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Variational approach to a class of nonlinear oscillators with several limit cycles
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We study limit cycles of nonlinear oscillators described by the equatiomF (x)+x=0 with F an odd
function. Depending on the nonlinearity, this equation may exhibit one or more limit cycles. We show that
limit cycles correspond to relative extrema of a certain functional. Analytical results in the mit3 and
v—oo are in agreement with previously known criteria. For intermediateumerical determination of the
limit cycles can be obtained.
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[. INTRODUCTION where the integral is performed over a periodic solutign

. . . _ of the Hamiltonian systera+z=0, a circle in phase space.

The study of Lienard’s differential equation The conjecture has not been proved for arbitrary values of
_ except for special cases. It holds trué-ifs a polynomial of
X+ vf(X)x+x=0 (1) degree 3 or 410] and if F is odd of degree $11]. These

results state the maximum number possible of limit cycles
or the equivalent form, given earlier by Rayleigh, but not the exact number. Precise results on the exact number

exist for particular cases; see, for examfle2]. In recent
work, the casev— o has been studied; a criterion to deter-
mine the number of limit cycles in this asymptotic regime
was given and tested in several example4,15. In a dif-
ferent approach, an algorithm to determine the number and

z+vF(2)+2=0, 2

goes back to the work of Rayleidt] motivated by his work

in acqystics and to_ Cartan and H Cart_ah van Qier PC_J[3]3 position of the limit cycles for all values of and oddF has
and Lienard[4] motivated by their work in electrical circuits. been formulated. It is nonperturbative in nature, based on

This type of equation arises directly in numerous applicaTinding the roots of a certain sequence of polynomja—

tions and others can be reduced to them. The problem ofg] Fewer result§13] are known for the generalized equa-

studying the number and location of the periodic solu'uons;[ion %t v (X) X+ g(x) = 0.

In the present work, we study limit cycles of Eg), with

F(z) an odd function. We show that limit cycles correspond
P extrema of a certain functional. For small we recover
nown analytic results namely E@); for v— o, we recover
the results of14,15. For intermediater, we must resort to
numerical calculations. The approach is a generalization of a
method developed for other nonlinear problefi®-21.
: . . . . This first approach enabled us to show that in cases of cubic
z=X. These equations havc_e a unique equ|I|_br|um PANt £ ith a unique limit cycle, its location can be obtained from
=0 around which their periodic solutions will be nested. , :nium principlg 22]. Here we show that all limit cycles

One of the most studied equations in this class is van degyrespond to extrema of a certain functional, which would
Pol’'s equation, which has a unique limit cycle. haad[4]

blished diti hich h ) ¢ allow us, at least numerically, to count the number of limit
esta IIS el' con |t||ons dhwhic gluarante?]t e existence of .ycjes of a given equation. In Sec. II, we derive the varia-
a singie Imit_cycle. Many resu ts on t e existence andij, | principle, in Sec. lll, we obtain analytical criteria for
uniqueness have been established; less is known about small and large regime. In Sec. IV, we present some
number and location of the limit cycles that do not satisty o, 5 mnjes where we see that approximate numerical determi-
Lienard’s condition$5—7]. Lins, de Melo, and Pugf8] con-

: P . nation of the limit cycles can be obtained far from the
jectured that ifF is a polynom_lal_ of degree '_2+1 or n asymptotic regimes. Concluding remarks are made in Sec. V.
+ 2, then there can be at mastimit cycles. This conjecture

was proved 9] for small v, that is, for small departures from
the Hamiltonian case. Far— 0, the number and position of
the limit cycles is given by the real roots of a polynomial  For oddF, due to the symmetry of E@2), the limit cycle
obtained from Melnikov’s functiof5,7]. In the present case, extends between a minimum,,=—A and a maximum

for polynomial F is a particular case of the general two-
dimensional problemx=P(x,y), y=Q(x,y), for polyno-
mial P andQ, which constitutes Hilbert's 16th problem. The
problem we address here is the determination of the numb
and position of limit cycles of the equations above for efjen
or equivalently, in Rayleigh’s form for odé. The two equa-
tions have the same number of limit cycles, naed’s form
(1) is obtained by taking the derivative of E@) and calling

II. VARIATIONAL PRINCIPLE

it reduces to finding the roots of Zmax=A. Moreover, in phase space, if the poiat) belongs
to the limit cycle, then the point< z, —2) also belongs to it.
% F(z(t))dt=0, (3)  Therefore, we may consider the positive upper a0 of
o the phase plane, where half a period will elapse when going
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from the points £=0Z;,) 10 (z=0,z;s,). Then the equation where the extremum is taken over all positive functip(s)
for the limit cycle in phase spade(z),z) can be written as that vanish at the end points aridu) is the function ofp(u)
the nonlinear eigenvalue probleumpznyt VE(p)+2=0, with given by Eq.(9). If we succeed in finding all the extrema, we

. have found all limit cycles.
p(=A)=0 andp>0. Here we have sqi(z)=2z(z) and the
subscript denotes a derivative. The eigenvalue is the ampli-
tude A which appears in the boundary conditions. It is con-
venient to define a new variable=z/A in terms of which A. Small »
the equation is

Ill. SMALL AND LARGE » LIMITS

Here we shall see that for smallwe recover Melnikov’s

dp criterion. From the definition of the parameté&sand S, we
§pd_ +F(p)+Ru=0 with p(*1)=0, p>0. see that small or large, for arbitraryA, corresponds to small
u @ or largeS, respectively. For smalt or equivalently for small
S
Two parameters appear natural=A/v and S=vA. We ( (t))
may now construct the variational principle. Consider the d~1+ Sf TelPt) (11)
extrema of the functiond®[ p, ¢] of two arbitrary functions, p(t)
p(u) with p(=1)=0, and¢(u), given by
and
' 1,dp F d
R ~gPgy R e(wdu . f ( pF —F)du
u),o(u)]=
pu), &( fl Loy R~ext . (12)
1 J ——p —u?)du
12 p
111 ,de , L .
J —p®——F(p)$(u)|du Let us calculate the first variatiofR of R with respect tq.
_J-a[2S7 du 6 e obtain

1
d o
Lw(u) u S(RIp+8p]—RIp])= 55 16p(prp—Fp)

where the second expression is obtained after integration by

2
parts._Variation with respect fo(u) at fixed ¢(u) yields the 1— RS( )}, (13)
equation
1 do where we called the integral in the denominator of Eq.
sPgu —Fre=0 (7)  (12). The termpF,,—F, does not vanish identically. Then
O6R=0 for arbitrary dp if
HereF, denotes a derivative df with respect top. Varia- p2(U)=RY1—u2). (14)

tion with respect top at fixedp yields

1 d We know that this is the correct answer from direct integra-
_p_p+|:(p)+Ru= 0, (8)  tion of the equation. In the small; limit, the cycle is ap-
S™du proximately a solution of the equation @p(dp/du)+Ru

: . - =0, with p(*=1)=0, whose solution is what we just ob-
that is, the equation for the limit cycles. ExtremaRifp, ¢] . : N T
satisfy both Eq(7) and (8). Now notice that Eq7) can be tained, the ellips@(u)=RSJ/1—u?. This indicates that we

solved for & in terms ofp. Its solution is should use a trial function of the forp(u) =K 1—u? and
' search for the value df for which R has an extremum. We
u Fo(p(t) first notice that we will find some false extrema which we
$(u)=e f_ Wd (9  must discard. To see this, observe that with this trial func-
tion, Sp= 8K /1—u?, and Eq.(13) becomes
Finally, replacing Eq.(7) in Eq. (6), we obtain the main 1 8K
result. Solutions of the equation for the limit cycles are ex- SSR= 55 ?< 1— _)f p(pFpp—Fp)du. (15
trema of
1 1 The correct solution fo6R=0 isK=RS However,JR also
f_l‘/’(u) 5 P(WFy(p(w)—F(p(u))|du vanishes when the integral in the expression above is zero.

R[p]=ext

. For example, ifF is a polynomial, this integral can be per-
J S(uyudu formed and yields a polynomial iiK which vanishes for

-1 someK. This is not the desired solution. It is spurious and is
(10 only obtained because we have not swept over all possible
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trial functions. With this in mind, we go back to E¢L2).
With p(u)=A/1—u? as the trial function, Eq12) is of the
form

R~ tA—zw 16
~etS GA) 19
where we set
1
h<A>=f_l(%pr—F>du, (17
11
g(A)=ﬁl§prdu. (18

It is easy to verify thaAh’ — Ag’ = —2g, and we obtain

dR_2gh+A(h'g—hg') AN (A)(h-g)
dA s¢ B S¢

Extrema of R occur whenAh'(A)=0 and whenh(A)
=g(A). The first condition is eitheA=0, the trivial solu-

(19

tion which is always present, dr'(A)=0. This solution is
precisely the false solution which we discard. We retain the

the solutionh(A)=g(A), which is simply

jl F(p(u))du=0 with p(u)=Ay1—-u? (20
-1
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FIG. 1. Graph of allowed limit cycles in the—o regime.

atu=1 if F(p)<0 or atu=—1 if F(p)>0. The values of
R at the extremum points, if any, for lar@ are given then

by
F(pl, ... . (23)

In order to see which of these correspond to true extrema,
hence to limit cycles, we return to the differential equation.

R=|F(py)l,

For largeS limit cycles are approximately given by

F(p)+Ru=0, (24)

the solution of which has to be matched to a thin boundary
layer. Now that we know the possible valuesRfwe can

This is exactly conditior{3) since we have considered only yead directly which are the limit cycles. This is best seen in a

odd F.

B. Large v

In a recent work, Lpezet al [15] study limit cycles of
Liénard’s differential equatioril) in the strongly nonlinear

plot in the phase space of E@4). Suppose there are several

pointst at whichF,=0. SinceF is odd, take the positive
values and label them in growing ordgy;<p,<ps---.
Correspondingly we have different values Rf Since limit
cycles must be nested, and, for the systems considered, the

regime. Their approach is based in constructing approximatéerivativedp/du can vanish only at one point, the only limit
solutions to the differential equation. Here we give a heuriscycles will be those for whichF(p;)|>[F(py)| for all k
tic derivation of their result. Sinc& appears only in the <]. This is best seen in Fig. 1, where we show a case with

exponential in the form ex®zu)), we know, from Wat-
son’s lemmd 23], that whenS— o the leading contribution

two allowed limit cycles. In the asymptotic regime when
— =*1, the horizontal coordinate tendsRe= F(f)). The tra-

to the integral comes from the points where the term in thgectory of each limit cycle is indicated by the arrows. From
exponential has an extremum. Here the term in the exponenhke definition ofR we know then that in the limiv— o, for

tial is

z(u)= f Fp(p(t))dt. (21)

-1 p(t)

Extrema occur whereg'(u)=0, that is, where~,=0. For
large S, then,R will be given by

R:ext<— fp)),
u

wherep is the solution ofF ,(p) =0 andu is the value ofu

(22

for which p=|?) on the orbit. The extremum is now taken

overu. SinceR is positive, possible extrema & will occur

each allowed cycle, the amplitude grows As=|F(p;)|v.
Moreover, we can read the maximum value pfin each

cycle. The maximunp are solutions ofF (p) +|F(p)|=0.
The values ofp determined in this way correspond to the
amplitude of the associated ‘Inard equation(1). Thus we
have recovered the solution ff4,15, which gives support
to the conjecture of Lins, de Melo, and Pugh.

IV. EXAMPLES

Having seen that we recover the smaland largev lim-
its, we now give numerical results for arbitrary values-aoh
simple examples. Here too, false extrema may appear due to
the impossibility of sweeping over all trial functions. This
becomes evident, as in the—0 limit, by considering the
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first variation of R with respect top. For arbitraryS R(p s
+ 6p) —R(p) vanishes when

1
f duép
-1

p
1
Rt— (Ep(t)Fp(p(t))— F(p(t))> ”

Fop Ei oWy ‘
52 {2p<u> ¢(u>+sﬁldt¢(t)

X
=0

(29

As in the smallv limit, the term in square brackets does not Ve
vanish identically, so for arbitrargp the first variation van- 0 1 2 3 4 5 6 7 8 9
ishes when the term in curly brackets vanishes. Taking the v
derivgtive of this term., one can see that i_t corresponds to the g5 o Amplitude of the limit cycles forE(p)=(4/5)p
equation for the limit cycles. In practice though, when _(4/3)52+ (8/25)p5. The continuous line is the result of numerical
sweeping over a restricted variety of trial functions the inte-jntegration of the differential equation. The dots were obtained
gral may vanish at other points, which calls for some care. yariationally with a simple trial function.

Physical systems which exhibit limit cycles arise in dif-

feren_t mechanicql, electrical,.and biological systems. Theor 0, Eq.(3) predicts the existence of two limit cycles,
special class which we consider here is of particular rel¢ amplitudesA=1 andA=2. As v increases, the ampli-
evance for electrical oscillators. The usuall assumptiony,des change. In Fig. 2, we show the amplitudes as functions
Ohm'’s law, that the voltage across a two-terminal device igy ;, The continuous lines are the amplitudes obtained from
proportional to the current through it, is not a rule but aine direct integration of the differential equatidg). Un-
simplification valid in restricted conditions. Resistance, in-giaple |imit cycles are obtained by integrating the equation
ductance, and capacitance and other circuit elements are, {fith <0 since this only changes the stability properties of
general, nonlinear functions of the applied voltage or currenne ¢ycles. The origin is a stable fixed point, the inner limit

through them. For other circuit elements, like the tunnel oreycje’ynstable, and the outer stable. To estimate the position
negative resistance diode, nonlinearity is an essential featurgy the |imit cycles variationally, we used as a trial function
The simplest circuit that leads to an equation of the form wey, simpler=0 solution, p(u)=K yI—uZ. The dots indi-

consulj((ajr_ '3 anlllr)ductariltlti ri_aﬁlstanceR_, cafpacnori(]:, apd & cate the values of the amplitudes thus obtained. The agree-
tunnel diode all in parallel. The equation for such a CirCUitis o s close to fairly high values af, in spite of having

Y}”* [1’(R9)|— é_lﬁfc)di/de' +V/(LCh)=|0, wher%]v IS ysed a simple one-parameter trial function.
the potentla Ifference across each element. e current A more interesting example is provided by

voltage characteristic of the diod€)\), can be expressed as
a power series itV. A truncation of the series in the cubic i
F(p)=p- \Ep3+ p°.

term yields the van der Pol equation; the effect of the inclu-
sion of higher-order terms or even nonpolynomial expres-
sions fori(V) is what we consider here. As examples we
shall take a system with a current voltage relation of the formHere Eq.(3) again predicts the existence of two limit cycles
i(V)=a,V—asV°+agV®. Experimental current voltage for 0 of amplitudesA, = (V41— 1)/5~1.039 andA,
characteristics for resonant tunneling diodes are a subject o;\/m% 1.216. For this equation it is known that
current interest; samples with different characteristics can bg,, large » there is no limit cycle. A bound on the value of
constructed24—-26 . o for which no limit cycles exist is knowfi27]. The criterion

To illustrate Fhe use of the \_/arlatl_onal principle, we shallgo, . also indicates that no limit cycles exist in this
use for allv a simple trial function with only one parameter ogime Numerical integration of the differential equation
K. For each value d§ we insert the trial function in Eq10)  ghoys that, as increases, these two limit cycles merge and
and sweep irK to find all the extrema. We begin with small yisanhear. In Fig. 3, we show the amplitude as a function of
Swhere we identify the true minima and follow their evolu- , "t continuous line is obtained by direct numerical inte-
tion as S is increased. We obtain a table of extremag aiion and the dots and triangles were obtained variation-
(R1,R;,Rg,-- ) for eachs from which we compute the gy, The dotted points were obtained using again the linear
values vi=yS/R; and the corresponding amplitud®; a1 function p(u) =K y1—Uu?. At larger », it is convenient
= JSR. As we show below, with very simple trial functions 15 yse a better trial function. We have taken a trial function

one may obtain close estimates for the position of the limit,ich is suggested by the first correction for sn@lFrom

cycles. perturbation theory we obtain
As a first example we take

(27)

S u
F(p)=gp—gp3+ %pf’. (26) p(u)=Ayl-u’— ﬁj_lF(A\/l—xz)dx_ (28)
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14 the lower branch in Fig. 3 were obtained with the trial func-
tion p(u)=K1—-u?(1.118+0.330+0.07&2). This trial
function does not have the correct symmetry but gives a very

13 close estimate of the amplitude.

V. CONCLUSION

We have shown that all limit cycles of E(R) correspond
to extrema of a certain functional. The exact position of each
limit cycle is obtained when the trial function coincides with
the solution, otherwise an approximate estimation can be
Lo L ! . . . s . made. From the variational expression, analytical results can
0.0 0.5 1.0 1.5 2.0 25 3.0 be obtained in the two asymptotic limitg;,—0 andv— . In
v these asymptotic regimes, we obtain both the amplitudes of

FIG. 3. Amplitude of the limit cycles foF(p)=p— 41/9p° the Rayleigh and Lieard form of the equations. In the small
+pS. The continuous line is the result of numerical integration of ¥ limit, we reobtain the known criterion, namely Melnikov's

the differential equation. The dots and triangles were obtainedntegral. In the larges regime, our results coincide with that

1.1

variationally with simple trial functions. obtained in recent work. In the intermediate regime, the
number and position of the limit cycles can be obtained nu-
Evaluated omA, this yields merically. Even with simple trial functions, relatively close

estimates are obtained.

— u(1-u? Here we considered equations of the fai@h The results
P2(U)=AzV1-U"+SA 75 [(\/4—1+ 21)u? can be extended directly to a more general equation of the
form z+ vF(z) + g(z) =0, with g(z) an antisymmetric func-
+a4- \/4—1]’ 29 tion with g(0)=0. In this case, one would be able to find
and onA, or_1|y the limit cy_c_leg that e_ncircle t_he origin, not those encir-
' cling other equilibrium points, which do not have the sym-
u(1—u?) metry we require of the solutions.
py(u)=Asvl- U2—5A17—5[(\/4—1— 21)u? The most interesting question that remains to be studied is
the possibility of giving an analytical criterion to determine
—4— \/4—1]. (300  the number of limit cycles for arbitrary andF. Other topics

to be addressed are the extension of this method to nonsym-
Since this will be a trial function, we s&=1 above, and use metric systems and its formulation for an equation written in
the trial function p(u)=Kp,(u), which is approximately Liénard’s form.
p(u)=K(1.216/1—u?—0.03U+0.48313—0.444:%). The
t_riangles near the upper brar)ch in F_ig. 3_ were pbtained varia- ACKNOWLEDGMENTS
tionally with this trial function. Still within simple one-
parameter trial functions one may guess a polynomial cor- We thank R. Benguria for helpful discussions. This work
rection to the linear solution. For example, the triangles orwas supported by Fondecyt Project No. 19904QAile).
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