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Variational approach to a class of nonlinear oscillators with several limit cycles

M. C. Depassier and J. Mura
Facultad de Fı´sica, Pontificia Universidad Cato´lica de Chile, Casilla 306, Santiago 22, Chile

~Received 19 March 2001; published 23 October 2001!

We study limit cycles of nonlinear oscillators described by the equationẍ1nF( ẋ)1x50 with F an odd
function. Depending on the nonlinearity, this equation may exhibit one or more limit cycles. We show that
limit cycles correspond to relative extrema of a certain functional. Analytical results in the limitsn→0 and
n→` are in agreement with previously known criteria. For intermediaten, numerical determination of the
limit cycles can be obtained.
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I. INTRODUCTION

The study of Lienard’s differential equation

ẍ1n f ~x!ẋ1x50 ~1!

or the equivalent form, given earlier by Rayleigh,

z̈1nF~ ż!1z50, ~2!

goes back to the work of Rayleigh@1# motivated by his work
in acoustics and to Cartan and H. Cartan@2#, van der Pol@3#,
and Liénard@4# motivated by their work in electrical circuits
This type of equation arises directly in numerous appli
tions and others can be reduced to them. The problem
studying the number and location of the periodic solutio
for polynomial F is a particular case of the general tw
dimensional problemẋ5P(x,y), ẏ5Q(x,y), for polyno-
mial P andQ, which constitutes Hilbert’s 16th problem. Th
problem we address here is the determination of the num
and position of limit cycles of the equations above for evef,
or equivalently, in Rayleigh’s form for oddF. The two equa-
tions have the same number of limit cycles, Lie´nard’s form
~1! is obtained by taking the derivative of Eq.~2! and calling
ż5x. These equations have a unique equilibrium poinz
50 around which their periodic solutions will be neste
One of the most studied equations in this class is van
Pol’s equation, which has a unique limit cycle. Lie´nard @4#
established conditions onF which guarantee the existence
a single limit cycle. Many results on the existence a
uniqueness have been established; less is known abou
number and location of the limit cycles that do not satis
Liénard’s conditions@5–7#. Lins, de Melo, and Pugh@8# con-
jectured that ifF is a polynomial of degree 2n11 or 2n
12, then there can be at mostn limit cycles. This conjecture
was proved@9# for smalln, that is, for small departures from
the Hamiltonian case. Forn→0, the number and position o
the limit cycles is given by the real roots of a polynom
obtained from Melnikov’s function@5,7#. In the present case
it reduces to finding the roots of

R
G0

F„ż~ t !…dt50, ~3!
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where the integral is performed over a periodic solutionG0

of the Hamiltonian systemz̈1z50, a circle in phase space
The conjecture has not been proved for arbitrary values on
except for special cases. It holds true ifF is a polynomial of
degree 3 or 4@10# and if F is odd of degree 5@11#. These
results state the maximum number possible of limit cyc
but not the exact number. Precise results on the exact num
exist for particular cases; see, for example,@12#. In recent
work, the casen→` has been studied; a criterion to dete
mine the number of limit cycles in this asymptotic regim
was given and tested in several examples@14,15#. In a dif-
ferent approach, an algorithm to determine the number
position of the limit cycles for all values ofn and oddF has
been formulated. It is nonperturbative in nature, based
finding the roots of a certain sequence of polynomials@16–
18#. Fewer results@13# are known for the generalized equ
tion ẍ1n f (x) ẋ1g(x)50.

In the present work, we study limit cycles of Eq.~2!, with
F( ż) an odd function. We show that limit cycles correspo
to extrema of a certain functional. For smalln, we recover
known analytic results namely Eq.~3!; for n→`, we recover
the results of@14,15#. For intermediaten, we must resort to
numerical calculations. The approach is a generalization
method developed for other nonlinear problems@19–21#.
This first approach enabled us to show that in cases of c
F with a unique limit cycle, its location can be obtained fro
a minimum principle@22#. Here we show that all limit cycles
correspond to extrema of a certain functional, which wou
allow us, at least numerically, to count the number of lim
cycles of a given equation. In Sec. II, we derive the var
tional principle, in Sec. III, we obtain analytical criteria fo
the small and largen regime. In Sec. IV, we present som
examples where we see that approximate numerical dete
nation of the limit cycles can be obtained far from th
asymptotic regimes. Concluding remarks are made in Sec

II. VARIATIONAL PRINCIPLE

For oddF, due to the symmetry of Eq.~2!, the limit cycle
extends between a minimumzmin52A and a maximum
zmax5A. Moreover, in phase space, if the point (ż,z) belongs
to the limit cycle, then the point (2 ż,2z) also belongs to it.
Therefore, we may consider the positive upper halfż.0 of
the phase plane, where half a period will elapse when go
©2001 The American Physical Society17-1
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from the points (ż50,zmin) to (ż50,zmax). Then the equation
for the limit cycle in phase space„ż(z),z… can be written as
the nonlinear eigenvalue problem,ppz1nF(p)1z50, with
p(6A)50 andp.0. Here we have setp(z)5 ż(z) and the
subscript denotes a derivative. The eigenvalue is the am
tudeA which appears in the boundary conditions. It is co
venient to define a new variableu5z/A in terms of which
the equation is

1

S
p

dp

du
1F~p!1Ru50 with p~61!50, p.0.

~4!

Two parameters appear naturally,R5A/n and S5nA. We
may now construct the variational principle. Consider t
extrema of the functionalR@p,f# of two arbitrary functions,
p(u) with p(61)50, andf(u), given by

R@p~u!,f~u!#5

E
21

1 S 2
1

S
p

dp

du
2F~p! Df~u! du

E
21

1

uf~u!du

~5!

5

E
21

1 F 1

2S
p2

df

du
2F~p!f~u!Gdu

E
21

1

uf~u! du

, ~6!

where the second expression is obtained after integratio
parts. Variation with respect top(u) at fixedf(u) yields the
equation

1

S
p

df

du
2Fpf50. ~7!

HereFp denotes a derivative ofF with respect top. Varia-
tion with respect tof at fixedp yields

1

S
p

dp

du
1F~p!1Ru50, ~8!

that is, the equation for the limit cycles. Extrema ofR@p,f#
satisfy both Eq.~7! and ~8!. Now notice that Eq~7! can be
solved forf in terms ofp. Its solution is

f~u!5expS SE
21

u Fp„p~ t !…

p~ t !
dtD . ~9!

Finally, replacing Eq.~7! in Eq. ~6!, we obtain the main
result. Solutions of the equation for the limit cycles are e
trema of

R@p#5ext

E
21

1

f~u!F1

2
p~u!Fp„p~u!…2F„p~u!…Gdu

E
21

1

f~u!udu

,

~10!
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where the extremum is taken over all positive functionsp(u)
that vanish at the end points andf(u) is the function ofp(u)
given by Eq.~9!. If we succeed in finding all the extrema, w
have found all limit cycles.

III. SMALL AND LARGE n LIMITS

A. Small n

Here we shall see that for smalln we recover Melnikov’s
criterion. From the definition of the parametersR andS, we
see that small or largen, for arbitraryA, corresponds to smal
or largeS, respectively. For smalln or equivalently for small
S,

f'11SE
21

u Fp„p~ t !…

p~ t !
dt ~11!

and

R'ext

E
21

1 S 1

2
pFp2F Ddu

SE
21

1 1

2

Fp

p
~12u2!du

. ~12!

Let us calculate the first variationdR of R with respect top.
We obtain

S~R@p1dp#2R@p# !5
1

2DE
21

1

dp ~pFpp2Fp!

3F12RS
~12u2!

p2 G , ~13!

where we calledD the integral in the denominator of Eq
~12!. The termpFpp2Fp does not vanish identically. The
dR50 for arbitrarydp if

p2~u!5RS~12u2!. ~14!

We know that this is the correct answer from direct integ
tion of the equation. In the small,n limit, the cycle is ap-
proximately a solution of the equation (1/S)p(dp/du)1Ru
50, with p(61)50, whose solution is what we just ob
tained, the ellipsep(u)5RSA12u2. This indicates that we
should use a trial function of the formp(u)5KA12u2 and
search for the value ofK for which R has an extremum. We
first notice that we will find some false extrema which w
must discard. To see this, observe that with this trial fu
tion, dp5dKA12u2, and Eq.~13! becomes

SdR5
1

2D

dK

K S 12
RS

K D E
21

1

p~pFpp2Fp!du. ~15!

The correct solution fordR50 is K5RS. However,dR also
vanishes when the integral in the expression above is z
For example, ifF is a polynomial, this integral can be pe
formed and yields a polynomial inK which vanishes for
someK. This is not the desired solution. It is spurious and
only obtained because we have not swept over all poss
7-2
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trial functions. With this in mind, we go back to Eq.~12!.
With p(u)5AA12u2 as the trial function, Eq.~12! is of the
form

R'ext
A2

S

h~A!

g~A!
, ~16!

where we set

h~A!5E
21

1

~ 1
2 pFp2F !du, ~17!

g~A!5E
21

1 1

2
pFpdu. ~18!

It is easy to verify thatAh82Ag8522g, and we obtain

dR

dA
5

2gh1A~h8g2hg8!

Sg2
5

Ah8~A!~h2g!

Sg2
. ~19!

Extrema of R occur when Ah8(A)50 and whenh(A)
5g(A). The first condition is eitherA50, the trivial solu-
tion which is always present, orh8(A)50. This solution is
precisely the false solution which we discard. We retain th
the solutionh(A)5g(A), which is simply

E
21

1

F„p~u!…du50 with p~u!5AA12u2. ~20!

This is exactly condition~3! since we have considered on
odd F.

B. Large n

In a recent work, Lo´pez et al. @15# study limit cycles of
Liénard’s differential equation~1! in the strongly nonlinear
regime. Their approach is based in constructing approxim
solutions to the differential equation. Here we give a heu
tic derivation of their result. SinceS appears only in the
exponential in the form exp„Sz(u)…, we know, from Wat-
son’s lemma@23#, that whenS→` the leading contribution
to the integral comes from the points where the term in
exponential has an extremum. Here the term in the expon
tial is

z~u!5E
21

u Fp„p~ t !…

p~ t !
dt. ~21!

Extrema occur wherez8(u)50, that is, whereFp50. For
largeS, then,R will be given by

R5extS 2F~ p̂!

û
D , ~22!

wherep̂ is the solution ofFp( p̂)50 andû is the value ofu
for which p5 p̂ on the orbit. The extremum is now take
over û. SinceR is positive, possible extrema ofR will occur
05621
n

te
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at û51 if F( p̂),0 or at û521 if F( p̂).0. The values of
R at the extremum points, if any, for largeS, are given then
by

R5uF~ p̂1!u, uF~ p̂2!u, . . . . ~23!

In order to see which of these correspond to true extre
hence to limit cycles, we return to the differential equatio
For largeS, limit cycles are approximately given by

F~p!1Ru50, ~24!

the solution of which has to be matched to a thin bound
layer. Now that we know the possible values ofR, we can
read directly which are the limit cycles. This is best seen i
plot in the phase space of Eq.~24!. Suppose there are sever
points p̂ at which Fp50. SinceF is odd, take the positive
values and label them in growing order,p1,p2,p3•••.
Correspondingly we have different values ofR. Since limit
cycles must be nested, and, for the systems considered
derivativedp/du can vanish only at one point, the only lim
cycles will be those for whichuF(pj )u.uF(pk)u for all k
, j . This is best seen in Fig. 1, where we show a case w
two allowed limit cycles. In the asymptotic regime whenu

→61, the horizontal coordinate tends toR5F( p̂). The tra-
jectory of each limit cycle is indicated by the arrows. Fro
the definition ofR we know then that in the limitn→`, for
each allowed cycle, the amplitude grows asAi5uF(pi)un.
Moreover, we can read the maximum value ofp in each
cycle. The maximump are solutions ofF(p)1uF( p̂)u50.
The values ofp determined in this way correspond to th
amplitude of the associated Lie´nard equation~1!. Thus we
have recovered the solution of@14,15#, which gives support
to the conjecture of Lins, de Melo, and Pugh.

IV. EXAMPLES

Having seen that we recover the smalln and largen lim-
its, we now give numerical results for arbitrary values ofn in
simple examples. Here too, false extrema may appear du
the impossibility of sweeping over all trial functions. Th
becomes evident, as in then→0 limit, by considering the

FIG. 1. Graph of allowed limit cycles in then→` regime.
7-3
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first variation of R with respect top. For arbitraryS, R(p
1dp)2R(p) vanishes when

E
21

1

du dpFFpp

p
2

Fp

p2G H 1

2
p~u!2f~u!1SE

21

u

dt f~ t !

3FRt2S 1

2
p~ t !Fp„p~ t !…2F„p~ t !…D G J

50. ~25!

As in the smalln limit, the term in square brackets does n
vanish identically, so for arbitrarydp the first variation van-
ishes when the term in curly brackets vanishes. Taking
derivative of this term, one can see that it corresponds to
equation for the limit cycles. In practice though, wh
sweeping over a restricted variety of trial functions the in
gral may vanish at other points, which calls for some car

Physical systems which exhibit limit cycles arise in d
ferent mechanical, electrical, and biological systems. T
special class which we consider here is of particular
evance for electrical oscillators. The usual assumpt
Ohm’s law, that the voltage across a two-terminal device
proportional to the current through it, is not a rule but
simplification valid in restricted conditions. Resistance,
ductance, and capacitance and other circuit elements ar
general, nonlinear functions of the applied voltage or curr
through them. For other circuit elements, like the tunnel
negative resistance diode, nonlinearity is an essential fea
The simplest circuit that leads to an equation of the form
consider is an inductanceL, resistanceR, capacitorC, and a
tunnel diode all in parallel. The equation for such a circuit
V91@1/(RC)2(1/C)di/dV#V81V/(LC)50, where V is
the potential difference across each element. The cur
voltage characteristic of the diode,i (V), can be expressed a
a power series inV. A truncation of the series in the cubi
term yields the van der Pol equation; the effect of the inc
sion of higher-order terms or even nonpolynomial expr
sions for i (V) is what we consider here. As examples w
shall take a system with a current voltage relation of the fo
i (V)5a1V2a3V31a5V5. Experimental current voltage
characteristics for resonant tunneling diodes are a subje
current interest; samples with different characteristics can
constructed@24–26#

To illustrate the use of the variational principle, we sh
use for alln a simple trial function with only one paramete
K. For each value ofS, we insert the trial function in Eq.~10!
and sweep inK to find all the extrema. We begin with sma
S where we identify the true minima and follow their evol
tion as S is increased. We obtain a table of extrem
(R1 ,R2 ,R3 ,•••) for eachS, from which we compute the
values n i5AS/Ri and the corresponding amplitudeAi

5ASRi . As we show below, with very simple trial function
one may obtain close estimates for the position of the li
cycles.

As a first example we take

F~p!5
4

5
p2

4

3
p31

8

25
p5. ~26!
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For n→0, Eq.~3! predicts the existence of two limit cycles
of amplitudesA51 and A52. As n increases, the ampli
tudes change. In Fig. 2, we show the amplitudes as funct
of n. The continuous lines are the amplitudes obtained fr
the direct integration of the differential equation~2!. Un-
stable limit cycles are obtained by integrating the equat
with n,0 since this only changes the stability properties
the cycles. The origin is a stable fixed point, the inner lim
cycle unstable, and the outer stable. To estimate the pos
of the limit cycles variationally, we used as a trial functio
the simplen50 solution, p(u)5KA12u2. The dots indi-
cate the values of the amplitudes thus obtained. The ag
ment is close to fairly high values ofn, in spite of having
used a simple one-parameter trial function.

A more interesting example is provided by

F~p!5p2A41

9
p31p5. ~27!

Here Eq.~3! again predicts the existence of two limit cycle
for n→0 of amplitudesA15A(A4121)/5'1.039 andA2

5A(A4111)/5'1.216. For this equation it is known tha
for largen there is no limit cycle. A bound on the value ofn
for which no limit cycles exist is known@27#. The criterion
for n→` also indicates that no limit cycles exist in th
regime. Numerical integration of the differential equatio
shows that, asn increases, these two limit cycles merge a
disappear. In Fig. 3, we show the amplitude as a function
n. The continuous line is obtained by direct numerical in
gration and the dots and triangles were obtained variat
ally. The dotted points were obtained using again the lin
trial function p(u)5KA12u2. At larger n, it is convenient
to use a better trial function. We have taken a trial functi
which is suggested by the first correction for smallS. From
perturbation theory we obtain

p~u!5AA12u22
S

A12u2E21

u

F~AA12x2!dx. ~28!

FIG. 2. Amplitude of the limit cycles forF(p)5(4/5)p
2(4/3)p31(8/25)p5. The continuous line is the result of numeric
integration of the differential equation. The dots were obtain
variationally with a simple trial function.
7-4
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Evaluated onA2 this yields

p2~u!5A2A12u21SA2

u~12u2!

75
@~A41121!u2

142A41#, ~29!

and onA1,

p1~u!5A1A12u22SA1

u~12u2!

75
@~A41221!u2

242A41#. ~30!

Since this will be a trial function, we setS51 above, and use
the trial function p(u)5Kp2(u), which is approximately
p(u)5K(1.216A12u220.039u10.483u320.444u5). The
triangles near the upper branch in Fig. 3 were obtained va
tionally with this trial function. Still within simple one-
parameter trial functions one may guess a polynomial c
rection to the linear solution. For example, the triangles

FIG. 3. Amplitude of the limit cycles forF(p)5p2A41/9p3

1p5. The continuous line is the result of numerical integration
the differential equation. The dots and triangles were obtai
variationally with simple trial functions.
.
he

-
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the lower branch in Fig. 3 were obtained with the trial fun
tion p(u)5KA12u2(1.11810.339u10.078u2). This trial
function does not have the correct symmetry but gives a v
close estimate of the amplitude.

V. CONCLUSION

We have shown that all limit cycles of Eq.~2! correspond
to extrema of a certain functional. The exact position of ea
limit cycle is obtained when the trial function coincides wi
the solution, otherwise an approximate estimation can
made. From the variational expression, analytical results
be obtained in the two asymptotic limits,n→0 andn→`. In
these asymptotic regimes, we obtain both the amplitude
the Rayleigh and Lie´nard form of the equations. In the sma
n limit, we reobtain the known criterion, namely Melnikov’
integral. In the largen regime, our results coincide with tha
obtained in recent work. In the intermediate regime,
number and position of the limit cycles can be obtained
merically. Even with simple trial functions, relatively clos
estimates are obtained.

Here we considered equations of the form~2!. The results
can be extended directly to a more general equation of
form z̈1nF( ż)1g(z)50, with g(z) an antisymmetric func-
tion with g(0)50. In this case, one would be able to fin
only the limit cycles that encircle the origin, not those enc
cling other equilibrium points, which do not have the sym
metry we require of the solutions.

The most interesting question that remains to be studie
the possibility of giving an analytical criterion to determin
the number of limit cycles for arbitraryn andF. Other topics
to be addressed are the extension of this method to nons
metric systems and its formulation for an equation written
Liénard’s form.
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@15# J.L. López and R. Lo´pez-Ruiz, Chaos, Solitons Fractals11,

747 ~2000!.
@16# H. Giacomini and S. Neukirch, Phys. Rev. E56, 3809~1997!.
@17# H. Giacomini and S. Neukirch, Phys. Rev. E57, 6573~1998!.
@18# J. Llibre, L. Pizarro, and E. Ponce, Phys. Rev. E58, 5185
7-5



ys

l

M. C. DEPASSIER AND J. MURA PHYSICAL REVIEW E64 056217
~1998!.
@19# R.D. Benguria and M.C. Depassier, Commun. Math. Ph

175, 221 ~1996!.
@20# R.D. Benguria and M.C. Depassier, Phys. Rev. Lett.77, 1171

~1996!.
@21# R.D. Benguria and M.C. Depassier, Phys. Rev. Lett.77, 2847

~1996!.
@22# R.D. Benguria and M.C. Depassier, Phys. Rev. E59, 4889

~1999!.
@23# C. M. Bender and S. A. Orszag,Advanced Mathematica
05621
.
Methods for Scientists and Engineers~McGraw-Hill, New
York, 1978!.

@24# K.J. Gan, Y.K. Su, and R.L. Wang, J. Appl. Phys.81, 6825
~1997!.

@25# C.Y. Huang, J.E. Morris, and Y.K. Su, J. Appl. Phys.82, 2690
~1997!.

@26# P. Zhao, H.L. Cui, and D.L. Woolard, Phys. Rev. B63,
075302~2001!.

@27# P. Alsholm, J. Math. Anal. Appl.171, 242 ~1992!.
7-6


