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Numerical analysis of spectra of the Frobenius-Perron operator
of a noisy one-dimensional mapping: Toward a theory of stochastic bifurcations
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A different method to detect the stochastic bifurcation point of a one-dimensional mapping in the presence
of noise is proposed. This method analyzes the eigenvalues and eigenfunctions of the noisy Frobenius-Perron
operator. The invariant density or the eigenfunction of the eigenvalue 1 of the operator possesses ‘‘static’’
information of the noisy one-dimensional dynamics while the other eigenvalues and eigenfunctions have
‘‘dynamic’’ information. Clear bifurcation phenomena have been observed in a noisy sine-circle map and both
stochastic saddle-node and period-doubling bifurcation points have been successfully defined in terms of the
eigenvalues.
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I. INTRODUCTION

One-dimensional ~1D! mappings or one-dimensiona
discrete-time dynamical systems have been intensively s
ied and used to model various nonlinear phenomena@1,2#.
The effects of noise on 1D mappings have also been in
tigated by various researchers since the real physical sy
cannot avoid such noise@3–8#. 1D mappings present sever
bifurcations such as tangent~or saddle-node! and flip ~or
period-doubling! bifurcations in the noise-free case. Wh
happens in the bifurcation phenomena if noise is add
Noise may just blur the critical bifurcation.

The 1D maps with chaotic dynamics are studied in ter
of the invariant density of the Frobenius-Perron~FP! opera-
tor of the map. A noisy 1D map can also be studied by
invariant density of the ‘‘noisy’’ FP operator@9#. The invari-
ant density of the noisy FP operator denotes a station
distribution of a variable. A classical definition of a stocha
tic bifurcation in noisy dynamical systems is based on
change of topological shapes of the invariant densities@6#
and lacks the dynamic information of a system@10#. In fact,
we cannot see any critical change in the shapes of the inv
ant densities near saddle-node bifurcation points of the
terministic 1D mapping studied in the present paper. Rec
development of a stochastic bifurcation theory overcom
the drawback and takes the dynamical information of a s
chastic system into account@10#. Sincethe theory of stochas
tic bifurcation is still in its infancy@10# in spite of the recent
big progress of the theory of random dynamical syste
more intensive researches are necessary for the establish
of the stochastic bifurcation theory.

We have proposed a method that uses spectra~eigenval-
ues! of an operator that governs the probability density e
lution of a system and shown that this method is usefu
detect stochastic phase lockings~saddle-node bifurcations!

*Author to whom correspondence should be addressed. Emai
dress: doi@pwr.eng.osaka-u.ac.jp
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using the noisy van der Pol oscillator driven by a period
signal @11#. Since the previous study treated stochas
saddle-node bifurcations only, the present paper consi
both saddle-node and period-doubling bifurcations using
simpler dynamical system~1D mapping! and discusses the
validity and the applicability of our method to both the b
furcations in detail.

The present paper is organized as follows. Section
shows the mathematical framework to treat noisy 1D m
pings. Our method that uses the spectra of the Froben
Perron operator is applied to the saddle-node bifurcation
a noisy sine-circle mapping in Sec. III. Section IV exten
the method to the case of period-doubling bifurcations a
discusses the validity and difficulty in detail and the pap
concludes with some brief comments in Sec. V.

II. STOCHASTIC KERNEL
AND THE FROBENIUS-PERRON OPERATOR

We consider a 1D discrete-time dynamical system defi
on a unit circleS in the presence of additive noise:

Xn115 f ~Xn!1jn , XnPS n50,1,2, . . . , ~1!

wherej0 , . . . ,jn are independent random variables with
identical probability density functiong.

Define a kernel functionk(x0 ,x1) using a conditional
probability density function,

k~x0 ,x1!dx15Pr$x1<Xn11<x11dx1uXn5x0%. ~2!

As is easily seen from this definition, the functionk has the
property

k~x0 ,x1!>0, E
S
k~x0 ,x1!dx151 ~3!

and is called a stochastic kernel. Sincej0 , . . . ,jn are mutu-
ally independent and have the same densityg, it is easy to
show that
d-
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k~x0 ,x1!5g„x12 f ~x0!….

Using the kernel functionk, the FP operator@8,9,13# on D
in the presence of noise is defined by:

Ph~x!5E
S
k~x0 ,x!h~x0!dx0 ,

5E
S
g„x2 f ~x0!…h~x0!dx0 , hPD

~4!

where D is the set of absolutely integrable non-negat
functions with a unitL1 norm onS. Let h0PD denote the
probability density function of the initial stateX0. Then the
density functionh1 of the stateX1 at the next time is ob-
tained byh1(x)5Ph0(x). The density function at thenth
time is also obtained by

hn~x!5Phn21~x!5•••5P nh0~x!. ~5!

A function h* (x) is called as the invariant density functio
of the operatorP if the relationPh* 5h* holds. The invari-
ant density isasymptotically stableif for any initial density
function h0PD

lim
n→`

uuP nh02h* uu50.

Furthermore, the operator has a unique asymptotically st
invariant density if the kernel functionk satisfies the inequal
ity @9#

E
S
infx0

k~x0 ,x1!dx1.0. ~6!

Numerically, this linear operatorP is expressed in a dis
crete form~matrix!. In the below we analyzes the spectr
properties of the matrix. Note that we have done seve
numerical computation with different discretization sizes

FIG. 1. Deterministic bifurcation diagram of the sine-circle m
~7!. The bifurcation parameter is the amplitudeA and the value oft
is fixed to 0.1. Asymptotic sequences$Xn%, n5201, . . .,700 pro-
duced by Eq.~1! were plotted for each of 1000 equally spacedA
values on the interval@0,0.7# whenj[0.
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the operator and confirmed ourselves that the following
merical results do not depend on the discretization size.

III. SINE-CIRCLE MAP IN THE PRESENCE
OF ADDITIVE NOISE

We consider a sine-circle map onS as a typical 1D map,

f ~x!5x1A sin~2px!1t, mod 1. ~7!

FIG. 2. Stochastic saddle-node bifurcation. Invariant densi
and whole spectra of the FP operatorP are plotted, wheret50.1
and s50.01. ~a!–~d!: Invariant densitiesh* (x) of P. ~e!–~h!: Ei-
genvalues of the operatorP. The abscissa and the ordinate are t
real part and imaginary part of the eigenvalues in~e!–~h!. The
operatorP is approximated by ann3n matrix, wheren5200. In a
deterministic case, the saddle-node bifurcation from quasiperio
to period 1 occurs exactly atA50.10. Corresponding stochast
bifurcation occurs betweenA50.10 @~b! and ~f!# andA50.11 @~c!
and ~g!#.
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FIG. 3. Spectral bifurcation diagram of sto
chastic saddle-node bifurcation. Moduli an
angles ~arguments in radians! of the second,
third, fourth, fifth, sixth, and seventh eigenvalue
of the operatorP versus the bifurcation paramete
A. t50.1 ands50.01.
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We also assume that the random variablesjn in Eq. ~1! obey
the same normal~Gaussian! distribution with mean 0 and
variances2. In the following, we fix the value of paramete
t at t50.1 and consider that the other parameterA is the
bifurcation parameter.

Figure 1 shows a deterministic bifurcation diagram of t
map ~7!. A saddle-node bifurcation from quasiperiodic
period 1 occurs exactly atA50.10 and the period-doubling
bifurcations from period 1 to period 2 and from period 2
period 4 occur nearA50.334 andA50.427, respectively.

In the noisy case, note that the relation~6! always holds
~if s.0) since the noise considered here has a Gaus
distribution whose tail encircles the unit circleS infinitely.
Thus the FP operator~matrix! P always has a unique~as-
ymptotically stable! invariant density that is an eigenfunctio
of an eigenvalue 1 of the operator@9,11#. Thus the operator
always has a real eigenvalue 1. It is also known that abso
values of the other eigenvalues of the operator are less th
@12#. Note that the eigenvalue with largest modulus oth
than 1 mainly governs the convergence speed of the
quence$hn% to the invariant density.

Examples of invariant density functionsh* and whole
spectra~eigenvalues! of the operatorP for various values of
A are shown in Fig. 2. The density functions do not chan
their topological shapes aroundA50.10 @see parts~a!–~d!#,
where a saddle-node bifurcation occurs in the determini
case. So, we cannot see any stochastic bifurcations from
siperiodic to period 1 in the classical sense. On the ot
hand, corresponding whole spectra changes much. Par~e!
corresponds to the deterministic quasiperiodic case. M
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complex eigenvalues whose moduli are very close to 1
seen. Comparing, Figs. 2~f!–2~h!, we can see that eigenva
ues change their values from complex to real in the orde
the modulus as the value ofA increases.

Figure 3 is the ‘‘spectral bifurcation diagram’’ that show
the dependence of the eigenvalues on the parameterA. Parts
~a! and ~b! show the moduli and angles~arguments! of both
the second and third~in the order of modulus! eigenvalues as
a function ofA. In the range of smallA values, the eigenval-
ues are complex conjugate and become real slightly ab
the valueA50.10 that is a deterministic saddle-node bifu
cation point. Parts~c! and ~d! are the similar figures for the
fourth and fifth eigenvalues and Figs. 3~e! and 3~f! for sixth
and seventh ones. Although these figures show almost s
branching behavior of eigenvalues in the case of second
third eigenvalues, we note that the branching points
smaller eigenvalues move rightwards slightly.

We have successfully defined a stochastic saddle-nod
furcation point as a point where the second eigenvalue
comes real number@11# ~see Fig. 2!. By the definition we can
say that the saddle-node bifurcation point of the sine-cir
map moves rightwards by imposing the additive Gauss
noise. Figure 4 shows the relation between the stocha
bifurcation points and the noise intensitys, where stochastic
bifurcation points are determined by the definition. The sh
from the deterministic bifurcation point (A50.10) is propor-
tional to the noise intensitys, which shows the validity of
our definition. Note that all the invariant densities have t
same topological shape and does not show any stoch
bifurcation in the classical sense.
9-3
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IV. STOCHASTIC PERIOD-DOUBLING BIFURCATION

In this section we consider how stochastic periodicity
expressed in the eigenvalues and the eigenfunctions and
we can determine a period-doubling bifurcation point. A
sume thatl i denotes thei th eigenvalue in the order of modu
lus andui the corresponding eigenfunction. Nowl151 and
u1 is an invariant densityh* . If we denote the eigenvalue a
l i5r ie

2p j v i with imaginary unitj, we have

P kui5P k~Reui1 j Im ui !5r i
ke2p jkv i~Reui1Im ui !,

wherek51,2, . . . .Thus we have

P k Reui5r i
k$cos~2pkv i !Reui2sin~2pkv i !Im ui%,

P k Im ui5r i
k$cos~2pkv i !Im ui1sin~2pkv i !Reui%.

If kv i is integer, both real and imaginary parts are invari
underP k with an amplitude decayr i

k . Therefore, stochastic
periodicity with periodk emerges if there exists a smalle
integerk such that everykv i is integer for alli, or practi-
cally, for major eigenvalues.

Figure 5 corresponds to the deterministic period-doubl
bifurcations from period 1 to period 2 and from period 2
period 4. In the Figs. 5~a!–5~d!, the peaks and the shape
the invariant density changes qualitatively. Correspondin
the whole spectrum@Figs. 5~e!–5~h!# also changes much. A
negative eigenvalue becomes the second largest~in the sense
of absolute value! eigenvalue in the neighborhood ofA
50.25 and the second largest eigenvalue is very close
21 at A50.35. At A50.35, the whole spectrum is rough
invariant under an anglep rotation of complex plane that i
a sign of period 2. AtA50.40, eigenvalues on imaginar
axis become the third and the fourth largest eigenvalues.
second eigenvalue is still approximately21 on the negative
real axis. The moduli of the third and the fourth largest
genvalues are close to 1 atA50.44, where the whole spec
trum is roughly invariant under an anglep/2 rotation of
complex plane that is a sign of period 4.

Figure 6 is the spectral bifurcation diagram that shows
moduli and the angles of the second, third, fourth, and fi
eigenvalues of the operatorP versus the bifurcation param

FIG. 4. Stochastic saddle-node bifurcation points versus the
of standard deviations. t50.1. The line (A50.995s10.099) is
evaluated by using the four data and the deterministic bifurca
point (A50.10).
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eter A, whereA5@0.2,0.48#. We can see that the angles
the major eigenvalues change their values discontinuo
corresponding to the deterministic period-doubling bifurc
tion. The angle of the second eigenvalue changes from
p nearA50.25, which corresponds to the deterministic b
furcation to period 2. This discontinuous change appears
cause the replacement of the second largest eigenvalue
curs at the point, where the modulus of the third eigenva
on the negative real axis becomes the second largest@see,
Fig. 5~e!#. We also see that the angles of the third and
fourth eigenvalues becomep/2 and 3p/2 discontinuously
nearA50.40, which correspond to the deterministic bifurc
tion to period 4. Moduli of the eigenvalues also change th
values corresponding to the deterministic period-doubling
furcation.

We might say that the point where the angle of the sec
eigenvalue changes from 0 top is a stochastic bifurcation

ze

n

FIG. 5. Stochastic period-doubling bifurcation. Same figure
Fig. 2. In the deterministic case, period-doubling bifurcations fro
period 1 to period 2 and from period 2 to period 4 occur nearA
50.334 andA50.427, respectively.
9-4
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point from period 1 to period 2 and the point where the an
of the third and the fourth eigenvalues change top/2 and
3p/2 is a stochastic bifurcation point from period 2 to peri
4. The relation between the shift of bifurcation points and
size of standard deviations of additive noise are plotted in
Fig. 7, where stochastic bifurcation points are determined
using the definitions that are stated above. In the cas
saddle-node bifurcation the shift from the deterministic
furcation point is proportional to the noise sizes. On the
other hand, the shift increases as the noise sizes decreases
to 0 in the period-doubling case. This relation is very stran
and suggests that the definition for period-doubling bifur
tion is not adequate.

Another candidate of the bifurcation point could be t
point where the second eigenvalue becomes very clos
unity in the case of the bifurcation from period 1 to period
because the speed of the convergence to the invariant de
is very slow at the point. Figure 8 shows moduli of the
genvalues of the operatorP versus the bifurcation paramete

FIG. 6. Spectral bifurcation diagram~period-doubling bifurca-
tion!. Moduli and angles of the second, third, fourth, and fifth
genvalues of the operatorP versus the bifurcation parameterA. t
50.1 ands50.01.
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FIG. 7. The relation between the shift of bifurcation points a
the size of standard deviations. s50.02, 0.04, 0.06, 0.08. Multi-
plies: bifurcation point from quasiperiodic to period 1. Circles: b
furcation point from period 1 to period 2.t50.01.

FIG. 8. Moduli of the eigenvalues of the operatorP versus the
bifurcation parameterA with different noise intensitiess in the case
of the period-doubling bifurcation.t50.1, s50.01, 0.02, 0.03.
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A with different noise intensitiess. Since the second eigen
values gradually increase to unity, it is not easy to tell
which value of the parameterA the eigenvalue becomes ve
close to unity.

On the other hand, the third and the forth eigenvalues t
their maximum values in this range ofA, see Fig. 8. Further-
more, the second eigenvalues become very close to uni
the value ofA where the third eigenvalues become ma
mum. Thus let us define that the value ofA where the third
eigenvalue takes it maximum is a bifurcation point of a p
riod doubling from period 1 to period 2. In Fig. 9, bifurcatio
points in the sense of this definition are plotted with differe
sizes of standard deviation. Similar plots are also obtain
in the case of the map parametert50.8. As is easily seem in
the figure, the stochastic period-doubling bifurcation po
shifts rightward as the noise intensity increases and
amount of the shift is proportional to the noise intensitys
whens is small. Therefore, it may safely be defined that t
value ofA where the third eigenvalue takes it maximum is
bifurcation point of the period doubling from period 1
period 2.

V. DISCUSSION

We have analyzed both stochastic saddle-node
period-doubling bifurcations in a noisy one-dimension
mapping. The analysis method uses spectra~eigenvalues and

FIG. 9. Stochastic period-doubling bifurcation points versus
size of standard deviations. The abscissa is the size ofs and the
ordinate is the bifurcation points. Circles: the case of the map
rametert50.1. Plusses:t50.8. Lines are evaluated, respective
by using the first four data and the deterministic bifurcation poi
calculated analytically. The broken line isA51.40s10.376. The
solid line isA51.33s10.333.
e
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eigenfunctions! of the FP operator that governs the probab
ity density evolution of the system and detects a stocha
bifurcation point as a point where some characteristics
specific spectra change. This method enables us to quan
tively study very delicate phenomena caused by noise w
out heavy numerical~Monte Carlo! simulations.

We have demonstrated and verified numerically o
method by using a noisy sine-circle mapping that shows b
saddle-node bifurcations and period-doubling bifurcatio
Stochastic saddle-node bifurcation has been successfully
scribed by the identical definition with the one used in t
previous study@11#. Stochastic period-doubling bifurcation
were clearly observed in terms of the FP operator of
system.

We would like to emphasize that the method that uses
FP operator enables us to discuss stochastic bifurcat
quantitatively. In fact, we were able to discuss the relat
between the shift of bifurcation points from the correspon
ing deterministic ones and the noise intensitys, which is an
example of the quantitative study. The relations are lin
whens is small in case of both the saddle-node bifurcati
and the period-doubling bifurcation~see Figs. 4 and 9!. It is
worth pointing out that the slopes of the lines in Fig. 9 a
much larger than the one in Figs. 4, which may show
high sensitivity of the period-doubling bifurcation again
noise.

Needless to say, the validity of our definition for the st
chastic period-doubling bifurcation point is still open to d
bate. A more rigorous discussion on the validity of our de
nition is necessary for future research.

The FP operator has been discretized as ann3n matrix
where we mainly treated the case ofn5200 in this paper. If
we increase the discretization size, eigenvalues with lar
absolute values do not change much but smaller eigenva
do change; the number of eigenvalues with nearly zero
solute value increases. This means that zero is the accu
lation point of eigenvalues of the FP operator. If the stand
deviation of noise is small or the deterministic map is tota
superstable~the slope of the map is close to zero as a who!,
the discretization error becomes relatively large; in su
cases we need a larger discretization size to get eigenva
of desirable precision.
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