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Numerical analysis of spectra of the Frobenius-Perron operator
of a noisy one-dimensional mapping: Toward a theory of stochastic bifurcations
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A different method to detect the stochastic bifurcation point of a one-dimensional mapping in the presence
of noise is proposed. This method analyzes the eigenvalues and eigenfunctions of the noisy Frobenius-Perron
operator. The invariant density or the eigenfunction of the eigenvalue 1 of the operator possesses “static”
information of the noisy one-dimensional dynamics while the other eigenvalues and eigenfunctions have
“dynamic” information. Clear bifurcation phenomena have been observed in a noisy sine-circle map and both
stochastic saddle-node and period-doubling bifurcation points have been successfully defined in terms of the

eigenvalues.
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[. INTRODUCTION using the noisy van der Pol oscillator driven by a periodic

signal [11]. Since the previous study treated stochastic
One-dimensional (1D) mappings or one-dimensional saddle-node bifurcations only, the present paper considers
discrete-time dynamical systems have been intensively studroth saddle-node and period-doubling bifurcations using the
ied and used to model various nonlinear phenonfdnz.  simpler dynamical systerflD mapping and discusses the
The effects of noise on 1D mappings have also been inveg@lidity and the applicability of our method to both the bi-
tigated by various researchers since the real physical systef{rcations in detail.

cannot avoid such noig8—8]. 1D mappings present several The present paper is organized as foIIows_. Section I
bifurcations such as tangefor saddle-nodeand flip (or shows the mathematical framework to treat noisy 1D map-

period-doubling bifurcations in the noise-free case. What pings. Our meth_od tha_t uses the spectra of th_e Frobeniu_s-
happens in the bifurcation phenomena if noise is addedl_?erron operator is applied to the saddle-node bifurcations in

Noise may just blur the critical bifurcation. a noisy sine-circle mapping in Sec. lll. Section IV extends

The 1D maps with chaotic dynamics are studied in termsthe method to the case of period-doubling bifurcations and
of the invariant density of the Frobenius-Peri@iP) opera- discusses the validity and difficulty in detail and the paper

. . concludes with some brief comments in Sec. V.
tor of the map. A noisy 1D map can also be studied by the

invariant density of the “noisy” FP operat$®]. The invari-

ant density of the noisy FP operator denotes a stationary
distribution of a variable. A classical definition of a stochas-
tic bifurcation in noisy dynamical systems is based on the We consider a 1D discrete-time dynamical system defined
change of topological shapes of the invariant densitids on a unit circleSin the presence of additive noise:

and lacks the dynamic information of a systgh@]. In fact,

Il. STOCHASTIC KERNEL
AND THE FROBENIUS-PERRON OPERATOR

we cannot see any critical change in the shapes of the invari- Xpe1=f(Xp)+ &y, XpeS n=012..., (D)
ant densities near saddle-node bifurcation points of the de- ) ) )
terministic 1D mapping studied in the present paper. Recervhereéy, ... &, are independent random variables with an

development of a stochastic bifurcation theory overcomeddentical probability density functiog.

the drawback and takes the dynamical information of a sto- Define a kernel functiork(Xo,x;) using a conditional

chastic system into accoufit0]. Sincethe theory of stochas- Probability density function,

tic bifurcation is still in its infancy{ 10] in spite of the recent

big progress of the theory of random dynamical systems,  K(Xo.X1)dX=PHX;<Xp.1=<X; +dx(|Xy=Xo}.  (2)

more intensive researches are necessary for the establishment ) ) L )

of the stochastic bifurcation theory. As is easily seen from this definition, the functilirhas the
We have proposed a method that uses spéeigenval-  Property

ueg of an operator that governs the probability density evo-

lution of a system and shown that this method is useful to K(Xg,X,) =0, f K(Xg,Xp)dX, =1 @)

detect stochastic phase lockingsaddle-node bifurcations s

and is called a stochastic kernel. Sirgg . . . £, are mutu-

* Author to whom correspondence should be addressed. Email aglly independent and have the same dengijtyt is easy to
dress: doi@pwr.eng.osaka-u.ac.jp show that
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FIG. 1. Deterministic bifurcation diagram of the sine-circle map 0.3 X
(7). The bifurcation parameter is the amplitulend the value of 02 0 @ xx’(
is fixed to 0.1. Asymptotic sequencéX,}, n=201, .. .,700 pro- ’ 05 &xxx x X
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Using the kernel functiok, the FP operatdi8,9,13 on D 0.4 05

in the presence of noise is defined by:

0.3
0 ; :§|w X
02
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where D is the set of absolutely integrable non-negative 02
functions with a unitL! norm onS. Let hye D denote the . -0.5
probability density function of the initial staté,. Then the
density functionh, of the stateX; at the next time is ob- % 05 P o ’
tained byh;(x)="Phg(x). The density function at thath X

time is also obtained b
y FIG. 2. Stochastic saddle-node bifurcation. Invariant densities

ha(X)=Ph,_1(X)=---=P"hy(X). (5) and whole spectra of the FP opera@rare plotted, wher¢=0.1
and 0=0.01. (a)—(d): Invariant densitied* (x) of P. (e)—(h): Ei-

A function h* (x) is called as the invariant density function genvalues of the operat@. The abscissa and the ordinate are the
of the operatofP if the relationPh* =h* holds. The invari- real part and imaginary part of the eigenvalues(én-(h). The

ant density isasymptotically stabléf for any initial density ~ OPeratorP is approximated by anx n matrix, wheren=200.Ina
function hye D deterministic case, the saddle-node bifurcation from quasiperiodic

to period 1 occurs exactly aa=0.10. Corresponding stochastic
lim ||P"hy—h*||=0. bifurcation occurs betweeA=0.10[(b) and(f)] andA=0.11[(c)
n—oo and(g)].

Furthermore, the operator has a unique asymptotically stable
invariant density if the kernel functidksatisfies the inequal- the operator and confirmed ourselves that the following nu-
ity [9] merical results do not depend on the discretization size.

J infy K(Xo,X1)dX;>0. (6)
S I1l. SINE-CIRCLE MAP IN THE PRESENCE

. - . . . OF ADDITIVE NOISE
Numerically, this linear operatdP is expressed in a dis-

crete form(matrix). In the below we analyzes the spectral ~We consider a sine-circle map &as a typical 1D map,
properties of the matrix. Note that we have done several
numerical computation with different discretization sizes of f(x)=x+Asin(27x)+t, mod1. (7)
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We also assume that the random varialdles Eq. (1) obey  complex eigenvalues whose moduli are very close to 1 are
the same normalGaussiap distribution with mean 0 and seen. Comparing, Figs(f2—2(h), we can see that eigenval-
variancea?. In the following, we fix the value of parameter ues change their values from complex to real in the order of
t att=0.1 and consider that the other parameteis the  the modulus as the value &fincreases.
bifurcation parameter. Figure 3 is the “spectral bifurcation diagram” that shows
Figure 1 shows a deterministic bifurcation diagram of thethe dependence of the eigenvalues on the parametearts
map (7). A saddle-node bifurcation from quasiperiodic to (a) and(b) show the moduli and anglgéargumentsof both
period 1 occurs exactly @=0.10 and the period-doubling the second and thirtin the order of moduluseigenvalues as
bifurcations from period 1 to period 2 and from period 2 to a function ofA. In the range of smalh values, the eigenval-
period 4 occur neaA=0.334 andA=0.427, respectively. ues are complex conjugate and become real slightly above
In the noisy case, note that the relati@ always holds the valueA=0.10 that is a deterministic saddle-node bifur-
(if o>0) since the noise considered here has a Gaussiagation point. Partgc) and (d) are the similar figures for the
distribution whose tail encircles the unit circinfinitely.  fourth and fifth eigenvalues and FiggeBand 3f) for sixth
Thus the FP operataimatrix) P always has a uniquéas-  and seventh ones. Although these figures show almost same
ymptotically stableinvariant density that is an eigenfunction branching behavior of eigenvalues in the case of second and
of an eigenvalue 1 of the operatd®,11]. Thus the operator third eigenvalues, we note that the branching points of
always has a real eigenvalue 1. It is also known that absolutsmaller eigenvalues move rightwards slightly.
values of the other eigenvalues of the operator are less than 1 We have successfully defined a stochastic saddle-node bi-
[12]. Note that the eigenvalue with largest modulus otheifurcation point as a point where the second eigenvalue be-
than 1 mainly governs the convergence speed of the seomes real numbgd 1] (see Fig. 2 By the definition we can
quence{h,} to the invariant density. say that the saddle-node bifurcation point of the sine-circle
Examples of invariant density functiors* and whole map moves rightwards by imposing the additive Gaussian
spectra(eigenvaluesof the operatofP for various values of noise. Figure 4 shows the relation between the stochastic
A are shown in Fig. 2. The density functions do not changebifurcation points and the noise intensity where stochastic
their topological shapes aroud=0.10[see partga)—(d)], bifurcation points are determined by the definition. The shift
where a saddle-node bifurcation occurs in the deterministifrom the deterministic bifurcation poinA= 0.10) is propor-
case. So, we cannot see any stochastic bifurcations from quéienal to the noise intensity-, which shows the validity of
siperiodic to period 1 in the classical sense. On the otheour definition. Note that all the invariant densities have the
hand, corresponding whole spectra changes much. (Blart same topological shape and does not show any stochastic
corresponds to the deterministic quasiperiodic case. Manpifurcation in the classical sense.
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IV. STOCHASTIC PERIOD-DOUBLING BIFURCATION 00 05 ] -11 5 y
In this section we consider how stochastic periodicity is 05 X 1
expressed in the eigenvalues and the eigenfunctions and how () A=0.40 (g) A=0.40
we can determine a period-doubling bifurcation point. As- 0.4 05 x
sume thab; denotes théth eigenvalue in the order of modu- 03
lus andu; the corresponding eigenfunction. Now=1 and 0  x odoxx  x X
u, is an invariant densityp* . If we denote the eigenvalue as 02
\i=r;e2™i with imaginary unitj, we have 0.1 -0.5 x
. k jKw; -
Pkui:Pk(ReUi+J Im ui)=rie27”k '(Reui+|m Ui), 00 0.5 1 1_1 0 1
X
_ 05 1
wherek=1,2, . ...Thus we have | @a0a (h) A=0.44°
P"Reui:r!‘{cos{Zwkwi)Reui—sin(27-rkwi)|m ui}, 03 0.5 x
K ’ 0x x xx)&xx x OX
PXImu;=r{{cog 27kw;)Im u;+ sin(27kw;)Reu;}. 0.2
0.1 -0.5 *
If kw, is integer, both real and imaginary parts are invariant ’
underP* with an amplitude decayik. Therefore, stochastic 00 05 ] -1_1 ; y
periodicity with periodk emerges if there exists a smallest X

integerk such that everkw, is integer for alli, or practi-
cally, for major eigenvalues.

Figure 5 corresponds to the deterministic period-doublin
bifurcations from period 1 to period 2 and from period 2 to
period 4. In the Figs. ®)-5(d), the peaks and the shape of
the invariant density changes qualitatively. Correspondinglyeter A, whereA=[0.2,0.49. We can see that the angles of
the whole spectruniiFigs. 5e)-5(h)] also changes much. A the major eigenvalues change their values discontinuously
negative eigenvalue becomes the second lafgeste sense corresponding to the deterministic period-doubling bifurca-
of absolute value eigenvalue in the neighborhood @&  tion. The angle of the second eigenvalue changes from 0 to
=0.25 and the second largest eigenvalue is very close tor nearA=0.25, which corresponds to the deterministic bi-
—1 atA=0.35. AtA=0.35, the whole spectrum is roughly furcation to period 2. This discontinuous change appears be-
invariant under an angle rotation of complex plane that is cause the replacement of the second largest eigenvalue oc-
a sign of period 2. AtA=0.40, eigenvalues on imaginary curs at the point, where the modulus of the third eigenvalue
axis become the third and the fourth largest eigenvalues. Then the negative real axis becomes the second lafges,
second eigenvalue is still approximatelyl on the negative Fig. 5€)]. We also see that the angles of the third and the
real axis. The moduli of the third and the fourth largest ei-fourth eigenvalues become/2 and 37/2 discontinuously
genvalues are close to 1 At=0.44, where the whole spec- nearA=0.40, which correspond to the deterministic bifurca-
trum is roughly invariant under an angle/2 rotation of tion to period 4. Moduli of the eigenvalues also change their
complex plane that is a sign of period 4. values corresponding to the deterministic period-doubling bi-

Figure 6 is the spectral bifurcation diagram that shows thdurcation.
moduli and the angles of the second, third, fourth, and fifth We might say that the point where the angle of the second
eigenvalues of the operat@t versus the bifurcation param- eigenvalue changes from 0 t@ is a stochastic bifurcation

FIG. 5. Stochastic period-doubling bifurcation. Same figure as
ig. 2. In the deterministic case, period-doubling bifurcations from
d;eriod 1 to period 2 and from period 2 to period 4 occur nkar
=0.334 andA=0.427, respectively.
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FIG. 6. Spectral bifurcation diagrafperiod-doubling bifurca- o9 ...0000005000. L
tion). Moduli and angles of the second, third, fourth, and fifth ei- E 0000 . %0g,
genvalues of the operat@ versus the bifurcation parametar t Bos} +++++ff_+ﬂ'_f+_9%@% ..............
=0.1 ando=0.01. Y Sdbe
5o.
point from period 1 to period 2 and the point where the angle é

of the third and the fourth eigenvalues changent2 and 0.84
3/2 is a stochastic bifurcation point from period 2 to period
4. The relation between the shift of bifurcation points and the
size of standard deviation of additive noise are plotted in
Fig. 7, where stochastic bifurcation points are determined by

using the definitions that are stated above. In the case of 0.9 R R
saddle-node bifurcation the shift from the deterministic bi- 50,8..‘500@90. ..... Ogs <~ + - - L
furcation point is proportional to the noise size On the 50_799 S, TR S
other hand, the shift increases as the noise siziecreases Tg’ ++++++++++++Q%¢¢‘
to 0 in the period-doubling case. This relation is very strange 3 08 ++++"' """"""""""" ‘?%d; """"
and suggests that the definition for period-doubling bifurca- 2 ,

o o

tion is not adequate.

Another candidate of the bifurcation point could be the : . : . ; . ;
point where the second eigenvalue becomes very close to 033 034 035 036 037 038 039 04
unity in the case of the bifurcation from period 1 to period 2,
because the speed of the convergence to the invariant density FIG. 8. Moduli of the eigenvalues of the operaf@ersus the
is very slow at the point. Figure 8 shows moduli of the ei- bifurcation parameteh with different noise intensities in the case
genvalues of the operat@t versus the bifurcation parameter of the period-doubling bifurcatiort=0.1, o=0.01, 0.02, 0.03.
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0.46 eigenfunctiongsof the FP operator that governs the probabil-
044 ity density evolution of the system and detects a stochastic
bifurcation point as a point where some characteristics of
0.42 specific spectra change. This method enables us to quantita-
0.4 tively study very delicate phenomena caused by noise with-
A out heavy numericalMonte Carlg simulations.
0.38] We have demonstrated and verified numerically our
0.36 method by using a noisy sine-circle mapping that shows both
saddle-node bifurcations and period-doubling bifurcations.
0.34 Stochastic saddle-node bifurcation has been successfully de-

032 —— o 064 065 scriped by the identical definition_with the one ysed in the
: s : : previous study11]. Stochastic period-doubling bifurcations
were clearly observed in terms of the FP operator of the
FIG. 9. Stochastic period-doubling bifurcation points versus thesystem.
size of standard deviatiom. The abscissa is the size afand the We would like to emphasize that the method that uses the
ordinate is the bifurcation points. Circles: the case of the map paFP operator enables us to discuss stochastic bifurcations
rametert=0.1. Plussest=0.8. Lines are evaluated, respectively, quantitatively. In fact, we were able to discuss the relation
by using the first four data and the deterministic bifurcation pointshetyween the shift of bifurcation points from the correspond-
cal_culgted_ analytically. The broken line #&=1.400+0.376. The ing deterministic ones and the noise intensitywhich is an
solid line isA=1.33+0.333. example of the quantitative study. The relations are linear
L L . . . when o is small in case of both the saddle-node bifurcation
A with different noise intensities. Since the second eigen- and the period-doubling bifurcatidisee Figs. 4 and)9lt is

values gradually increase to unity, it is not easy to tell a4 hointing out that the slopes of the lines in Fig. 9 are
which value of the parametérthe eigenvalue becomes very much larger than the one in Figs. 4, which may show the

close to unity. high sensitivity of the period-doubling bifurcati inst
On the other hand, the third and the forth eigenvalues takﬁl(?ise?enSI ity ot the period-coubling briurcation agains

their maximum values in this range Af see Fig. 8. Further- oo djess to say, the validity of our definition for the sto-

mhore, Ithe sigonﬂ elgeﬂvalﬁ_ez be_:comelvery glose to unity ahastic period-doubling bifurcation point is still open to de-
the value ofA where the third eigenvalues become maxi-j,qi0 ‘A more rigorous discussion on the validity of our defi-

mum. Thus let us_defme_ that t_he valluerf/yhere t_he third nition is necessary for future research.
eigenvalue takes it maximum is a bifurcation point of a pe- The FP operator has been discretized asam matrix

riod doubling from period 1 to period 2. In Fig. 9, bifurcation where we mainly treated the caserof 200 in this paper. If

points in the sense of this definition are plotted with dif1‘erentWe increase the discretization size, eigenvalues with larger

sizéa of standard deviation. Similar pIot; are qlso Obta'.nedabsolute values do not change much but smaller eigenvalues
in the case of the map parameter0.8. As is easily seem in

he fi h hasti od-doubling bif _ . _do change; the number of eigenvalues with nearly zero ab-
the figure, the stochastic period-doubling bifurcation pointy e yalye increases. This means that zero is the accumu-
shifts rightward as the noise intensity increases and th

g ; R . fation point of eigenvalues of the FP operator. If the standard
amount_of the shift is propc_)rtlonal to the noise INtensity  yeviation of noise is small or the deterministic map is totally
wheng is small. Therefore,.lt may safely be.deﬂne.d that,thesuperstabléthe slope of the map is close to zero as a whole
value of A where the third eigenvalue takes it maximum is ae gjscretization error becomes relatively large; in such
bifurcation point of the period doubling from period 1 10 5565 we need a larger discretization size to get eigenvalues
period 2. of desirable precision.
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