 n— 2 d (16)
# +a
where y;=(¢;|Q|E) and I',=(®,|P|E). The eigenvalue _
equation,|3||E):E|E), yields a series of equations If there arev propagating modes them=1,2, ... p. Here

N
|:|QQ©|¢j>7j+n§0 HopP|® )T, =EQl#)y;, (9
forj=1,2,... M and
HPP'S@n)Fn"‘; HPQQ|¢]>7’1‘:E|5|(Dn>Fn (10

for n=1,2,... N. The condition for Hermiticity of the
Hamiltonian, (W || )= (¥ |H| W z)*, allows us to de-
termine that the value of the coupling constadtis C
=4#i/2m (see[21]).

lll. THE REACTION MATRIX

we use a unit current normalization. The evanescent modes
in the leads can be written

Foxn(x)= j—i—ne‘“nlx' , (17)
where
n 2mE
kn="\/ dT 7 (18
For evanescent modes the index=v+1v+2,... N,

whereN— oo,

IV. THE SCATTERING MATRIX

We now have enough information to derive the reaction To obtain the scattering matrix, we must first separate the

matrix for this system. Let us first multiply E() by (¢j|Q
to obtain

propagating modes from the evanescent modes. This first
step is accomplished as follows. Using E45) and Eq.(17)

we can write Eq(13) in the matrix form

5 N . dxn a- K, R R K
-Emch S a0 _To=0. ap (a+ﬂ:(}<p o)(Rpp Rpe)(Kp
0 Re ﬁ ﬁee 0

c
using the coupling consta@=4#%i/2m, we can rewrite Eq. P

o)

(11) and obtain the following expression for , (19
where
h? 1
YiT2m (BN 7 2 i n<°) _Orn' 12 ay by Cpia
E: : y _: : y _: ’ (20)
The continuity of the energy eigenstates, at the interface be- a b c
tween the cavity and the lead, yields v v N
M N dy N 0
n
I'xn(0) 2 7j¢j n(0)= 2 R, n’(d_> n’ K. = : : :
1 n'=1 X x= p !
(13) 0 vk,
where \/K—l _ 0
h? 247 (0) ¢ 4(0) Ke=| ¢ :
W Tam A T (Ehy) s 0 e,
is the (n,n’)th matrix element of the reaction matrix. Ri1 Ry,
We must distinguish between propagating and evanescent R —| : .
modes. The states in the leads, for propagating modes, can be PP '
written R,1 R,

056221-3



G. AKGUC AND L. E. REICHL

Rl,v+1 R I:zl,N
Rpe= : . : ,
Rv,l/+1 e RV,N
Rv+1,1 Rv+1,V
Rep: . . ’
RN,l RN v
Rv+1,V+l Rv+ 1N
Ree=
Ruv+1 oo Run

If we expand out Eq(19), we find
bR Ry Ky(b—a) + K RpKee,  (20)
Cc=iKeReKp(b—a) + KeReeKC. (22)

From Eq.(22) we can writec as

_ i —— — —
(1e_ KeReeKe) cEre

Where_Je is a unit matrix with the same dimensions%ge.
If we substitute Eq(23) into Eq. (21), we find

a+b=iD(b—a), (24

where the rescaled reaction matrix takes the form

(29

The second term on the right in E(®5) contains the effect
of the evanescent states on the propagating modes in the
waveguide. Thescattering matrix Srelates the outgoing
propagating modes to the incoming propagating mode
through the relatiora=Sh. The scattering matrix is thus

given by

SEE )

(1,+iD)’ 29

where 1, is a unit matrix with the same dimension Bs,,.
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¢1,1 e ¢1,V
wyp=| " |K, and
¢N,1 v ¢N,v
¢1,1 LRC ¢1,N—V
Wye=| C K, 27)
¢N,1 LR ¢N,N*V

wherep is the number of propagating modes amds the

number of evanescent modes in the lead. The matrban
be written in terms of the coupling matrices as

—W, (28)

Whereﬁin is a diagonal matrix formed by the eigenvalues of
the HamiltonianH o inside the cavity. This expression for

D can then be substituted into E@®@6) and, after some alge-
bra, we obtain the following form for the scattering matrix,

_ _ 1
S=—(1—2|W£N — ——Wpp | -

= =
Eln—Hin—WyneWent IWNpWpy

(29
As can be seen from the denominator of this expression,

evanescent modes affect the positions of resonance poles in
the complex energy plane because of the dependence 8f the

matrix onwey.

V. BASIS STATES FOR THE CAVITY REGION

We now describe a method to obtain the complete set of
gigenstate@lq')j) for the ripple cavity. We will require that
these states have zero slope at the cavity-lead interface (
=0). The eigenvalue equatiortiooQ|#;)=\;Q|¢;) in
configuration space, takes the form

_h2 d2 d2

Smlae” ay? +V(x,y)> ?i(X,y)=N\;9i(X,y), (30)

where ¢j(x,y)E(x,y|Q|¢j>. After the coordinate change

We see from Eqg25) and(26) that the evanescent modes [9,22],
may play an important role in the scattering process. To see

this effect on the resonance structure of Benatrix, we u=x, v= y , (3
obtain a more explicit form as follows. First we define the d+aco 4—x
coupling matrices
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we obtain an eigenvalue equation in terms of the coordinateshe solution can then be transformed backxty space to
uandv given by obtain the basis states;(x,y).

_ 72
Hyi(u,v)=— %(ﬁﬁ-i- hyd5+ hyd’, +Nad,) ¢(u,v) VI. THE EFFECT OF EVANESCENT MODES

For the ripple cavity considered here, the effect of eva-
nescent modes on Wigner delay times is most important at
energies just before a new channel opens in the lead. We
have studiedAthe effect Aof evanesifnt modes using param-

2.2 _ _ 2 eters,a=10 A, d=100 A, L=500 A, andm=0.06"n,,
1=12g”, zzﬂ, 3:&+ 20—3” and we use the form of th@matrix in Eq.(26) to obtain our
g 9 9 g results. We compare the variation Sfmatrix elementsS;

g=g(u)=d+acog(@dm/L)u], g,=dg/au, and y;(u,v) for an S matrix tha't i_nclud(?s the evanescent modegd
= ¢;(x(u,v),y(u,v)). The boundary conditions inu(v) #0), with anSmatrix sY, which excludes evanescent modes
space are given by,;(0v)=0, ¢;(L,v)=0, ;(u,00=0, (Wne=0). We use the cavity length, =500 A to increase
and ¢;(u,1)=0, so that in terms of these coordinates thethe density of resonances in any given energy interval. In a
walls are straight. Note that in thei@) coordinate frame, mesh based numerical methdlike a finite element or a
the statesy;(u,v) are normalized with a weighting factor finite difference increasing cavity length is numerically not
g(u) so that efficient due to the increasing number of nodal points, but
the reaction matrix approach can easily accommodate longer
+ _ cavities. In Fig. 2a) we show the effect of the evanescent
f fg(u)¢j(u,v)¢j,(u,v)du d=3;, B3 modes on the Wigner delay time at energies just below
where the second channel opens and, as we expect, there is a
The statey;(u,v), can be expanded in terms of a Fourier considerable increase in the delay of the electron. The abso-
basis lute value of the amplitude; of the first evanescent mode
also increases just before the second propagating channel
“ j opens as shown in Fig.(d). The effect of the first evanes-
lﬂj(U'v):mE:l ngl Bmn®mn(U,0) (34) cent modec; is dominant since the amplitudes of the second
and higher evanescent modes are near zero. A similar behav-
with ior of the evanescent modes occurs at energies just below
where the third propagating channel opens. There again, one
evanescent mode becomes dominant. In Fi¢s. &d Fig.
) 2(d) we compare the behavior of first and second partial
Wigner delay timesr; and r,, respectively, both for the case
(39 when the contributions of the evanescent modes are included

where B{'m are the unknown expansion coefficients. As aand fofﬂ?e case when they are removed in calculations of the
S matrix in this energy regime.

result of this expansion, the boundary value problem is trans- We have looked at the effect of evanescent modes on

formed into the eigenvalue problem Smatrix elements in the two mode energy regime by com-
© _ puting the differences,SY;| —|S;i| and |S),|—|Syl, where
> 2 Honmtn Bl =EjBhn. (36) S, andS), denote elements of th® matrix without contri-
m=1n=1 butions from evanescent modes. The difference in the mag-
nitude of theS-matrix elements is smalbf order 10 %), but
the difference in the slopes can be fairly large.
4 (L 1 o We have also looked at the analytic continuation of
Hmnm(n’:EJ’ duf dv Vg sin(nrv) f H(sin(n’ o) f'/\/g) Smatrix elements in the complex energy plane and we find
0 0 good agreement with the predictions of Wigner delay time
37 plots. In Fig. 3, we show partial Wigner delay times in en-
_ P , ergy interval, £, <E<9E;. In Fig. 4 we show the behavior
where f=c05{(2m—1)77u/£L.], f =c.os{(2m ,_1)7TUI2L]’ 9 of S, in the complex energy plane. Figuréastgives large
=d+acog(4m/L)u], andH is the differential operator de- gcaie hehavior, and Fig.(# focuses on behavior near the
fined in Eq.(32). Note that we cannot use integration bY real axis. The poles near to real energy d=isown in Fig.
parts to get a symmetrical form, as was done in R&fsand 4] determine the sharp peaks in the Wigner delay times.
[22] because surface terms will not drop out. The poles further from the real axis determine the broader
The eigenvalues and eigenvectorstbtan be calculated peaks in the Wigner delay time plots.
efficiently due to the sinusoidal integrals. Eigenvectorsiof In Figs. 5 and 6 we show the effect of the energy depen-
give values for the expansion coefficie®ts, and the eigen- dence of the coupling matriceg/y, andwye. This energy
functions inu-v space can be found from these coefficients.dependence is always neglected in RRMT calculations

=)\j¢j(u,v) (32)

where

[ [

Pma(U0) = %g_llzsimnwv)Co{%

The Hamiltonian matrix elements,,,.v,» are given by
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05
(a) (b)
1 0.4r¢ FIG. 2. Effect of evanescent
;}- |c1/a| modes for a waveguide with pa-
R 20 rametersa=10 A, d=100 A, L
09 S =500 A. (8 The solid line is
~ — o2y Wigner delay timer; in the one
® 009 04 channel regime for an energy in-
lc/al.....lc/al terval just before a second propa-
0 -— gating channel opens in the lead.
362 394 396 398 4 39 392 394 39  3.98 4 The dashed line shows, when
E/E, E/E, no evanescent modes are included
in calculations. (b) The ampli-
osof tudesc,; and c, of the first two
0.575 (c) ' (d) evanescent modes in the same en-
057 081} ergy interval as in(a). (c) The
W 565 so_lld line shov_vs the_flrst partial
e Wigner delay time,r; just before
g 0.56 the opening of the third channel.
~0.555 The dashed line is for the case
© 055 when no evanescent modes are in-
0545 cluded in calculatingr;. (d) The
: same agc) for the second partial
892 894 896 898 9 892 804 896 898 0 Wigner delay time,r,.
E/E, E/E,

(RRMT calculations also negle@ﬁm). In Fig. 5, we plot matrix calculation with the energy dependenceszm‘p and
|S;4, both for the case when the energy dependenoE,\Qf Wy included. The dashed lines show the same quantity but
and WNE is taken into accountfull line), and for the case using coupling matrlcesNNp andWNe, with dependence on
when the energy dependencev_vqﬁp andv_vNe is fixed at the  €nergyE fixed at the real valu&=6.5€;. We also included
value,E=6.5E, (dotted-dashed lineln Fig. 6, the effect of ~eigenvalues of the effective HamiltonianH e 1= H

— — o ot ot ;
the energy dependence wf,, andwy, on the distributions ~ +WneWen ™ IWnpWpy, @S cross marks on this plot. The ei-
of poles in the complex energy plane is shown. The positiorgenvalues ofH.¢; are calculated fixing the energy depen-
of Smatrix poles changes when the variation with energy ofdence ofwy, and Wy, at the valueE=6.5E;. The matrix,

the coupling constantsyy, andwy., is not included. In Fig. Hess has the same number of eigenvalues as the number of
6, the solid lines are contour lines (84| for the reaction cavity basis states us¢@500 in the calculation of the reac-

FIG. 3. Wigner delay times for the energy re-
gion when there are two modes in leads. The
waveguide parameters ase=10 A, d=100 A,
L=500 A.

E/E
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200

100 .

FIG. 4. Poles of theS matrix in lower com-
plex energy plane when there are two modes in
lead. The waveguide parameters are10 A, d
=100 A, andL=500 A. The absolute value of
first S matrix elementS,; is shown.(a) S;; for
imaginary energies in interval QIm(E)
< —0.95. (Only points for which|S,,| <200 are
shown) (b) Same as ifa) but S;; is shown with
imaginary energies very close to real axis, 0
<Im(E)=<-0.07.

Lo

tion matrix. In Figure 6, we indicate with crosses, those ei-we are able to compute a large number of basis states accu-

genvalues ofH.; that are located in the energy interval rately by solving a single eigenvalue problem. We can then
4E,<E<9E,. Neglect of the energy dependence of the couUse these basis states to compute the scattering matrix for
pling constants causes a shift of the poles away from thei@ny energyE. In contrast to this, when one uses finite ele-
true positions. This shift is small in the neighborhood of thement methods, or other mesh based numerical methods, to
fixed energyE=6.5E,, but it grows as one moves further compute theS matrix, one must solve a largéut sparsg
away in energy. matrix equation for each enerdy Also, the reaction matrix
approach can deal with any cavity size, but the mesh based
methods cannot. For the purpose of computing Wigner delay
times for chaotic cavities, we will change slightly the shape
In this section we compute the statistical properties of theof rippled wall to have an amplitude,=d+ a sin(5mx/L),
Wigner delay time$23] obtained for deterministic scattering rather thany=d+acos(4mx/L) as was used in preceding
of the electron from the ripple cavity. The reaction matrix sections. This will allow the electrons to enter the cavity,
theory is especially suited for this type of computation. Withrather than being reflected at the entrance wéaerd/2.
the help of the coordinate transformation method in Sec. V, We will compute the statistical distribution of Wigner de-

VII. THE SIGNATURES OF CHAOS

1

TV

0.7

FIG. 5. Comparison of the first matrix ele-

s mentS;; when we take into accountlhe energy
E‘D dependence of the coupling matriceg, and
=7 i Wye (solid line) to the first matrix elemen®;oe"
9, ! when the energy dependencevaf, andwy, has
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0.02

0.04

Wi 06
0.08 FIG. 6. Change of absolute value 68,

when we take into account the energy depen-
dence of the coupling matricesy, and wy,
(solid line) and when of the energy dependence
of wy, and wye has a fixed valueE=6.5,
(dashed ling The crosses represent the eigenval-
ues of effective Hamiltonian, Hef=H;,
—WneWi N+ iwy W)y in this energy region with
energy fixed aE=6.5E,. The cavity parameters
a=10A, d=100 A, L=500 A. (a) Expanded
view near real axis(b) Poles further down the

‘ \ imaginary axis. (Only points for which |S;,|
PN <200 are show.

i

|

[
|

/ l',,l I

tf ¢ L g

T AT ey

1
5 55 6 6.5 7 75 8 8.5 9

re

lay times, both for the case when the classical dynamics gbarameter ranges to see how the statistical distribution of
the cavity is fully chaotid24—-26, and for the case where it Wigner delay times changes as the underlying dynamics un-
has a mixed phase space. In Fig. 7, we plot Poincare surfacegrgoes a transition from a mixed phase space to a fully
of section(PS9 for several different values of ripple ampli- chaotic phase space. For the regime with mixed phase space,
tudea. The surfaces of section are plots of Birkoff coordi- we collected data by computing the Wigner delay times for
nates p,,x), of a classical particle each time it bounces off 20 different values of ripple amplitude ranging froma
the section of the cavity ag=0. x is the position of the =0.5 A toa=10 A in units of 0.5 A. In Figs. &)—(c), we
particle andp, is its component of momentum parallel to the show histograms of the total Wigner delay times for deter-
wall, each time it strikes the wall. FiguréaJ shows the PSS ministic scattering with a mixed classical phase space in the
for a=1, Fig. 7Mb) is for the casea=5, and Fig. Tc) is for  cavity, for cases wheM =2, M=6, andM =16 propagat-
the casea=10. The classical dynamics has a mixed phaseéng modes, respectively, exist in the leads. In these figures,
space for small values @t However, fora=60 it is almost  P(7) is the histogram of Wigner delay times normalized so
fully chaotic, as shown in Figure(d). the area is equal to 1, are) is the mean Wigner delay time.
One can use either Eq26) or Eq. (29) to calculate Each histogram contains 3200000 Wigner delay times. We
Wigner delay times for the case of deterministic scatteringsee that the distributions are narrowly peaked around their
We have checked that they give identical answers. For thaverage values. There is a shift toward more centralized
case of deterministic scattering, we looked at two differentGaussian-likg distribution when we increase number of

FIG. 7. PSS for the Birkhoff coordinates
along the wall,y=0, of a classical particle in a
closed billiard with the shape of the cavity.is
the position where the particle hits the wall and
andp, is its component of momentum parallel to
the wall.(a) a=1 A, d=100 A, L=500 A; (b)
a=5A, d=100 A, L=500 A; (c) a=10 A, d
=100 A, L=500A; and (d a=60A, d
=100 A, L=500 A.
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i our result by buildingw using theM eigenvectors of each
— £ g ) realization ofH o, and we get a similar distribution for the
,{—2 ‘ ‘ corresponding number of channels. In Fig$g)&(i), we

] i show histograms of the total Wigner delay times obtain using

0 e Hcoe and its eigenvectors to construct tBenatrix, for the

4 ®) © ®) casesM =2, M=6, andM =16, respectively. We see that
- the Wigner delay time statistics, for deterministic scattering,
o approaches the random matrix predictions as the degree of

underlying chaos increases.

0 III..II-— ll-h-...____ It is useful to note that we have calculated the Wigner

4 © 0 ) delay times by taking fthe deriyative of ti®matrix _eigen-

- phase curved(E) vsE, in two different ways. The first way
gy is to take two neighboring energy poiritse choseE=0 and
‘ . E=0.001) and use these to obtain one Wigner delay time for
0 each realization oHgoe. The second way is to obtain a

sl 0 st T % " whole series of Wigner delay times from t#E) vs E
curve for a single realization d;,. We have checked that
FIG. 8. Histograms of Wigner delay times for different numbersthese two methods give similar results.
of propagating channel$/ for the case of deterministic scattering ~ The distribution of total Wigner delay times for our de-
[(@—(c)] in the near integrable regimg(d)—(f)] deterministic scat-  terministic scattering from the chaotic ripple cavity, agrees
tering in the chaotic regime; an@)—(i) RRMT predictions.(a)  qualitatively with the predictions of the random matrix
Deterministic scattering in near integrable regime with=2 for  theory. This agreement can be understand looking at the dis-

0.5<a=<10.0in steps 0=0.5 and withd=100 A, L=500 A;(b) tripution of nearest neighbor energy eigenvalue spacings for

same asga) for M =6; (c) same asga) for M =16; (d) M=2 in fully Y TR .
chaotic regime withM—2 for 60<a=<75 in steps ofa—1.0 and Hi,. We have checked this distribution and have found it to

with d=100 A, L =500 A: () same agd) for M=6: (f) same as be in good agreement with the distribution of nearest neigh-

(d) for M=16; () RRMT result forM=2: (h) same agg) for M bor eigenvalues spacings obtained fbgoe. Both saﬂsfy
=6; and(i) same agg) for M =16. the Wigner distributiori27]. Also the coupling constanty,
that we obtained from the deterministic calculation is some-

channels. However, for the case of mixed phase space ti#hat in similar form to that obtained from the GOE Hamil-
system has a smaller number of resonances and the redonian. In Fig. 9a), we show the coupling vectowlngl,
nances are more sharply peaked than for the fully chaotiobtained from the GOE Hamiltonian. In Figsb® and dc),

regime, and therefore the Wigner delay times are narrowlyespectively, we show the coupling vectov_singl as is

distributed. defined in Eq.(27), for a nearly integrable systefwith a

For the regime with fully chaotic phase space we col-—5 A) and a fully chaotic systenwith a=70 A). The
lected data for 15 different values of ripple amplitude, rang-

ing from a=60 A to a=75 A in units of 1 A. In Figs. coupling vectorw,, for the determ|n|st|(_: syst_em, becomes
8(d)—(f), we show histograms of the total Wigner delay more random as we go to a fully chaotic regime.

times for deterministic scattering with a fully chaotic classi-

cal phase space in the cavity, for cases whea2, M=6, VIIl. CONCLUSION

and M=16 propagating modes, respectively, exist in the . .
leads. Each histogram contains 800 000 Wigner delay times. In this paper we have S'[,Ud'Ed the gffect that evanescent
The distributionP(7) shifts from a Poisson-like distribution M°des have on the scattering properties of an electron in a

to Gaussian-like distribution as we increase the number of/@veguide with a “chaotic” cavity. We have reformulated

channels. For a small number of channels the distribution i%he rea_ct_ion _matrix theory of electron waveguide scattering
asymmetric and has a long tail to explicitly include the effect of evanescent modes. We

We also looked at the statistics of the total Wigner delayh"’“’e found that evangscent modes can.increase the delay of
times obtained by replacing tf@matrix in Eq.(29), by the thg electron for energies near the opening of new channels.
equation This effect ha_s been seen b_efcﬁ%]. The scattering system
we have considered is relatively “soft.” There are no impu-
rities and no sharp corners to snag evanescent modes, and yet
1 W (39) their effect is still noticeable. For systems with impurities
' and sharp corners, we expect the effect of evanescent modes
to be even more dramatic.

— . . We have also studied the effect of neglecting the energy
where Hgoe is chosen from an Gaussian orthogonal en'dependence of the coupling matrices that appear in the reac-
semble(GOE) and the coupling matriw is constructed from  tjon matrix approach to scattering. This appears to cause an
the M eigenvectors of one realization of th&xM Hamil-  effective repulsion on the positions of quasibound state
tonian matrixH o in the GOE ensemble. We also checkedpoles.

S=—| 1+ 2iwf —— _
Ely—Hgoe—iww
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012
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X FIG. 9. Coupling matrix,w;, (a) obtained
2 o from GOE; (b) for mixed phase spaca=5 A;

and(c) for chaotic phase spaca=60 A.
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The effects of both the evanescent modes and the energood qualitative agreement with the predictions of RRMT
dependence of coupling matrices are routinely neglected ifor the case when the deterministic scattering occurs from a
RRMT, and this should be kept in mind when attempting tocavity that is classically chaotic.
use that theory to make predictions about real waveguide
scattering experiments or numerical simulation of determin-
istic waveguide scattering systems.

We have also studied the statistical distribution of the
Wigner delay times for scattering from our chaotic wave- The authors wish to thank the Welch Foundation, Grant
guide cavity, for the case oM=2, M=6, and M=16  No. F-1051, NSF Grant INT-9602971 and DOE Contract
propagating modes. To build adequate statistics for comparNo. DE-FG03-94ER14405 for partial support of this work.
son with RRMT predictions, we have included data for aWe also thank the University of Texas at Austin, High Per-
range of ripple amplitudes, being careful to include data onlyformance Computing Center for use of their computer facili-
from the regime where the internal dynamics of the rippleties, and we thank German Luna-Acosta and Thomas Selig-
cavity is either mixed or completely chaotic. We find fairly man for helpful comments.
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