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Reconstruction of time-delay systems from chaotic time series
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We propose a method that allows one to estimate the parameters of model scalar time-delay differential
equations from time series. The method is based on a statistical analysis of time intervals between extrema in
the time series. We verify our method by using it for the reconstruction of time-delay differential equations
from their chaotic solutions and for modeling experimental systems with delay-induced dynamics from their
chaotic time series.
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[. INTRODUCTION ery of the time-delay systems one has to use special methods.
For example, in the method proposed 6] the trajectory
Reconstruction of model equations from time series withgenerated by Eq.(1) is projected from the infinite-
the help of universal methods, ignoring object features is, adimensional phase space to a three-dimensional gpdcte

a rule, unsuccessful. Usually, a good result can be expected ), x(t),x(t)]. In this space the projected trajectory is
when special techniques of reconstruction are used for suffeonfined to a two-dimensional surface. The section of this

ciently narrow classes of objects. In particular, such a Clas§urface with thex(t)=0 plane enables one to recover the

can be composed of objects, whose dynamics is affected not

only by the present state, but also by past states. These S);%ininear function since whex(t) =0, then
X(t)=f(x(t—170)). 2

tems are usually modeled by delay-differential equations.
Such models are successfully used in many disciplines, like

physics, biology, and chemistry. Some of them, for examplegijnce the delay timer, is a priori unknown, one needs to
the Mackey-Glass equatidri], the Ikeda equatiofi2], and roject the trajectory to severfik(t—1).x(t).x(t)] spaces
equation for an electronic oscillator with delayed feedback’™ e ) y 1o T ' P

[3] became standard examples of time-delay systems. O on \{anatlon ofr searching for a single-valued dependence
paper deals with the problem of the time-delay system recoril the x(t)=0 section, which is possible only far=7o. As
struction from experimental chaotic time series. We consideft quantitative criterion of single valuedness in searching for

one of the most popular first-order delay-differential equa-To ON€ can use the minimal lengti{r) of a line connecting
tions all extreme points ordered with respect x¢t—7) in the

[x(t—7),x(t)] plane[6]. Other methods of time-delay sys-
ex(t) = —x(t) + F(x(t— o)), (1) tem analysis based on the similar projection of the infinite-

dimensional phase space onto low-dimensional subspaces
wherex(t) is the system state at tinte function f defines ~ US€ another criteria of quality, for example,_ the minimal fore-
nonlocal correlations in timer, is the delay time, and pa- Cast error of constructed modei—9), the minimal value of
rameters characterizes the inertial properties of the systeminformation entropy 10], or various measures of complexity
In general case Edl) is a mathematical model of an oscil- ©f the projected time seriel,11,12. Several methods of
lating system composed of a ring with three ideal elementsime-delay ~system analysis exploit regression analysis
nonlinear, delay, and inertial. In a radiophysical version ofl 13,14 and correlation function constructig5,16).
the ring(Fig. 1), which is named an electronic oscillator with ' this paper we propose a method that is able to recon-
delayed feedback, an amplifier with the transfer function Struct the equation of time-delay system having the form of
plays the role of nonlinear device, a delay line provides &9 (1) from the time series. The method uses regularities in
delay for time r,, and a filter defines the system inertial (€ location of extrema in the syste) time series. Section
properties and the parameter In the present paper we de- Il contains the method description. We determine extrema in

velop a technique for estimating,, f, ande from the time

series. M%) | Delay | ¥
To uniquely define the systefl) state it is necessary to line
prescribe the initial conditions in the entire time interval
[ — 70,0]. Therefore, the phase space of the system has to be Filter
considered as infinite dimensional. In fact, for large delay
times even scalar delay-differential equations can possess Nonlinear
high-dimensional chaotic dynami¢d]. Thus, the direct re- device | fix(r-1y))
construction of the system by the time-delay embedding
techniques runs into severe problems. For a successful recov- FIG. 1. Radiophysical model of time-delay system.
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FIG. 2. NumbeIN of pairs of extrema in a realization of E()
with £>0, separated in time by, as a function ofr. N(7) is b
normalized to the total number of extrema in time seré@r) has
a pronounced minimum at the level of the delay time of the system.
The location of maximum is determined by the parameter

the time series and analyze the time intervals between them.
For different values of timer we define the numbeN of
pairs of extrema separated in time byFig. 2). The charac-
teristic features of théN(7) plot allows us to identify the
delay timery without calculation of any additional quantita-
tive criteria. With a knowledge of, it is possible to esti-
mate the nonlinear function and the parameteirhe value

of & can be estimated directly from tiN{ ) plot. In Sec. llI

the method features and efficiency in the presence of noise
are illustrated both by the reconstruction of dynamical sys-
tems from their solutions and by the modeling of real radio-

physical systems. The method advantages and its possible FIG. 3. (8 NumberN of pairs of extrema in a realization of Eq.

applications are discussed in Sec. IV. (1) with =0, separated in time by, as a function ofr. N(7) is
normalized to the total number of extrema in time seriésr) has
Il. METHOD DESCRIPTION a sharp maximum at the level of the delay time of the syst@n.

Typical transfer function of the nonlinear device and mapping of

The proposed method exploits the features of extremanput signal points into outputc) Signal temporal realization with
shape and location in the systefh) temporal realization the time series pointédots shown in the neighborhood of two
x(t). The peculiarities of extrema location in time are clearlyextremal pointgcircles.
illustrated byN(7) plot in Fig. 2. To construct it one has to
define for differentr values the numbeN of pairs of ex- The situation in the absence of inertial properties can be
trema inx(t), that are separated in time by|f N is normal-  pictorially shown with the help of a ring circuifig. 1), for
ized to the total number of extrema, then for sufficiently which the conditions=0 is equivalent to the lack of filter
large extrema number it can be used as an estimation @fnd the unbounded passband of other elements. The signal
probability to find a pair of extrema ir(t) separated by the x(t) propagates through the ring in one direction and in the
interval 7. Let us explain the qualitative featuresi{r) for  process the delay line provides the signal delayzfpand a

various values of parameter nonlinear device transforms the signal in accordance with its
In the absence of inertial properties£0) Eq. (1) takes transfer functionf(x(t— 7g)). In this case the signal at the
the form of Eq.(2). Its time differentiation gives nonlinear device output is defined at the timmenly by the
signal at the delay line input at the tinte- . Hence, the
: df(x(t—7p)). time evolution of the points of(t) can be represented by the
X(t)= Tax(t—rg) X7 7o) (3) iteration diagram of the one-dimensional mat— 7o)

—X(t) in Fig. 3(b), where one step of discrete time corre-
. , sponds to the time shift, in the continuous time. Graphical
From Eq.(3) it follows that if x(t—79)=0, thenx(t)=0.  plotting of the mapping of several neighbor points chosen in
Thus, fore=0 every extremum ok(t) is followed within  x(t) in the neighborhood of extremuffrig. 3(c)] indicates
the time 7, by the extremuni.As the resultN(7) shows a that an extremum always maps into the extremum. From Fig.
maximum for7= 74 in Fig. 3a). 3 it follows that the number of extrema separated in time by

7 slightly differing from 7o must be relatively small resulting

in the presence of minima in Fig(&. In actuality we have

For chaotic temporal realizations of the systems under investigato deal not with the continuous(t) realization but with a

tion practically all critical points withx(t)=0 are the extremal discrete time SerieS(t}{v':l obtained as a result of numerical
ones, and therefore we call the points wittt)=0 the extremal solution of differential equation or experimental measure-
points throughout this paper. ment of the system stateat the discrete time points. How-
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FIG. 4. (a) 1000 points of a realization of E¢6) with a=0.2, b=0.1, c=10, 7,=300. (b) Normalized numbeN of pairs of extrema
in the time series separated in time byfor 7=1, ...,400. N(7) is normalized to the total number of extrema in the time sefigs.
Comparison of the functiofi7) (solid line) with its recovery from the time seridsircles.

ever, as can be seen from FigcRB in this case the situation struct theN(7) plot. The absolute minimum dfi(7) located
is also typical, when an extreme point of the time series isear the absolute maximum is observed at the delay tine
followed by the extremum within the time,. (i) After determination of the delay tims, it is possible
In the presence of inertial properties0), which cor-  to reconstruct the nonlinear functidigx(t— 7)) by plotting
responds to real situations, the most probable value of ththe extremal point, versusx;- ., . According to Eq.(2),

time interval between extremax{t) shifts fromr, to larger  the constructed set of points reproduces the unknown nonlin-
values. This effect can be explained using the ring systeraar function, which can be approximated if necessary.

delay in the SyStem. As the I’eSU|t, the eXtrema(ﬂ) can be nonlinear function, since from E(ﬁl)

found most often at the distaneg plus 75 apart(Fig. 2). For

instance, the computational investigation of Ef).with qua-

dratic nonlinear functiori(x) =\ —x? allows us to obtain an ~ f(x(t— 7)) —x(1)
estimationrs~¢/2 for large values of the parameter of non- &= X(t) :
linearity \.

For e>0 the extrema irx(t) are close to quadratic ones ] ) ] . ] ]
and therefore&(t)=0 andx(t)#0 at the extremal points. It It |$_ ad_wsable to determ@e using all_tlme _serles points, for
can be shown that in this case there are practically no exthichx;#0 and the functiorf(x_ ) is defined, and then to
trema inx(t) separated in time by,. To prove this let us conduct averaging. The value sefcan be estimated directly

®

differentiate Eq(1) with respect ta: from theN( ) plot if the relation between and g is known.
The proposed method af, determination does not need
df(x(t—70))- significant time of computation because only operations of

ex(t)=—x(t)+ W—To)x(t_ 7o) (4)  comparing and adding can be used for the extrema definition

andN(7) construction.

If for x(t)=0 in a typical case(t)#0, then, as it can be
seen from Eq(4), for ¢ #0 the conditionx(t— 7o) #0 must l. METHOD APPLICATION

be fulfilled. Thus, there must be no extremum separated in Tq test the efficiency of the proposed technique we have
time by 7 from a quadratic extremum and, hend¥7o))  ysed it to reconstruct the equations of time-delay systems of
—0. For 7# 7¢, the derivativesx(t) and x(t—7) can be the form(1) from the time series gained from their numerical
simultaneously equal to zero, i.e., it is possible to find ex-solution and to model real ring oscillators from experimental
trema separated in time by The specific configuration pre- time series. All time series used throughout this paper have

sented in Fig. 2 in the neighborhood of 7, is duplicated at 10000 points. The time derivatives were estimated from

larger 7 in the neighborhood of= 27,37, . . .. the time series by applying a local parabolic approximation.
The shape oN( ) plot constructed from finite time series

{xt}{"':1 depends on length of the time series, sampling rate,
noise level, and measurement accuracy. The dependence of
these parameters o 7) shape and on the quality of model  We apply the method to a time series produced by the
equation reconstruction is examined in Sec. Ill. Mackey-Glass equation
On the basis of the dependenceMbn 7 the following
approach can be proposed to estimate the parameters of the .
time-delay model of forn{1) from the time series: X(t)=—bx(t)+
(i) First of all, one has to determine the extrema in the
time series. Then, for differentit is necessary to define the
numberN of situations for which the time series points  which can be converted to E€l) with e =1/b and the func-
and x;_, are simultaneously the extremal ones and to contion

A. Reconstruction of the Mackey-Glass equation

ax(t—q)

_—, 6
1+Xc(t_To) ( )
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ax(t— 7o) 020 iy ®
FX(t—70)) = —— . @) w16 @ s 2
b[1+X(t—7)] ool F
0.12- e
0.08 0671
With the help of a fourth-order Runge-Kutta method the time ., | 034 j-
series is calculated for the parameters producing a dynamic 0.00 0.0 =

on a high-dimensional chaotic attracfai. Part of the time T 0 w0 a0 00 030609 12 15
series is shown in Fig.(4). The time series is sampled in 4 *

[ZN

such a way that 300 points in time series cover a period of 020 )
time equal to the delay time,=300. The time series exhib- 0.16-

its about 600 extrema. Figurgb} illustrates ther depen- 0.124

dence of the numbeX of pairs of extrema separated in time = . .

by 7. In this figure as well as in the subsequent figuxeis 0.04 03 7%

normalized to the total number of extrema in the time series. 00t R
The absolute minimum oN(7) takes place exactly at 00 200 0 300 | 400 0.0 03 0.6 09 12 15
= 79=300, whereN(300)=0. As the lengthM of the time T *rz,

series(and, hence, the number of extrentecreases, this
minimum in theN(7) plot becomes less pronounced and at
M <.2.500’ Whe_n the time Se”_es exhibits abo‘_“ 150 extrem‘F"Nhite noise(a),(c) Normalized numbeN of pairs of extrema in the
additional minima_appear Wlt.m(T).:O.' In Fig. 4c) we time series separated in time byfor noise levels of 3%a) and
‘%Ompa“? the true m'odel function with its recovery from the10% (¢). N(7) is normalized to the total number of extrema in the
time series. The estimated valuesgfaveraged over all ime  ime series(b),(d) Nonlinear function(7) (solid line) and the esti-
series points, for whictx;# 0 andf(xt_To) is defined, ise mated functiongdots for noise levels of 3%b) and 10%(d).

=10.6 (its true value iss=1/b=10).
To investigate the robustness of the method to additionaminimum of N(7) than that shown in Fig. (6) for the

noise we analyze the data produced by adding to the timdlackey-Glass equation with a noise level of 10%. For suf-

series of Eq(6) zero-mean Gaussian white noise with a staniciently high levels of noise the absolute minimumNfr)

dard deviation of 3% and 10% of the standard deviation ofcan be sometimes distinguished fer 7y if one increases

the data without noise. The presence of noise in time seriethe length of the considered time series.

brings into existence spurious extrema. These extrema are

not caused by the intrinsic dynamics of a system and tempo- g \oqeling of electronic oscillator with delayed feedback

ral distances between them are random. With the extrema _ ) ] _

number increasing, a probability to find a pair of extrema in !N Fig. 6@ the block diagram of the electronic oscillator

time series separated in time byhas to increase in general. with delayed feedback is sketched for the case when the filter

As a result, with noise increasing the averadgevalue in

Figs. Ha) and 5c¢) becomes greater. The extrema number (a) Vo) [ Delay | V)

increasing induced by noise is also followed by the increase line

of probability to find a pair of extrema separated by the in-

terval ry. However, for moderate noise levels this probability

is still less than the probability to find a pair of extrema Nonliear

separated in time by+# ry. For instance, for noise level of device | AM(r10)) 1 2

3% Npin(7)=N(300)=0.02 in Fig. %a) and for noise level T C 500 10100 1500 2000

of 10% Npin(7)=N(300)=0.07 in Fig. %c). For higher (¢ 020 T

noise levels the absolute minimum M{ 7) is no longer ob- 016 T /\
. .. . = 0.084 i 14

served forr=7y. Since the absolute minimum () is 012 o/ ~ .

very well pronounced in the absence of noise, it can be = . %

FIG. 5. Delay estimation and function reconstruction from the
time series of the Mackey-Glass equation with additive Gaussian

995 1000 1005 1010) = 07

clearly distinguished even in the noise presence if the noise "WWM .12/
level is not very high. Hence, the qualitative features of the 0'00 5
N(7) plot specified by the delay-induced dynamics are re- 200 400 600 800 1000 1200 2 1 0 1 2
tained for a moderate noise level. T Vie,

The presence of noise is more critical for the nonlinear ) : . ,
function recovery. As the noise level increases, the set of FIG. 6. (a) Block diagram of the electronic oscillator with de-

o . ) layed feedbackcb) 2000 points of a realization of E¢8) with the
points in the ((t—fo’xt) plane becomes more disperdédgs. nonlinear function9) for A=1.9, 7,=1000,RC=10. (c) Number

5(b) and §d)]. To smooth the time series corrupted by noiseN of pairs of extrema in the time series separated in timerby
and to reduce the number of extrema caused by noise offyrmalized to the total number of extrema. The inset shows a frag-
can use more nearest-neighbor points in the procedure efient of N(7) for r=995, . ..,1010. N,,;,(7)=N(1000)=0. (d)
local approximation while estimating derivatives from data.Comparison of the functiof®) (solid line) with the recovered func-
Such approach allows us to observe a more pronouncetbn (circles.
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is a low-frequency first-ordeR C filter. We used several ver- 0.12 @ 57 ()
sions of this scheme with various combinations of analogue . .
and digital elements that were connected with the help of 0.8 = A
analog-to-digital and digital-to-analog converters. We apply= - ; 0] 3
the method to a time series of voltajeacross the filter 0.04+ 1 \
capacitor. From Kirchhoff's laws, one can derive the model 1 ] \
equation of such system 0.00-——————— | St
1030 50 70 9% 110 130 150 -5 0 5
. 7 [ms] Ve, [V
RCMt)=—V(t)+f(V(t— 7)), (8)
0.4 © . @
whereV(t) andV(t— 7y) are the delay line input and output 03 i f’\
voltages, respectivelyg andC are the resistance and capaci- > 024 > o
tance, respectively. E@8) is of form (1) with e=RC. ’ Ny
Figure Gb) shows part of a realization of E¢) with the 0.1 T \
following nonlinear function oo i IR
13 5 7 9 11 13 15 -1 0
7 [ms] Vi V]

f(V)=A—V?, 9
FIG. 7. (a),(c) NumberN of pairs of extrema in the experimental

where \ is a nonlinearity parameter. The time series istime series sepgratgd in timg byrormalized to the total ngmber of
sampled in such a way that 1000 points in time series covef*rema. Sampling interval is much smaller tharg) and is com-
a period of time equal to the delay timg=1000. The time Paablé tos (C). 7o=108 ms, Nrin(7) =N(108 ms)=0 (a); 7o
series exhibits about 400 extremid(7) presented in Fig. =4.5 ms, N(4'5 ms)z.o'l& N(4.4 T“SFO-W ©. (b).(d) Esti-
. . mated nonlinear functions for relatively smdlh) and relatively
6(c) allows us to definer, accurately. The true nonlinear lar R _
X . . . ge (d) sampling interval7=4.4 ms(d).

function and the recovered function are compared in Fig.
6(d). The estimated from the time seriess RC=9.9. It is
possible to estimat®C from the magnituders= 7,,— 7,
where 7,, is the value, at which the absolute maximum of  We have proposed the method of reconstruction of scalar
N(7) is observed. By varying the values BfC, N, and7,  time-delay differential equations having the form of Et).
within a wide range, we obtained the following empirical from time series. The method is based on the characteristic
relationship: 7;~RC/2=¢/2. Thus, one can approximately location of quadratic extrema in the time series and the sta-
estimateR C directly from N(7) using the relationshilRC tistical analysis of time intervals between them. If the system
~2715. Note, that such estimate may be more accurate thahas inertial properties, the quadratic shape of extrema is typi-
the others in the presence of noise, when the recovered nooal and in practice one can analyze all extrema in the time
linear function is not single valued and has to be averagedseries. The absolute minimum &f(7) plot allows one to
Since the maximum oN(7) is clearly defined for two to estimate the delay time,, which can be used after that for
three times higher noise levels than tér) minimum, the  the nonlinear function reconstruction and estimationsof
value of 7;, can be used as an upper estimatepfrom the  Since the maximum oN(7) is more pronounced than the
data heavily corrupted by noise. N(7) minimum and is clearly distinguished for two to three

In Fig. 7 we apply the method to two experimental timetimes higher noise levels than the minimum, its location can
series produced by a set[ipig. 6(a)] with radiophysicaRC  be used independently as an upper estimate,dfom the
filter. In Figs. 7@ and 7b) the nonlinear device and the data heavily corrupted by noise.
delay line are simulated on the computer and in Figs) 7 The proposed method of the delay time definition uses
and 7d) these elements are the radiophysical ones as well asnly operations of comparing and adding. It needs neither
the filter. The delay time is accurately identified in Figa)7  ordering of data, nor calculation of approximation error or
from the time series sampled with a time step, which is tercertain measure of complexity of the trajectory and therefore
times smaller than the parameter RC characterizing the it does not need significant time of computation. Thus, the
system inertial properties. The correct definition of the delaymethod is perspective for data analysis in the real time with
time is verified by closeness of the recovered nonlinear functhe help of compact computing devices. The method appli-
tion in Fig. 7b) to a single-valued dependence. For a sam-<ation can be useful for the development of techniques alter-
pling interval comparable te, N(7) does not fall to zero native to those proposed [8,17] for solving the problem of
(even in the absence of nojsand has an additional mini- extraction of messages masked by chaotic signals of time-
mum at the right of maximurfiFig. 7(c)]. The delay timer  delay systems.
estimated by the location M(7) minimum adjacent to the The method efficiency is illustrated by the reconstruction
maximum at the left, is smaller than the tragby the value  of time-delay differential equations from the time series pro-
of sampling time. As a result, the recovered nonlinear funcduced by these equations including the case of noise pres-
tion in Fig. 7(d) is not single valued. Thereforbl(7) having  ence and by modeling experimental time-delay systems. The
qualitatively the shape as in Fig(cJ, indicates the necessity procedure of the delay time estimation from tNér) plot
to increase the sampling rate while recording the time seriexonsidered with systems such as EL.can be successfully

IV. CONCLUSION
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applied to time series gained from a more general class of 020
time-delay systems 0.16

. 0.12

X(t):F(X(t),X(t_To)). (10) 0.08
Time differentiation of Eq(10) gives 0.04

000 T T T T T 1
. IF(X(t),x(t—7g))- IF(X(t),X(t—7p))- 200 400 600 800 1000 1200
X(t)= X X(t—7p). T
ax(t) IX(t— 7o) . : : .
(12) FIG. 8. Normalized numbeN of pairs of extrema in a realiza-

tion of Eq.(14) with 7,=1000,\ =1.9, e=5, separated in time by
Similar to Eq.(4), Eqg. (11) implies that in the case of qua- 7. N(7) is normalized to the total number of extrema in the time

dratic extrema derivatives(t) andx(t— 7o) do not vanish ~ Seri€s:Nmin(7) =N(1000)=0.006.

simultaneously, i.e., ik(t)=0, thenx(t— 7o) #0. To verify the method efficiency for a system of forftR)
In principle, it is possible to extend the proposed methodve have applied it to a time series gained from an electronic
of 7, definition from time series to high-dimensional time- oscillator with delayed feedback that is similar to that shown

delay systems having the following form: in Fig. 6(a), but contains two identical in-serid&C filters.
) The model equation for this oscillator with a two-section
X (1) +ax" D) + - - - +a,_ 1 x(1) = F(X(1),X(t = 79)), filter derived from Kirchhoff's laws has the form of second-
(120  order delay-differential equation
wherex("(t) is the derivative of orden anday, ..., 1 e2V(t)+2eV(t) = — V(1) + F(V(t—7p)), (14)
are the coefficients. Differentiation of E¢L2) with respect o
to t gives whereV(t) andV(t— 7y) are the delay line input and output
voltages, respectivelyy=RC. Figure 8 illustrates th&l(7)
XD () +axM(t) + - - - +a,_ 1 X(t) plot constructed for a case, where the nonIinegr.function in
Eq. (14) has the form of Eq(9). The absolute minimum of
IR (x(1),x(t— 7). IF(x(t),X(t—70)). N(7) allows us to definer, accurately. Thus, the proposed
B ax(t) X IX(t—7¢) X(t=0). technique of the delay time definition from time series can be

(19 successfully applied to a wide class of time-delay systems.
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