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Reconstruction of time-delay systems from chaotic time series
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We propose a method that allows one to estimate the parameters of model scalar time-delay differential
equations from time series. The method is based on a statistical analysis of time intervals between extrema in
the time series. We verify our method by using it for the reconstruction of time-delay differential equations
from their chaotic solutions and for modeling experimental systems with delay-induced dynamics from their
chaotic time series.

DOI: 10.1103/PhysRevE.64.056216 PACS number~s!: 05.45.2a
it
, a
ct
uf
las

n
s
n
lik
le

c
O
o
de
a

-
m
l-
nt
o
h
n
s
al
-

o
a
o
la
se

in
c

ods.

is
his
e

ce

for

-
te-
aces
re-

y
f
sis

on-
of
in

in
I. INTRODUCTION

Reconstruction of model equations from time series w
the help of universal methods, ignoring object features is
a rule, unsuccessful. Usually, a good result can be expe
when special techniques of reconstruction are used for s
ciently narrow classes of objects. In particular, such a c
can be composed of objects, whose dynamics is affected
only by the present state, but also by past states. These
tems are usually modeled by delay-differential equatio
Such models are successfully used in many disciplines,
physics, biology, and chemistry. Some of them, for examp
the Mackey-Glass equation@1#, the Ikeda equation@2#, and
equation for an electronic oscillator with delayed feedba
@3# became standard examples of time-delay systems.
paper deals with the problem of the time-delay system rec
struction from experimental chaotic time series. We consi
one of the most popular first-order delay-differential equ
tions

« ẋ~ t !52x~ t !1 f „x~ t2t0!…, ~1!

wherex(t) is the system state at timet, function f defines
nonlocal correlations in time,t0 is the delay time, and pa
rameter« characterizes the inertial properties of the syste
In general case Eq.~1! is a mathematical model of an osci
lating system composed of a ring with three ideal eleme
nonlinear, delay, and inertial. In a radiophysical version
the ring~Fig. 1!, which is named an electronic oscillator wit
delayed feedback, an amplifier with the transfer functiof
plays the role of nonlinear device, a delay line provide
delay for time t0, and a filter defines the system inerti
properties and the parameter«. In the present paper we de
velop a technique for estimatingt0 , f, and« from the time
series.

To uniquely define the system~1! state it is necessary t
prescribe the initial conditions in the entire time interv
@2t0,0#. Therefore, the phase space of the system has t
considered as infinite dimensional. In fact, for large de
times even scalar delay-differential equations can pos
high-dimensional chaotic dynamics@4#. Thus, the direct re-
construction of the system by the time-delay embedd
techniques runs into severe problems. For a successful re
1063-651X/2001/64~5!/056216~6!/$20.00 64 0562
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ery of the time-delay systems one has to use special meth
For example, in the method proposed in@5,6# the trajectory
generated by Eq.~1! is projected from the infinite-
dimensional phase space to a three-dimensional space@x(t
2t0),x(t),ẋ(t)#. In this space the projected trajectory
confined to a two-dimensional surface. The section of t
surface with theẋ(t)50 plane enables one to recover th
nonlinear function since whenẋ(t)50, then

x~ t !5 f „x~ t2t0!…. ~2!

Since the delay timet0 is a priori unknown, one needs to
project the trajectory to several@x(t2t),x(t),ẋ(t)# spaces
upon variation oft searching for a single-valued dependen
in the ẋ(t)50 section, which is possible only fort5t0. As
a quantitative criterion of single valuedness in searching
t0 one can use the minimal lengthL(t) of a line connecting
all extreme points ordered with respect tox(t2t) in the
@x(t2t),x(t)# plane@6#. Other methods of time-delay sys
tem analysis based on the similar projection of the infini
dimensional phase space onto low-dimensional subsp
use another criteria of quality, for example, the minimal fo
cast error of constructed model@7–9#, the minimal value of
information entropy@10#, or various measures of complexit
of the projected time series@7,11,12#. Several methods o
time-delay system analysis exploit regression analy
@13,14# and correlation function construction@15,16#.

In this paper we propose a method that is able to rec
struct the equation of time-delay system having the form
Eq. ~1! from the time series. The method uses regularities
the location of extrema in the system~1! time series. Section
II contains the method description. We determine extrema

FIG. 1. Radiophysical model of time-delay system.
©2001 The American Physical Society16-1
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the time series and analyze the time intervals between th
For different values of timet we define the numberN of
pairs of extrema separated in time byt ~Fig. 2!. The charac-
teristic features of theN(t) plot allows us to identify the
delay timet0 without calculation of any additional quantita
tive criteria. With a knowledge oft0, it is possible to esti-
mate the nonlinear function and the parameter«. The value
of « can be estimated directly from theN(t) plot. In Sec. III
the method features and efficiency in the presence of n
are illustrated both by the reconstruction of dynamical s
tems from their solutions and by the modeling of real rad
physical systems. The method advantages and its pos
applications are discussed in Sec. IV.

II. METHOD DESCRIPTION

The proposed method exploits the features of extre
shape and location in the system~1! temporal realization
x(t). The peculiarities of extrema location in time are clea
illustrated byN(t) plot in Fig. 2. To construct it one has t
define for differentt values the numberN of pairs of ex-
trema inx(t), that are separated in time byt. If N is normal-
ized to the total number of extrema, then for sufficien
large extrema number it can be used as an estimatio
probability to find a pair of extrema inx(t) separated by the
intervalt. Let us explain the qualitative features ofN(t) for
various values of parameter«.

In the absence of inertial properties («50) Eq. ~1! takes
the form of Eq.~2!. Its time differentiation gives

ẋ~ t !5
d f„x~ t2t0!…

dx~ t2t0!
ẋ~ t2t0!. ~3!

From Eq. ~3! it follows that if ẋ(t2t0)50, then ẋ(t)50.
Thus, for«50 every extremum ofx(t) is followed within
the timet0 by the extremum.1 As the result,N(t) shows a
maximum fort5t0 in Fig. 3~a!.

1For chaotic temporal realizations of the systems under invest

tion practically all critical points withẋ(t)50 are the extrema

ones, and therefore we call the points withẋ(t)50 the extremal
points throughout this paper.

FIG. 2. NumberN of pairs of extrema in a realization of Eq.~1!
with «.0, separated in time byt, as a function oft. N(t) is
normalized to the total number of extrema in time series.N(t) has
a pronounced minimum at the level of the delay time of the syst
The location of maximum is determined by the parameter«.
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The situation in the absence of inertial properties can
pictorially shown with the help of a ring circuit~Fig. 1!, for
which the condition«50 is equivalent to the lack of filter
and the unbounded passband of other elements. The s
x(t) propagates through the ring in one direction and in
process the delay line provides the signal delay fort0 and a
nonlinear device transforms the signal in accordance with
transfer functionf „x(t2t0)…. In this case the signal at th
nonlinear device output is defined at the timet only by the
signal at the delay line input at the timet2t0. Hence, the
time evolution of the points ofx(t) can be represented by th
iteration diagram of the one-dimensional mapx(t2t0)
→x(t) in Fig. 3~b!, where one step of discrete time corr
sponds to the time shiftt0 in the continuous time. Graphica
plotting of the mapping of several neighbor points chosen
x(t) in the neighborhood of extremum@Fig. 3~c!# indicates
that an extremum always maps into the extremum. From
3 it follows that the number of extrema separated in time
t slightly differing fromt0 must be relatively small resulting
in the presence of minima in Fig. 3~a!. In actuality we have
to deal not with the continuousx(t) realization but with a
discrete time series$xt% t51

M obtained as a result of numerica
solution of differential equation or experimental measu
ment of the system statex at the discrete time points. How

a-

.

FIG. 3. ~a! NumberN of pairs of extrema in a realization of Eq
~1! with «50, separated in time byt, as a function oft. N(t) is
normalized to the total number of extrema in time series.N(t) has
a sharp maximum at the level of the delay time of the system.~b!
Typical transfer function of the nonlinear device and mapping
input signal points into output.~c! Signal temporal realization with
the time series points~dots! shown in the neighborhood of two
extremal points~circles!.
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FIG. 4. ~a! 1000 points of a realization of Eq.~6! with a50.2, b50.1, c510, t05300. ~b! Normalized numberN of pairs of extrema
in the time series separated in time byt for t51, . . .,400. N(t) is normalized to the total number of extrema in the time series.~c!
Comparison of the function~7! ~solid line! with its recovery from the time series~circles!.
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ever, as can be seen from Fig. 3~c!, in this case the situation
is also typical, when an extreme point of the time series
followed by the extremum within the timet0.

In the presence of inertial properties («.0), which cor-
responds to real situations, the most probable value of
time interval between extrema inx(t) shifts fromt0 to larger
values. This effect can be explained using the ring sys
shown in Fig. 1, the filter introduces a certain addition
delay in the system. As the result, the extrema inx(t) can be
found most often at the distancet0 plusts apart~Fig. 2!. For
instance, the computational investigation of Eq.~1! with qua-
dratic nonlinear functionf (x)5l2x2 allows us to obtain an
estimationts'«/2 for large values of the parameter of no
linearity l.

For «.0 the extrema inx(t) are close to quadratic one
and thereforeẋ(t)50 andẍ(t)Þ0 at the extremal points. I
can be shown that in this case there are practically no
trema inx(t) separated in time byt0. To prove this let us
differentiate Eq.~1! with respect tot:

« ẍ~ t !52 ẋ~ t !1
d f„x~ t2t0!…

dx~ t2t0!
ẋ~ t2t0!. ~4!

If for ẋ(t)50 in a typical caseẍ(t)Þ0, then, as it can be
seen from Eq.~4!, for «Þ0 the conditionẋ(t2t0)Þ0 must
be fulfilled. Thus, there must be no extremum separate
time by t0 from a quadratic extremum and, hence,N(t0)
→0. For tÞt0, the derivativesẋ(t) and ẋ(t2t) can be
simultaneously equal to zero, i.e., it is possible to find
trema separated in time byt. The specific configuration pre
sented in Fig. 2 in the neighborhood oft5t0 is duplicated at
largert in the neighborhood oft52t0,3t0 , . . . .

The shape ofN(t) plot constructed from finite time serie
$xt% t51

M depends on length of the time series, sampling r
noise level, and measurement accuracy. The dependen
these parameters onN(t) shape and on the quality of mod
equation reconstruction is examined in Sec. III.

On the basis of the dependence ofN on t the following
approach can be proposed to estimate the parameters o
time-delay model of form~1! from the time series:

~i! First of all, one has to determine the extrema in t
time series. Then, for differentt it is necessary to define th
numberN of situations for which the time series pointsxt
and xt2t are simultaneously the extremal ones and to c
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struct theN(t) plot. The absolute minimum ofN(t) located
near the absolute maximum is observed at the delay timet0.

~ii ! After determination of the delay timet0 it is possible
to reconstruct the nonlinear functionf „x(t2t0)… by plotting
the extremal pointsxt versusxt2t0

. According to Eq.~2!,
the constructed set of points reproduces the unknown non
ear function, which can be approximated if necessary.

~iii ! The parameter« can be estimated using the recover
nonlinear function, since from Eq.~1!

«5
f „x~ t2t0!…2x~ t !

ẋ~ t !
. ~5!

It is advisable to determine« using all time series points, fo
which ẋtÞ0 and the functionf (xt2t0

) is defined, and then to

conduct averaging. The value of« can be estimated directly
from theN(t) plot if the relation between« andts is known.

The proposed method oft0 determination does not nee
significant time of computation because only operations
comparing and adding can be used for the extrema defini
andN(t) construction.

III. METHOD APPLICATION

To test the efficiency of the proposed technique we h
used it to reconstruct the equations of time-delay system
the form~1! from the time series gained from their numeric
solution and to model real ring oscillators from experimen
time series. All time series used throughout this paper h
10 000 points. The time derivativesẋt were estimated from
the time series by applying a local parabolic approximati

A. Reconstruction of the Mackey-Glass equation

We apply the method to a time series produced by
Mackey-Glass equation

ẋ~ t !52bx~ t !1
ax~ t2t0!

11xc~ t2t0!
, ~6!

which can be converted to Eq.~1! with «51/b and the func-
tion
6-3
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f „x~ t2t0!…5
ax~ t2t0!

b@11xc~ t2t0!#
. ~7!

With the help of a fourth-order Runge-Kutta method the tim
series is calculated for the parameters producing a dyna
on a high-dimensional chaotic attractor@4#. Part of the time
series is shown in Fig. 4~a!. The time series is sampled i
such a way that 300 points in time series cover a period
time equal to the delay timet05300. The time series exhib
its about 600 extrema. Figure 4~b! illustrates thet depen-
dence of the numberN of pairs of extrema separated in tim
by t. In this figure as well as in the subsequent figuresN is
normalized to the total number of extrema in the time ser
The absolute minimum ofN(t) takes place exactly att
5t05300, whereN(300)50. As the lengthM of the time
series~and, hence, the number of extrema! decreases, this
minimum in theN(t) plot becomes less pronounced and
M,2500, when the time series exhibits about 150 extre
additional minima appear withN(t)50. In Fig. 4~c! we
compare the true model function with its recovery from t
time series. The estimated value of«, averaged over all time
series points, for whichẋtÞ0 and f (xt2t0

) is defined, is«

510.6 ~its true value is«51/b510).
To investigate the robustness of the method to additio

noise we analyze the data produced by adding to the t
series of Eq.~6! zero-mean Gaussian white noise with a sta
dard deviation of 3% and 10% of the standard deviation
the data without noise. The presence of noise in time se
brings into existence spurious extrema. These extrema
not caused by the intrinsic dynamics of a system and tem
ral distances between them are random. With the extre
number increasing, a probability to find a pair of extrema
time series separated in time byt has to increase in genera
As a result, with noise increasing the averageN value in
Figs. 5~a! and 5~c! becomes greater. The extrema numb
increasing induced by noise is also followed by the incre
of probability to find a pair of extrema separated by the
tervalt0. However, for moderate noise levels this probabil
is still less than the probability to find a pair of extrem
separated in time bytÞt0. For instance, for noise level o
3% Nmin(t)5N(300)50.02 in Fig. 5~a! and for noise level
of 10% Nmin(t)5N(300)50.07 in Fig. 5~c!. For higher
noise levels the absolute minimum ofN(t) is no longer ob-
served fort5t0. Since the absolute minimum ofN(t) is
very well pronounced in the absence of noise, it can
clearly distinguished even in the noise presence if the n
level is not very high. Hence, the qualitative features of
N(t) plot specified by the delay-induced dynamics are
tained for a moderate noise level.

The presence of noise is more critical for the nonline
function recovery. As the noise level increases, the se
points in the (xt2t0

,xt) plane becomes more dispersed@Figs.
5~b! and 5~d!#. To smooth the time series corrupted by no
and to reduce the number of extrema caused by noise
can use more nearest-neighbor points in the procedur
local approximation while estimating derivatives from da
Such approach allows us to observe a more pronoun
05621
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minimum of N(t) than that shown in Fig. 5~c! for the
Mackey-Glass equation with a noise level of 10%. For s
ficiently high levels of noise the absolute minimum ofN(t)
can be sometimes distinguished fort5t0 if one increases
the length of the considered time series.

B. Modeling of electronic oscillator with delayed feedback

In Fig. 6~a! the block diagram of the electronic oscillato
with delayed feedback is sketched for the case when the fi

FIG. 5. Delay estimation and function reconstruction from t
time series of the Mackey-Glass equation with additive Gauss
white noise.~a!,~c! Normalized numberN of pairs of extrema in the
time series separated in time byt for noise levels of 3%~a! and
10% ~c!. N(t) is normalized to the total number of extrema in th
time series.~b!,~d! Nonlinear function~7! ~solid line! and the esti-
mated functions~dots! for noise levels of 3%~b! and 10%~d!.

FIG. 6. ~a! Block diagram of the electronic oscillator with de
layed feedback.~b! 2000 points of a realization of Eq.~8! with the
nonlinear function~9! for l51.9, t051000, RC510. ~c! Number
N of pairs of extrema in the time series separated in time bt
normalized to the total number of extrema. The inset shows a f
ment of N(t) for t5995, . . .,1010. Nmin(t)5N(1000)50. ~d!
Comparison of the function~9! ~solid line! with the recovered func-
tion ~circles!.
6-4
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RECONSTRUCTION OF TIME-DELAY SYSTEMS FROM . . . PHYSICAL REVIEW E64 056216
is a low-frequency first-orderRC filter. We used several ver
sions of this scheme with various combinations of analo
and digital elements that were connected with the help
analog-to-digital and digital-to-analog converters. We ap
the method to a time series of voltageV across the filter
capacitor. From Kirchhoff’s laws, one can derive the mo
equation of such system

RCV̇~ t !52V~ t !1 f „V~ t2t0!…, ~8!

whereV(t) andV(t2t0) are the delay line input and outpu
voltages, respectively;R andC are the resistance and capa
tance, respectively. Eq.~8! is of form ~1! with «5RC.

Figure 6~b! shows part of a realization of Eq.~8! with the
following nonlinear function

f ~V!5l2V2, ~9!

where l is a nonlinearity parameter. The time series
sampled in such a way that 1000 points in time series co
a period of time equal to the delay timet051000. The time
series exhibits about 400 extrema.N(t) presented in Fig.
6~c! allows us to definet0 accurately. The true nonlinea
function and the recovered function are compared in F
6~d!. The estimated from the time series«5RC59.9. It is
possible to estimateRC from the magnitudets5tm2t0,
where tm is the value, at which the absolute maximum
N(t) is observed. By varying the values ofRC, l, andt0
within a wide range, we obtained the following empiric
relationship:ts'RC/25«/2. Thus, one can approximate
estimateRC directly from N(t) using the relationshipRC
'2ts . Note, that such estimate may be more accurate t
the others in the presence of noise, when the recovered
linear function is not single valued and has to be averag
Since the maximum ofN(t) is clearly defined for two to
three times higher noise levels than theN(t) minimum, the
value oftm can be used as an upper estimate oft0 from the
data heavily corrupted by noise.

In Fig. 7 we apply the method to two experimental tim
series produced by a setup@Fig. 6~a!# with radiophysicalRC
filter. In Figs. 7~a! and 7~b! the nonlinear device and th
delay line are simulated on the computer and in Figs. 7~c!
and 7~d! these elements are the radiophysical ones as we
the filter. The delay time is accurately identified in Fig. 7~a!
from the time series sampled with a time step, which is
times smaller than the parameter«5RC characterizing the
system inertial properties. The correct definition of the de
time is verified by closeness of the recovered nonlinear fu
tion in Fig. 7~b! to a single-valued dependence. For a sa
pling interval comparable to«, N(t) does not fall to zero
~even in the absence of noise! and has an additional mini
mum at the right of maximum@Fig. 7~c!#. The delay timet
estimated by the location ofN(t) minimum adjacent to the
maximum at the left, is smaller than the truet0 by the value
of sampling time. As a result, the recovered nonlinear fu
tion in Fig. 7~d! is not single valued. Therefore,N(t) having
qualitatively the shape as in Fig. 7~c!, indicates the necessit
to increase the sampling rate while recording the time ser
05621
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IV. CONCLUSION

We have proposed the method of reconstruction of sc
time-delay differential equations having the form of Eq.~1!
from time series. The method is based on the character
location of quadratic extrema in the time series and the
tistical analysis of time intervals between them. If the syst
has inertial properties, the quadratic shape of extrema is t
cal and in practice one can analyze all extrema in the t
series. The absolute minimum ofN(t) plot allows one to
estimate the delay timet0, which can be used after that fo
the nonlinear function reconstruction and estimation of«.
Since the maximum ofN(t) is more pronounced than th
N(t) minimum and is clearly distinguished for two to thre
times higher noise levels than the minimum, its location c
be used independently as an upper estimate oft0 from the
data heavily corrupted by noise.

The proposed method of the delay time definition us
only operations of comparing and adding. It needs neit
ordering of data, nor calculation of approximation error
certain measure of complexity of the trajectory and theref
it does not need significant time of computation. Thus,
method is perspective for data analysis in the real time w
the help of compact computing devices. The method ap
cation can be useful for the development of techniques a
native to those proposed in@9,17# for solving the problem of
extraction of messages masked by chaotic signals of ti
delay systems.

The method efficiency is illustrated by the reconstructi
of time-delay differential equations from the time series p
duced by these equations including the case of noise p
ence and by modeling experimental time-delay systems.
procedure of the delay time estimation from theN(t) plot
considered with systems such as Eq.~1! can be successfully

FIG. 7. ~a!,~c! NumberN of pairs of extrema in the experimenta
time series separated in time byt normalized to the total number o
extrema. Sampling interval is much smaller than« ~a! and is com-
parable to« ~c!. t05108 ms, Nmin(t)5N(108 ms)50 ~a!; t0

54.5 ms, N(4.5 ms)50.18, N(4.4 ms)50.07 ~c!. ~b!,~d! Esti-
mated nonlinear functions for relatively small~b! and relatively
large ~d! sampling interval.t54.4 ms~d!.
6-5
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applied to time series gained from a more general clas
time-delay systems

ẋ~ t !5F„x~ t !,x~ t2t0!…. ~10!

Time differentiation of Eq.~10! gives

ẍ~ t !5
]F„x~ t !,x~ t2t0!…

]x~ t !
ẋ~ t !1

]F„x~ t !,x~ t2t0!…

]x~ t2t0!
ẋ~ t2t0!.

~11!

Similar to Eq.~4!, Eq. ~11! implies that in the case of qua
dratic extrema derivativesẋ(t) and ẋ(t2t0) do not vanish
simultaneously, i.e., ifẋ(t)50, thenẋ(t2t0)Þ0.

In principle, it is possible to extend the proposed meth
of t0 definition from time series to high-dimensional tim
delay systems having the following form:

x(n)~ t !1a1x(n21)~ t !1•••1an21ẋ~ t !5F„x~ t !,x~ t2t0!…,
~12!

wherex(n)(t) is the derivative of ordern anda1 , . . . ,an21
are the coefficients. Differentiation of Eq.~12! with respect
to t gives

x(n11)~ t !1a1x(n)~ t !1•••1an21ẍ~ t !

5
]F„x~ t !,x~ t2t0!…

]x~ t !
ẋ~ t !1

]F„x~ t !,x~ t2t0!…

]x~ t2t0!
ẋ~ t2t0!.

~13!

The conditionẋ(t2t0)Þ0 for ẋ(t)50 will be satisfied if
the left-hand side of Eq.~13! does not vanish. In general,
probability to obtain zero in the left-hand side of Eq.~13! is
very small and therefore, theN(t) plot qualitatively must
have a shape similar to that inherent in the case of first-o
delay-differential equations such as Eqs.~1! and ~10!.
J.

i,

s.
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To verify the method efficiency for a system of form~12!
we have applied it to a time series gained from an electro
oscillator with delayed feedback that is similar to that sho
in Fig. 6~a!, but contains two identical in-seriesRC filters.
The model equation for this oscillator with a two-sectio
filter derived from Kirchhoff’s laws has the form of secon
order delay-differential equation

«2V̈~ t !12«V̇~ t !52V~ t !1 f „V~ t2t0!…, ~14!

whereV(t) andV(t2t0) are the delay line input and outpu
voltages, respectively,«5RC. Figure 8 illustrates theN(t)
plot constructed for a case, where the nonlinear function
Eq. ~14! has the form of Eq.~9!. The absolute minimum of
N(t) allows us to definet0 accurately. Thus, the propose
technique of the delay time definition from time series can
successfully applied to a wide class of time-delay system
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FIG. 8. Normalized numberN of pairs of extrema in a realiza
tion of Eq.~14! with t051000,l51.9, «55, separated in time by
t. N(t) is normalized to the total number of extrema in the tim
series.Nmin(t)5N(1000)50.006.
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