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Effect of evanescent modes and chaos on deterministic scattering in electron waveguides
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Statistical properties of Wigner delay times and the effect of evanescent modes on the deterministic scat-
tering of an electron matter wave from a classically chaotic two-dimensional electron waveguide are studied
for the case of 2, 6, and 16 propagating modes. Deterministic reaction matrix theory for this system is
generalized to include the effect of evanescent modes on the scattering process. The statistical properties of the
Wigner delay times for the deterministic scattering process are compared to the predictions of random reaction
matrix theory.
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I. INTRODUCTION

In the 1950s it was observed that nuclear scattering p
cesses can have statistical properties indistinguishable
random scattering processes@1#. The first hint that these ran
dom elements in the nuclear scattering data might be du
underlying chaos in the nuclear dynamics, appeared in a
per by McDonald and Kauffman@2#, who studied the energy
level statistics for closed quantum billiards whose class
counterparts are either integrable or chaotic. They found
the quantized energy levels of the chaotic billiard had a
tistical distribution that matched predictions of random m
trix theory. The first studies of the scattering properties
completely chaotic quantum systems with few degrees
freedom were due to Smilansky and co-workers@3#, and
since then a number of papers have appeared@4,5# analyzing
quantum scattering using semiclassical techniques@6–8#, and
focused on the semiclassical regime. Recently we@9# studied
deterministic quantum scattering from a chaotic billiard, in
regime where only a few channels are open, using finite
ement techniques and found random signatures in
Wigner delay times.

The analysis of fully quantum-mechanical scattering p
cesses, in systems where only a few channels are open, i
easily accessible because this regime is numerically dem
ing. This fact has led to renewed interest in the react
matrix formulation of scattering theory that was develop
by Wigner and Eisenbud@10# in the late 1940s@11#. The idea
behind reaction matrix theory is to decompose configura
space into a reaction region~cavity! and an asymptotic scat
tering region~lead!. The exact wave function in the reactio
region can be expanded in terms of any convenient comp
set of states with fixed boundary conditions on the surfac
the reaction region, provided the coupling between the re
tion region~cavity! and asymptotic scattering region is si
gular @12,13#.

Reaction matrix theory provides a convenient framew
for predicting the scattering properties of systems gover
by random Hamiltonian matrices. We shall call the theo
that uses reaction matrices to predict the scattering prope
of systems with Gaussian random Hamiltonians,random re-
action matrix theory~RRMT!. The predictions of RRMT
have been compared to experimental nuclear scattering
@14#, scattering in electron waveguides@15#, and resonance
1063-651X/2001/64~5!/056221~10!/$20.00 64 0562
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in acoustic and microwave resonators@16#, under conditions
in which these systems are thought to have classically c
otic dynamics. These predictions, in turn, can be compa
to the scattering properties of chaotic systems. RRMT, a
is currently formulated, neglects some possibly important
fects in the scattering process, namely, the effect of eva
cent modes and some of the energy dependence of reson
poles.

In this paper, we will study the deterministic scattering
an electron in a two-dimensional electron waveguide, wh
has a classically chaotic cavity formed by a ripple billia
connected to a lead at one end~see Fig. 1!. We will compare
the results of deterministic scattering from the chaotic cav
to the predictions of random matrix theory. The ripple b
liard is particularly well suited to the use of reaction matr
theory, because a simple coordinate transformation allow
to construct a Hamiltonian matrix and thus an eigenva
equation for the basis states inside the cavity. This has
been done for any other form of chaotic billiard that w
know of.

We will generalize the reaction matrix theory for two
dimensional waveguides to include the effect of evanesc
modes explicitly and exactly in our expression for theSma-
trix. ~The effect of evanescent modes on scattering proce

FIG. 1. Geometry of the two-dimensional electron wavegu
used in our calculations. The rippled waveguide is the region
fined by solid lines, rectangular waveguide is the region wh
upper boundary is given by the dotted line. The dotted-dashed
shows the interference between leads and scattering region.
‘‘ a’’ is the width of the ripple, ‘‘ds’’ is the width of the rectangular
waveguide, scattering cavity extends fromx50 to x5L
©2001 The American Physical Society21-1
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has been studied for nuclear scattering processes@17–20#
using approximate theories.! We will show that for the wave-
guide we consider, evanescent modes dominate the sca
ing properties of the waveguide in energy regions where n
propagating channels open.

We begin, in Sec. II, by developing the reaction mat
theory of deterministic scattering in our electron wavegui
starting from a configuration space formulation rather th
the usual eigenmode formulation, and we construct
Hamiltonians for the cavity~reaction region! and leads
~asymptotic scattering region! of an electron waveguide. In
Sec. III, we derive the reaction matrix. In Sec. IV, we deri
the scattering matrix. In Sec. V, we describe the method
use to obtain a complete set of basis states for a cavity
a rippled wall. In Sec. VI, we discuss the effect of evanesc
modes on the scattering process, and in Sec. VII we com
the statistical properties of the Wigner delay times for de
ministic scattering in the waveguide with predictions
RRMT. Finally, in Sec. VIII, we make some concluding r
marks.

II. SCATTERING HAMILTONIAN

We will consider the scattering properties of an electr
with massm in the waveguide shown in Fig. 1. The electro
enters from the left with energyE along an infinitely long
straight lead that has infinitely hard walls. The electron wa
is reflected back to the left by an infinitely hard wall locat
at x5L. The scattering is strongly affected by the region
,x,L ~the cavity! in which the upper wall is rippled, and
the dynamics inside the cavity can be chaotic.

The Schroedinger equation, which describes propaga
of a particle wave,C(x,y,t), for all timest is given by

i\
]C~x,y,t !

]t
5F2

\2

2m S ]2

]x2
1

]2

]y2D 1V~x,y!GC~x,y,t !,

~1!

where\ is Planck’s constant. The potentialV(x,y) has the
following properties: V(x,y)5` for (L<x,`); V(x,0)
5` for (2`<x<L); V@x,y5g(x)#5` for (0,x,L);
and V(x,y5a1d)5` for (2`,x,0); where g(x)5d
1a cos(4px/L) gives the contour of the ripple,d is the aver-
age width of the cavity,L is the length, anda is the ripple
amplitude. Throughout this paper, we take the electron m
to be the effective mass of an electron in GaAs,m
50.067me , whereme is the free electron mass.

We can introduce projection operators,

P̂5*2`
0 dx*2`

` dy ux,y&^x,yu

and

Q̂5*0
`dx*2`

` dy ux,y&^x,yu

that satisfy the completeness relationQ̂1 P̂51̂, and separate
the cavity region from the asymptotic scattering region. H
ux,y& is the simultaneous eigenstate of position operatorx̂
05622
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and ŷ. The projection operatorsQ̂ and P̂ have the property
that Q̂5Q̂2, P̂5 P̂2, andQ̂P̂5 P̂Q̂50.

The total Hamiltonian can be written

Ĥ5ĤQQ1ĤPP1ĤQP1ĤPQ . ~2!

The HamiltonianĤQQ in the cavity~region I in Fig. 1!, can
be written

ĤQQ[Q̂F 1

2m
~ p̂x

21 p̂y
2!1V~ x̂,ŷ!GQ̂, ~3!

wherep̂x and p̂y are momentum operators,m is the mass of
the particle, and the potentialV( x̂,ŷ) determines the poten
tial walls of the cavity. The HamiltonianĤQQ is Hermitian
and, therefore, it will have a complete, orthonormal set
eigenstates that we denote asQ̂uf j&. We can write the eigen-
value equation asĤQQQ̂uf j&5l j Q̂uf j&, wherel j is the j th
energy eigenvalue ofĤQQ and j 51,2, . . .M ~we will later
let M→`). The eigenstatesf j (x,y)[^x,yuQ̂uf j& must be
zero at the walls of the cavity~which are assumed infinitely
hard!. We will require that the eigenstates,f j (x,y), have
zero slope atx50 so thatdf j /dxux5050. Singular cou-
pling, between the cavity and the lead, will correct for t
fact that the actual wave function does not have zero slop
x50. The completeness of the statesQ̂uf j& allows us to
write the completeness relation,( j Q̂uf j&^f j uQ̂5Q̂. Ortho-
normality requires that̂f j uQ̂uf j 8&5d j , j 8 .

The HamiltonianĤPP in the asymptotic scattering regio
~region II in Fig. 1! is given by

ĤPP[ P̂F 1

2m
~ p̂x

21 p̂y
2!1V~ x̂,ŷ!G P̂, ~4!

whereV( x̂,ŷ) locates the infinitely hard walls of the lead
Because the leads are assumed to be straight, the trans
parts of the energy eigenstates, in the leads, decouple
the longitudinal part. The eigenstates ofĤPP are denoted
P̂uFkn ,n& and satisfy the eigenvalue equation

ĤPPP̂uFkn ,n&5Ekn ,nP̂uFkn ,n&5
\2

2m Fkn
21S np

w D 2G P̂uFkn ,n&,

~5!

wherew is the width of the lead. The eigenstateP̂uFkn ,n& in
configuration space can be written

^x,yuP̂uFkn ,n&5xk,n~x!A2

w
sinS npy

w D ~6!

The stateP̂uFkn ,n& is called thenth channel state.
The coupling between the cavity and the lead is given

ĤQP5CQ̂d~ x̂!p̂xP̂ and ĤPQ5CP̂d~ x̂!p̂xQ̂, ~7!

where^xu p̂xux8&5\/ id(x2x8)d/dx.
1-2
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The waveguide energy eigenstatesuE& satisfy the eigen-
value equationĤuE&5EuE&. The statesuE& can be decom-
posed into their contributions from the two regions of co
figuration space, so that

uE&5(
j 51

M

g j Q̂uf j&1 (
n50

N

GnP̂uFn&, ~8!

where g j5^f j uQ̂uE& and Gn5^FnuP̂uE&. The eigenvalue
equation,ĤuE&5EuE&, yields a series of equations

ĤQQQ̂uf j&g j1 (
n50

N

ĤQPP̂uFn&Gn5EQ̂uf j&g j , ~9!

for j 51,2, . . . ,M and

ĤPPP̂uFn&Gn1(
j

HPQQ̂uf j&g j5EP̂uFn&Gn ~10!

for n51,2, . . . ,N. The condition for Hermiticity of the
Hamiltonian,^CbuĤuCa&5^CauĤuCb&* , allows us to de-
termine that the value of the coupling constantC is C
54\ i /2m ~see@21#!.

III. THE REACTION MATRIX

We now have enough information to derive the react
matrix for this system. Let us first multiply Eq.~9! by ^f j uQ̂
to obtain

~l j2E!g j1C
\

4i (
n51

N

f j ,n* ~0!S dxn

dx D
x50

Gn50. ~11!

using the coupling constantC54\ i /2m, we can rewrite Eq.
~11! and obtain the following expression forg j ,

g j5
\2

2m

1

~E2l j !
(
n51

N

f j ,n* ~0!S dxn

dx D
x50

Gn . ~12!

The continuity of the energy eigenstates, at the interface
tween the cavity and the lead, yields

Gnxn~0!5(
j 51

M

g jf j ,n~0!5 (
n851

N

Rn,n8S dxn

dx D
x50

Gn8 .

~13!

where

Rn,n85
\2

2m (
j 51

M f j ,n8
* ~0!f j ,n~0!

~E2l j !
~14!

is the (n,n8)th matrix element of the reaction matrix.
We must distinguish between propagating and evanes

modes. The states in the leads, for propagating modes, ca
written
05622
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Gnxn~x!5
an

Akn

e2 iknx1
bn

Akn

eiknx, ~15!

where

kn5A2mE

\2
2S np

d1aD 2

~16!

If there aren propagating modes thenn51,2, . . . ,n. Here
we use a unit current normalization. The evanescent mo
in the leads can be written

Gnxn~x!5
cn

Akn

e2knuxu , ~17!

where

kn5AS np

d1aD 2

2
2mE

\2
. ~18!

For evanescent modes the indexn5n11,n12, . . . ,N,
whereN→`.

IV. THE SCATTERING MATRIX

To obtain the scattering matrix, we must first separate
propagating modes from the evanescent modes. This
step is accomplished as follows. Using Eq.~15! and Eq.~17!
we can write Eq.~13! in the matrix form

S ā1b̄

c̄
D 5S K̄p 0

0 K̄e
D S R̄pp R̄pe

R̄ep R̄ee
D S K̄p 0

0 K̄e
D S i ~ b̄2ā!

c̄
D ,

~19!

where

ā5S a1

A

an

D , b̄5S b1

A

bn

D , c̄5S cn11

A

cN

D , ~20!

K̄p5S Ak1 . . . 0

A � A

0 . . . Akn

D ,

K̄e5S Ak1 . . . 0

A � A

0 . . . AkN2n

D
R̄pp5S R1,1 . . . R1,n

A . . . A

Rn,1 . . . Rn,n

D ,
1-3
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R̄pe5S R1,n11 . . . R1,N

A . . . A

Rn,n11 . . . Rn,N

D ,

R̄ep5S Rn11,1 . . . Rn11,n

A . . . A

RN,1 . . . RN,n

D ,

R̄ee5S Rn11,n11 . . . Rn11,N

A . . . A

RN,n11 . . . RN,N

D .

If we expand out Eq.~19!, we find

ā1b̄5 iK̄ pR̄ppK̄p~ b̄2ā!1K̄pR̄peK̄ec̄, ~21!

c̄5 iK̄ eR̄epK̄p~ b̄2ā!1K̄eR̄eeK̄ec̄. ~22!

From Eq.~22! we can writec̄ as

c̄5
i

~ 1̄e2K̄eR̄eeK̄e!
K̄eR̄epK̄p~ b̄2ā!, ~23!

where 1̄e is a unit matrix with the same dimensions asR̄ee.
If we substitute Eq.~23! into Eq. ~21!, we find

ā1b̄5 iD̄ ~ b̄2ā!, ~24!

where the rescaled reaction matrix takes the form

D̄5F K̄pR̄ppK̄p1K̄pR̄peK̄e

1

~ 1̄e2K̄eR̄eeK̄e!
K̄eR̄epK̄pG .

~25!

The second term on the right in Eq.~25! contains the effect
of the evanescent states on the propagating modes in
waveguide. Thescattering matrix S̄relates the outgoing
propagating modes to the incoming propagating mo
through the relationā5S̄b̄. The scattering matrix is thu
given by

S̄52
~ 1̄p2 iD̄ !

~ 1̄p1 iD̄ !
, ~26!

where 1̄p is a unit matrix with the same dimension asR̄pp .
We see from Eqs.~25! and~26! that the evanescent mode

may play an important role in the scattering process. To
this effect on the resonance structure of theS̄ matrix, we
obtain a more explicit form as follows. First we define t
coupling matrices
05622
he
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w̄Np[S f1,1 . . . f1,n

A A

fN,1 . . . fN,n
D K̄p and

w̄Ne[S f1,1 . . . f1,N2n

A A

fN,1 . . . fN,N2n
D K̄e , ~27!

where p is the number of propagating modes ande is the
number of evanescent modes in the lead. The matrixD̄ can
be written in terms of the coupling matrices as

D̄5w̄pN
† 1

E1̄N2H̄ in

w̄Np

1w̄pN
† 1

E1̄N2H̄ in

w̄Ne

1

1̄e2w̄eN
† 1

E1̄N2H̄ in

w̄Ne

3w̄eN
† 1

E1̄N2H̄ in

w̄Np ~28!

whereH̄ in is a diagonal matrix formed by the eigenvalues
the HamiltonianHQQ inside the cavity. This expression fo
D̄ can then be substituted into Eq.~26! and, after some alge
bra, we obtain the following form for the scattering matrix

S̄52S 122iw̄pN
† 1

E1̄N2H̄ in2w̄New̄eN
† 1 iw̄Npw̄pN

†
w̄NpD .

~29!

As can be seen from the denominator of this express
evanescent modes affect the positions of resonance pol
the complex energy plane because of the dependence ofS

matrix on w̄eN .

V. BASIS STATES FOR THE CAVITY REGION

We now describe a method to obtain the complete se
eigenstatesQ̂uf j& for the ripple cavity. We will require that
these states have zero slope at the cavity-lead interfacx

50). The eigenvalue equation,HQQQ̂uf j&5l j Q̂uf j& in
configuration space, takes the form

2\2

2m S d2

dx2 1
d2

dy2 1V~x,y! Df j~x,y!5l jf j~x,y!, ~30!

where f j (x,y)[^x,yuQ̂uf j&. After the coordinate change
@9,22#,

u5x, v5
y

d1a cosS 4p

L
xD , ~31!
1-4
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we obtain an eigenvalue equation in terms of the coordin
u andv given by

H̄c j~u,v ![2
\2

2m
~]u

21h1]v
21h2]uv

2 1h3]v!c j~u,v !

5l jc j~u,v ! ~32!

where

h15
11v2gu

2

g2
, h25

22vgu

g
, h35

2vguu

g
1

2vgu
2

g2
,

g5g(u)[d1a cos@(4p/L)u#, gu[]g/]u, and c j (u,v)
5f j„x(u,v),y(u,v)…. The boundary conditions in (u,v)
space are given by]uc j (0,v)50, c j (L,v)50, c j (u,0)50,
and c j (u,1)50, so that in terms of these coordinates t
walls are straight. Note that in the (u,v) coordinate frame,
the states,c j (u,v) are normalized with a weighting facto
g(u) so that

E E g~u!c j
†~u,v !c j 8~u,v !du dv5d j , j 8 , ~33!

The state,c j (u,v), can be expanded in terms of a Fouri
basis

c j~u,v !5 (
m51

`

(
n51

`

Bmn
j fmn~u,v ! ~34!

with

fmn~u,v !5
2

AL
g21/2sin~npv !cosF ~2m21!pu

2L G ,
~35!

where Bmn
j are the unknown expansion coefficients. As

result of this expansion, the boundary value problem is tra
formed into the eigenvalue problem

(
m51

`

(
n51

`

Hmnm8n8Bm8n8
j

5EjBmn
j . ~36!

The Hamiltonian matrix elementsHmnm8n8 are given by

Hmnm8n85
4

LE0

L

duE
0

1

dvAg sin~npv ! f H̄„sin~n8pv ! f 8/Ag…

~37!

where f [cos@(2m21)pu/2L#, f 8[cos@(2m821)pu/2L#, g

[d1a cos@(4p/L)u#, and H̄ is the differential operator de
fined in Eq. ~32!. Note that we cannot use integration b
parts to get a symmetrical form, as was done in Refs.@9# and
@22# because surface terms will not drop out.

The eigenvalues and eigenvectors ofH̄ can be calculated
efficiently due to the sinusoidal integrals. Eigenvectors ofH̄
give values for the expansion coefficientsBmn

j and the eigen-
functions inu-v space can be found from these coefficien
05622
es
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The solution can then be transformed back tox-y space to
obtain the basis statesf j (x,y).

VI. THE EFFECT OF EVANESCENT MODES

For the ripple cavity considered here, the effect of ev
nescent modes on Wigner delay times is most importan
energies just before a new channel opens in the lead.
have studied the effect of evanescent modes using pa
eters, a510 Å, d5100 Å, L5500 Å, and m50.067me ,
and we use the form of theSmatrix in Eq.~26! to obtain our
results. We compare the variation ofS-matrix elementsSi j

for an S matrix that includes the evanescent modes (w̄Ne

Þ0), with anSmatrix S̄0, which excludes evanescent mod
(w̄Ne50). We use the cavity length,L5500 Å to increase
the density of resonances in any given energy interval. I
mesh based numerical method~like a finite element or a
finite difference! increasing cavity length is numerically no
efficient due to the increasing number of nodal points,
the reaction matrix approach can easily accommodate lon
cavities. In Fig. 2~a! we show the effect of the evanesce
modes on the Wigner delay time at energies just be
where the second channel opens and, as we expect, ther
considerable increase in the delay of the electron. The a
lute value of the amplitudec1 of the first evanescent mod
also increases just before the second propagating cha
opens as shown in Fig. 2~b!. The effect of the first evanes
cent modec1 is dominant since the amplitudes of the seco
and higher evanescent modes are near zero. A similar be
ior of the evanescent modes occurs at energies just be
where the third propagating channel opens. There again,
evanescent mode becomes dominant. In Figs. 2~c! and Fig.
2~d! we compare the behavior of first and second par
Wigner delay timest1 andt2, respectively, both for the cas
when the contributions of the evanescent modes are inclu
and for the case when they are removed in calculations of
S matrix in this energy regime.

We have looked at the effect of evanescent modes
S-matrix elements in the two mode energy regime by co
puting the differences,uS11

0 u2uS11u and uS12
0 u2uS12u, where

S11
0 andS12

0 denote elements of theS matrix without contri-
butions from evanescent modes. The difference in the m
nitude of theS-matrix elements is small~of order 1023), but
the difference in the slopes can be fairly large.

We have also looked at the analytic continuation
S-matrix elements in the complex energy plane and we fi
good agreement with the predictions of Wigner delay tim
plots. In Fig. 3, we show partial Wigner delay times in e
ergy interval, 4E1,E,9E1. In Fig. 4 we show the behavio
of uS11u in the complex energy plane. Figure 4~a! gives large
scale behavior, and Fig. 4~b! focuses on behavior near th
real axis. The poles near to real energy axis@shown in Fig.
4~b!# determine the sharp peaks in the Wigner delay tim
The poles further from the real axis determine the broa
peaks in the Wigner delay time plots.

In Figs. 5 and 6 we show the effect of the energy dep
dence of the coupling matrices,w̄Np and w̄Ne . This energy
dependence is always neglected in RRMT calculatio
1-5
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FIG. 2. Effect of evanescen
modes for a waveguide with pa
rametersa510 Å, d5100 Å, L
5500 Å. ~a! The solid line is
Wigner delay timet1 in the one
channel regime for an energy in
terval just before a second propa
gating channel opens in the lead
The dashed line showst1 when
no evanescent modes are includ
in calculations. ~b! The ampli-
tudes c1 and c2 of the first two
evanescent modes in the same e
ergy interval as in~a!. ~c! The
solid line shows the first partia
Wigner delay time,t1 just before
the opening of the third channe
The dashed line is for the cas
when no evanescent modes are i
cluded in calculatingt1. ~d! The
same as~c! for the second partial
Wigner delay time,t2.
io
o

but
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r of
-

~RRMT calculations also neglectw̄Ne!. In Fig. 5, we plot
uS11u, both for the case when the energy dependence ofw̄Np

and w̄Ne is taken into account~full line!, and for the case
when the energy dependence ofw̄Np andw̄Ne is fixed at the
value,E56.5E1 ~dotted-dashed line!. In Fig. 6, the effect of
the energy dependence ofw̄Np and w̄Ne on the distributions
of poles in the complex energy plane is shown. The posit
of S-matrix poles changes when the variation with energy
the coupling constants,w̄Np andw̄Ne , is not included. In Fig.
6, the solid lines are contour lines ofuS11u for the reaction
05622
n
f

matrix calculation with the energy dependence ofw̄Np and
w̄Ne included. The dashed lines show the same quantity
using coupling matrices,w̄Np andw̄Ne , with dependence on
energyE fixed at the real valueE56.5E1. We also included
eigenvalues of the effective Hamiltonian,H̄e f f5H̄ in

1w̄New̄eN
† 2 iw̄Npw̄pN

† , as cross marks on this plot. The e
genvalues ofH̄e f f are calculated fixing the energy depe
dence ofw̄Ne and w̄Np at the valueE56.5E1. The matrix,
H̄e f f has the same number of eigenvalues as the numbe
cavity basis states used~2500! in the calculation of the reac
-
he
FIG. 3. Wigner delay times for the energy re
gion when there are two modes in leads. T
waveguide parameters area510 Å, d5100 Å,
L5500 Å.
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FIG. 4. Poles of theS matrix in lower com-
plex energy plane when there are two modes
lead. The waveguide parameters area510 Å, d
5100 Å, andL5500 Å. The absolute value o

first S̄ matrix elementS11 is shown.~a! S11 for
imaginary energies in interval 0<Im(E)
<20.95. ~Only points for whichuS11u,200 are
shown.! ~b! Same as in~a! but S11 is shown with
imaginary energies very close to real axis,
<Im(E)<20.07.
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he
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tion matrix. In Figure 6, we indicate with crosses, those
genvalues ofH̄e f f that are located in the energy interv
4E1,E,9E1. Neglect of the energy dependence of the co
pling constants causes a shift of the poles away from t
true positions. This shift is small in the neighborhood of t
fixed energyE56.5E1, but it grows as one moves furthe
away in energy.

VII. THE SIGNATURES OF CHAOS

In this section we compute the statistical properties of
Wigner delay times@23# obtained for deterministic scatterin
of the electron from the ripple cavity. The reaction mat
theory is especially suited for this type of computation. W
the help of the coordinate transformation method in Sec
05622
i-

-
ir

e

,

we are able to compute a large number of basis states a
rately by solving a single eigenvalue problem. We can th
use these basis states to compute the scattering matrix
any energy,E. In contrast to this, when one uses finite e
ment methods, or other mesh based numerical method
compute theS matrix, one must solve a large~but sparse!
matrix equation for each energyE. Also, the reaction matrix
approach can deal with any cavity size, but the mesh ba
methods cannot. For the purpose of computing Wigner de
times for chaotic cavities, we will change slightly the sha
of rippled wall to have an amplitude,y5d1a sin(5px/L),
rather thany5d1a cos(4px/L) as was used in precedin
sections. This will allow the electrons to enter the cavi
rather than being reflected at the entrance whena.d/2.

We will compute the statistical distribution of Wigner de
-
y

are
FIG. 5. Comparison of the first matrix ele
ment S11 when we take into account the energ

dependence of the coupling matricesw̄Np and

w̄Ne ~solid line! to the first matrix elementS11
noen

when the energy dependence ofw̄Np andw̄Ne has
a fixed valueE56.5E1 ~dotted-dashed line!. The
cavity parameters the waveguide parameters
a510 Å, d5100 Å, andL5500 Å.
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FIG. 6. Change of absolute value ofuS11u
when we take into account the energy depe

dence of the coupling matricesw̄Np and w̄Ne

~solid line! and when of the energy dependen

of w̄Np and w̄Ne has a fixed valueE56.5E1

~dashed line!. The crosses represent the eigenv

ues of effective Hamiltonian, H̄e f f5H̄ in

2w̄New̄eN
† 1 iw̄Npw̄pN

† in this energy region with
energy fixed atE56.5E1. The cavity parameters
a510 Å, d5100 Å, L5500 Å. ~a! Expanded
view near real axis.~b! Poles further down the
imaginary axis. ~Only points for which uS11u
,200 are shown.!
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lay times, both for the case when the classical dynamic
the cavity is fully chaotic@24–26#, and for the case where
has a mixed phase space. In Fig. 7, we plot Poincare surf
of section~PSS! for several different values of ripple ampl
tude a. The surfaces of section are plots of Birkoff coord
nates (px ,x), of a classical particle each time it bounces o
the section of the cavity aty50. x is the position of the
particle andpx is its component of momentum parallel to th
wall, each time it strikes the wall. Figure 7~a! shows the PSS
for a51, Fig. 7~b! is for the casea55, and Fig. 7~c! is for
the casea510. The classical dynamics has a mixed pha
space for small values ofa. However, fora>60 it is almost
fully chaotic, as shown in Figure 7~d!.

One can use either Eq.~26! or Eq. ~29! to calculate
Wigner delay times for the case of deterministic scatteri
We have checked that they give identical answers. For
case of deterministic scattering, we looked at two differ
05622
of

es

f

e

.
e
t

parameter ranges to see how the statistical distribution
Wigner delay times changes as the underlying dynamics
dergoes a transition from a mixed phase space to a f
chaotic phase space. For the regime with mixed phase sp
we collected data by computing the Wigner delay times
20 different values of ripple amplitudea ranging from a
50.5 Å to a510 Å in units of 0.5 Å. In Figs. 8~a!–~c!, we
show histograms of the total Wigner delay times for det
ministic scattering with a mixed classical phase space in
cavity, for cases whenM52, M56, andM516 propagat-
ing modes, respectively, exist in the leads. In these figu
P(t) is the histogram of Wigner delay times normalized
the area is equal to 1, and^t& is the mean Wigner delay time
Each histogram contains 3 200 000 Wigner delay times.
see that the distributions are narrowly peaked around t
average values. There is a shift toward more centrali
~Gaussian-like! distribution when we increase number
s

d
o

FIG. 7. PSS for the Birkhoff coordinate
along the wall,y50, of a classical particle in a
closed billiard with the shape of the cavity.x is
the position where the particle hits the wall an
andpx is its component of momentum parallel t
the wall. ~a! a51 Å, d5100 Å, L5500 Å; ~b!
a55 Å, d5100 Å, L5500 Å; ~c! a510 Å, d
5100 Å, L5500 Å; and ~d! a560 Å, d
5100 Å, L5500 Å.
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channels. However, for the case of mixed phase space
system has a smaller number of resonances and the
nances are more sharply peaked than for the fully cha
regime, and therefore the Wigner delay times are narro
distributed.

For the regime with fully chaotic phase space we c
lected data for 15 different values of ripple amplitude, ran
ing from a560 Å to a575 Å in units of 1 Å. In Figs.
8~d!–~f!, we show histograms of the total Wigner dela
times for deterministic scattering with a fully chaotic clas
cal phase space in the cavity, for cases whenM52, M56,
and M516 propagating modes, respectively, exist in t
leads. Each histogram contains 800 000 Wigner delay tim
The distributionP(t) shifts from a Poisson-like distribution
to Gaussian-like distribution as we increase the numbe
channels. For a small number of channels the distributio
asymmetric and has a long tail.

We also looked at the statistics of the total Wigner de
times obtained by replacing theS matrix in Eq.~29!, by the
equation

S̄52S 112iw̄†
1

E1̄N2H̄GOE2 iw̄w̄†
w̄D , ~38!

where H̄GOE is chosen from an Gaussian orthogonal e
semble~GOE! and the coupling matrixw̄ is constructed from
the M eigenvectors of one realization of theM3M Hamil-
tonian matrixH̄GOE in the GOE ensemble. We also check

FIG. 8. Histograms of Wigner delay times for different numbe
of propagating channels,M for the case of deterministic scatterin
@~a!–~c!# in the near integrable regime,@~d!–~f!# deterministic scat-
tering in the chaotic regime; and~g!–~i! RRMT predictions.~a!
Deterministic scattering in near integrable regime withM52 for
0.5<a<10.0 in steps ofa50.5 and withd5100 Å, L5500 Å; ~b!
same as~a! for M56; ~c! same as~a! for M516; ~d! M52 in fully
chaotic regime withM52 for 60<a<75 in steps ofa51.0 and
with d5100 Å, L5500 Å; ~e! same as~d! for M56; ~f! same as
~d! for M516; ~g! RRMT result forM52; ~h! same as~g! for M
56; and~i! same as~g! for M516.
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our result by buildingw̄ using theM eigenvectors of each

realization ofH̄GOE , and we get a similar distribution for th
corresponding number of channels. In Figs. 8~g!–~i!, we
show histograms of the total Wigner delay times obtain us
H̄GOE and its eigenvectors to construct theS matrix, for the
casesM52, M56, andM516, respectively. We see tha
the Wigner delay time statistics, for deterministic scatteri
approaches the random matrix predictions as the degre
underlying chaos increases.

It is useful to note that we have calculated the Wign
delay times by taking the derivative of theS-matrix eigen-
phase curve,u(E) vs E, in two different ways. The first way
is to take two neighboring energy points~we choseE50 and
E50.001) and use these to obtain one Wigner delay time
each realization ofHGOE . The second way is to obtain
whole series of Wigner delay times from theu(E) vs E
curve for a single realization ofHin . We have checked tha
these two methods give similar results.

The distribution of total Wigner delay times for our de
terministic scattering from the chaotic ripple cavity, agre
qualitatively with the predictions of the random matr
theory. This agreement can be understand looking at the
tribution of nearest neighbor energy eigenvalue spacings
H̄ in . We have checked this distribution and have found it
be in good agreement with the distribution of nearest nei
bor eigenvalues spacings obtained forHGOE . Both satisfy
the Wigner distribution@27#. Also the coupling constantw̄Np
that we obtained from the deterministic calculation is som
what in similar form to that obtained from the GOE Ham
tonian. In Fig. 9~a!, we show the coupling vector,w̄1pK̄P

21 ,
obtained from the GOE Hamiltonian. In Figs. 9~b! and 9~c!,
respectively, we show the coupling vectors,w̄1pK̄P

21 as is
defined in Eq.~27!, for a nearly integrable system~with a
55 Å), and a fully chaotic system~with a570 Å). The
coupling vectorw̄1p for the deterministic system, become
more random as we go to a fully chaotic regime.

VIII. CONCLUSION

In this paper we have studied the effect that evanesc
modes have on the scattering properties of an electron
waveguide with a ‘‘chaotic’’ cavity. We have reformulate
the reaction matrix theory of electron waveguide scatter
to explicitly include the effect of evanescent modes. W
have found that evanescent modes can increase the del
the electron for energies near the opening of new chann
This effect has been seen before@28#. The scattering system
we have considered is relatively ‘‘soft.’’ There are no imp
rities and no sharp corners to snag evanescent modes, an
their effect is still noticeable. For systems with impuritie
and sharp corners, we expect the effect of evanescent m
to be even more dramatic.

We have also studied the effect of neglecting the ene
dependence of the coupling matrices that appear in the r
tion matrix approach to scattering. This appears to cause
effective repulsion on the positions of quasibound st
poles.
1-9
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FIG. 9. Coupling matrix,w̄1p ~a! obtained
from GOE; ~b! for mixed phase spacea55 Å;
and ~c! for chaotic phase space,a560 Å.
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The effects of both the evanescent modes and the en
dependence of coupling matrices are routinely neglecte
RRMT, and this should be kept in mind when attempting
use that theory to make predictions about real wavegu
scattering experiments or numerical simulation of determ
istic waveguide scattering systems.

We have also studied the statistical distribution of t
Wigner delay times for scattering from our chaotic wav
guide cavity, for the case ofM52, M56, and M516
propagating modes. To build adequate statistics for comp
son with RRMT predictions, we have included data for
range of ripple amplitudes, being careful to include data o
from the regime where the internal dynamics of the rip
cavity is either mixed or completely chaotic. We find fair
o

-

s-

05622
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good qualitative agreement with the predictions of RRM
for the case when the deterministic scattering occurs fro
cavity that is classically chaotic.
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