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Classical nonlinearity and quantum decay: The effect of classical phase-space structures
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We investigate the decay process from a time dependent potential well in the semiclassical regime. The
classical dynamics is chaotic and the decay rate shows an irregular behavior as a function of the system
parameters. By studying the weak-chaos regime we are able to connect the decay irregularities to the presence
of nonlinear resonances in the classical phase space. A quantitative analytical prediction that accounts for the
numerical results is obtained.
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[. INTRODUCTION These features motivated the widespread idea that classi-
cal chaotic trajectories can have an active role in the quan-
In the past years, many conjectures have been put foitum process, helping or “assisting” the quantum particle to
ward, and tested in various system models, in order to artunnel between the symmetric tori. Along this line, path in-
swer the fundamental question in quantum chaos: what is thiegral techniques have been used to calculate the contribu-
signature of classical chaos in the quantum world? Amongion to the tunneling stemming from complex orbits that con-
these, one of the most intriguing is the idea that classicahect the symmetric regular tori through the classical
chaos can induce large-scale fluctuations on a genuine quastochastic layef7].
tum phenomenon such as the tunneling process. Starting However, a real quantitative theory of CAT is still lack-
from the seminal paper of Davis and Hellgt], who first  jng. The main reason for this can probably be found in the
noted the occurrence of coherent tunneling between regul@hagtic nature of the third state that prevents simple analyti-
tori separated by a chaotic region, the influence of classicaly| yreatments. Moreover, there are some aspects of the phe-
chaos on quantum tunneling has been verified in many sy$jomenon that do not seem to fit properly the intuitive inter-
tems_and IS now accgpted n the I|ter§ture asa fmg(_arprmt. O;gretation given by the CAT picture. For example, the
cIsz\ssmaI nonlntegrab|llty. It is very §|mple to descnbe_ this resence of strong decreases in the tunneling rate which,
€ ec.t. Let us consider a system that'ls classically chaotic anBogether with the enhancements, occur as a result of a param-
invariant under a symmetry operation, for example, space : : .
inversion. If the classical system supports a regular torus, b)e(ter _chan”ge, contradicts the idea of a tF‘””e' process being
symmetry there might also be a second torus that is distinctaSS'SteOI by chao;. Anothe_r controv_er5|al aspect Is relat_ed
from its symmetric partner, for instance, two symmetric tori'® Whether chaos is essential for this phenomenon, being
encircling the bottom of the two wells of a double-well po- possible to find similar behaviors in nonlinear system that are

tential. Moreover, let us suppose that the two tori are Iarge_mt classically ghaotic. We shall further discuss these issues
enough to support quantum states. Under this condition, thé the next section. - _ o
quantum system will show coherent tunneling between the The purpose of this paper is to assess whether this picture
states located in the two symmetric tori. If now one systenfpplies also to a different tunneling process, namely, to the
parameter is change@.g.,%), contrary to the expectations quantum escape of a particle that has been initially located
of ordinary semiclassical analysis, the tunneling rate show#side a potential well. From a classical point of view, it is
strong irregularities that can increase or decrease the rate Isjear that the particle can overcome the potential barrier of
orders of magnitude. the well only if its energy is larger than the barrier height,
The tunneling fluctuation is usually interpreted in terms ofwhile in the quantum framework the tunneling across the
a process known as ‘“chaos assisted tunnelingCAT) classically forbidden region is always present. Clearly, this
[2-10Q. An intuitive view of the CAT process could be as situation is modified when, including the ingredient of chaos,
follows. The presence of regular and stochastic motion in theve perturb the system by adding a forcing term, i.e., a time
classical phase space corresponds, from a quantum point dépendent external force. The perturbation disturbs the regu-
view, to the possibility of having two kinds of states: regularlar motion of the classical particle and, by increasing its en-
ones localized inside the symmetric tori and chaotic stateergy, makes it possible for the particle to escape over the
which, being extended through the chaotic region, display &arrier. In the meanwhile, also the quantum process of tun-
non-negligible overlap with regular regions. The fluctuationsneling changes due to the modification of the potential and
in the tunneling rate are thus explained in terms of a threeboth the processes contribute to the deldd]. Our purpose
state tunneling process. The quantum particle first tunnels to choose a region of the system parameters where the
from the localized state to an extended chaotic one and thetlassical and the quantum contribution to the decay can be
from this to the state located in the symmetric torus. separated, in order to study the properties of the latter pro-
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cess in connection with the chaotic features of the classica
phase space.

Our plan to study a decay process will lead us to deal with
an unbounded system, with a continuous spectrum, and thi
will prevent us from using standard methods, like the diago-
nalization of the Floquet dynamic operatdr?], to obtain
directly the level splittings responsible for the tunneling.
Anyway, we shall be able to analyze the system by resorting
to a somewhat simpler method: we shall calculate numeri-
cally the time evolution of a quantum state initially located
in the potential well and, by studying the decay of the popu-
lation in the well, we shall be able to obtain the relative
strength of the tunneling as a function of the system param-
eters. This will allow us to point out the differences between
this process of chaos-assisted decay and the tunneling prc
cesses in the presence of chaGAT).

Finally, we shall be able to show that the picture that
singles out the classical nonlinear resonances as the mai
factor responsible for the fluctuations of the tunneling rate
[9], applies also to this context. We shall review the semi-
classical prediction of Ref.9], which is valid for bounded
systems, in Sec. V, and we shall verify its validity for decay
processes.

The following section will be devoted to review the quan-
tum levels dynamics at the basis of CAT, to better under-
stand the similarities and the differences between this phe
nomenon and the perturbation of quantum decay that is the T T T T T
Subject of this paper. 0.0 0.5 10 15 2.0 2.5

splitting

Il. AVOIDED CROSSINGS AND TUNNELING FIQ. 1. Sketc_h of the typical behavior of the energy levels of a
IRREGULARITIES classically chaotic quantum system as the parangeterchanged.

In (a) the two solid thick lines describe a couple of quasidegenerate

As we discussed in the previous section, the CAT is seefevels of different symmetry. The thin dotted line represents the
as the result of the interaction between regular and chaoti@wer level of the tunneling doublet in the unperturbed case. The
states in systems that are classically chaotic. This interpret&lashed line describes a colliding third level. (i we show the
tion is confirmed by the level dynamics of the tunneling splitting of the two quasidegenerate levels in the perturbed and
system. A typical situation is sketched in Fig. 1 where weunperturbed casghin dotted ling. All the units are arbitrary.
can observe the change of two quasidegenerate levels, which
correspond to the pair of tunneling regular states, as a systethe tunneling rate, even in the case of very weak chaos. It is
parameter is varied. In almost the entire parameter range thiportant to point out that the rate can increase by several
splitting between the two states, and so the direct tunnelingrders of magnitude as well as vanigee the arrow in Fig.
probability, changes smoothly. However, it may occur that,1) according to the value of the parameters. Moreover, due to
once the parameter is changed, a third lefgglshed ling  the fact that the energy spectrum, in the nonlinear case, does
crosses the two quasidegenerate levels. In the generic casmt show any regularity, the crossings with a third level do
states belonging to the same symmetry class do not cros®t follow a regular pattern, and the overall behavior of the
each other, therefore, the appearance of a toifiding state  tunneling rate appears to be an irregular sequence of peaks
gives rise toavoided crossingvith the state of the doublet [4-7] instead of the smooth behavior expected in the regular
that belongs to the same symmetry class. The avoided crossystems.
ing has a twofold consequence on the tunneling process un- As anticipated, a controversial aspect of this effect is the
der study. First, in the vicinity of the crossing we cannotnature of the third state that crosses the tunneling doublet.
consider the tunneling as a process involving only the tworhe key point of the CAT picture is that the perturbation in
quasidegenerate states. Under this condition, the standatide energy splitting is relevant only for those crossings in-
two-state tunneling becomes a resonant three-state processlving colliding third states that are located in the chaotic
Second, since the colliding third state modifies the energyegion. However, it is well known that avoided crossings can
level of only one of the doublet states, the splitting of the twobe found in completely regular systems too, this being, in
levels changes. The level modification is, loosely speakingfact, the counterpart of the existence of classical nonlinear
proportional to the system nonlinearity but, given the small systems that are not chaotic.
value of the tunneling splitting in the semiclassical regime, The connection between tunneling and avoided crossings
the avoided crossing can produce a dramatic modification diias been extensively studied in the last 20 y¢ags-19: in
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regular systems, as a connection between classical behavic 0.10 . . .
and Fermi resonandel8,19, or in classically chaotic sys-
tems, to look for a definition of quantum chaoticity along the
lines of the Chirikov criterion for the birth of classical chaos 008 |
[15,17.

In those papers, the attention was focused on a two-stat
phenomenon, namely, on the mixing of the two states that 006 |
avoid each other, mixing that can be interpreted as a tunneIS;
ing process if the two quantum states are located in classi™
cally separated region of the space, or, more generally, of the 004 |
phase space. Moreover a connection was assessed betwe
this phenomenon and the existence of nonlinear classica

resonance$14—16. More precisely, as stated by Roberts 002 )
and Jaffe “if two quantum mechanical zero-order states ex-

hibit a n:m Fermi resonancgand thus an avoided crossing

then the classical dynamics associated with the matrix ele: %5 =0 20 0.0 20 4.0 6.0
ment connecting the two states should exhibit:i@ nonlin- q

ear resonance.”

In our opinion this is a good starting point for a theoreti-  FIG. 2. The unperturbed potential of E@). We also show the
cal investigation of CAT. The tunneling irregularities are in Wave function of the two states used as initial condition in the
fact connected to avoided crossings, as shown in Fig. 1r]umer|cal calculations. The vglues of t_he parameters \&ge
while the nonlinear classical resonances are the primitive” 9-048 andt=0.025. All the units are arbitrary.
structure at the basis of classical chaoticity. We thus believe ) )
that CAT can be seen as the effect of the superposition of We chose a perturbation term that turns systéyrinto a
several avoided crossings. A process similar to the birth oflouble-resonanceke Hamiltonian. This choice is dictated
classical chaos due to the superposition of isolated nonlined¥ the need for simplicity. It is indeed clear that, as long as
resonances. A path to quantum chaos that had already be¥¢ limit our analysis to small perturbations, the particular
discussed, even if without referring to tunneling dynamicsform of the external forcing does not affect the generic fea-
[15,17. tures of the decay process we want to study. On the other

Nevertheless, due to the fact that nonlinear resonances ah@nd, the adoption of Hamiltoniafi) presents many ben-
present in systems that are not chaotic, it is clear that chaos ®its. All the relevant information concerning the dynamic
not a required ingredient for tunneling irregularities. For ex-Properties of our model can be derived from the dynamics of
ample, by studying the connection between tunneling irregu@ Well-known system, thalouble-resonanceHamiltonian,
larities and nonlinear resonances in a simple oneWhich corresponds to Eql) with periodical boundary con-
dimensional driven system, the authors of H&f showed ditions[21,22. o o
that strong tunneling fluctuations are present also in the al- The presence of a periodic perturbation in ED). breaks

most integrable case, when the third state responsible for tH&€ integrability of the classical Hamiltonian. The most im-
fluctuation is by no means chaotic. portant features of this condition is the appearance of non-

linear resonances in the phase space together with regions
characterized by extended chaotic motistochastic layer
lll. THE MODEL: CLASSICAL DYNAMICS The relevance of the chaotic motion depends on the strength
In order to analyze the influence of classical chaos on thé Of the perturbation term, so that the system can be more or
quantum process of escape from a potential well, we introl€Ss chaotic. In Fig. 3 we show a stroboscopic mapping of
duce a simple one-dimensional forced system described K€ dynamics, namely, the position in phase space at fixed

the following Hamiltonian: intervals of time that are integer multiples of the forcing term
periodT= 2/, for a generic weak-chaos case. Some non-
2 linear resonances and the stochastic layer around the separa-
H= % +V(q,t), (1) trix are clearly visible.

The nonlinear resonances are the visible consequences of
the small denominators problem. These are related to the

V(qg,t)=Vo[1—cog2q)]+e[1—cog2q—Qt)], secular terms that appear in the perturbative solution of the
equation of motion of nonintegrable systems. In the weak-
q=[-m 7], V(gq,1)=0 otherwise. ) chaos condition their position in the phase space can be ob-

tained by considering the effect of the time-dependent term

The particle is located initially inside a potential well that ZZr?]i[I)t?):]tiua{r? ation on the dynamics expressed by the constant

has the form of a sinusoidal function extended over two pe-
riods, as shown in Fig. 2, and it is forced by a time periodic 5
perturbation that is considered to be small compared to the :p_+ _

static potential, i.e.e<V, [20]. Ho=7 *Vdl1 00820) |- r<q<n- ©
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0.5 - - - T - of the well is possible only if particles are initially placed
04 = inside the stochastic region. This process has been exten-
sively studied in the last years in various classical and quan-
tum models; the most known is probably the hydrogen atom
in the presence of a strong radiation fi¢@#,25. In that
system the dynamic process described above leads to the
ionization of the atom. However, in this paper we want to
focus on the connection between chaos and processes that
would be classically impossible, such as quantum tunneling.
For that reason we shall analyze the decay of the well popu-
lation for a quantum particle initially located in the phase
space region corresponding, even in the presence of chaos, to
bounded motion. In connection with this, it is worthwhile to
remember that in quantum mechanics the situation is never

05 73 " 03 0 03 7 75  simple. Whatever the initial condition is, the wave function

q cannot be sharply located inside a finite region but exhibits
smooth decreasing tails that extend over the stochastic layer.
CTherefore, to keep the classical chaotic diffusion process as
small as possible, we shall consider a weak-chaos regime
with a small stochastic layer such as the one shown in Fig. 3,
and in addition to this, we shall study the decay of quantum
states deeply localized inside the potential well.

0.3
02
0.1
a 0
-0.1
-0.2
-0.3

-04

FIG. 3. The classical dynamics inside the well. Stroboscopi
Poincaremap. The values of the parameters &fg=0.048, €
=0.005,Q=2. All the units are arbitrary.

The Kolmogorov-Arnol'd-MosefKAM ) theorem| 23] states
that, as long as the perturbing term can be considsneal|
the main part of the phase space remains practically unper-

turbed and that only the tori that are resonant with the forc- IV. THE MODEL: QUANTUM DYNAMICS

ing term are destroyed and replaced by chains of islands like ) ,
the ones shown in Fig. 3. The resonant condition can be Ve studied the quantum decay from the well of Fig. 2 by
integrating numerically the time dependent Sclinger

written as ¢ ' Y i -
equation associated with Hamiltoniéh). This can be done
m by using a FFT splitting algorithn{26] and absorbing
wo(B)= 4, (4)  boundary conditions[27] as described, for example, in
Ref.[11].
wheren and m are integer numbers and,(E) is the fre- In order to single out the effect of the chaotic perturbation

quency of the unperturbed motion inside the well that de°N the process of quantum decay, it is necessary to choose as
pends on the energg. In our case, it is possible to express initial condition a state localized inside the well with an un-

wo(E) in terms of the elliptic functiork (k) as perturbed dynamics as simple as possible. The eigenstates of
Hamiltonian(1) with e=0 do not seem to be a proper choice
wo(E)=mVo/K(K), in this context with systenil) being an open systeifton-
tinuous spectrum with stationary states that do not have finite
k=(E+Vg)/2V,. (5)  support inside the well We thus resorted to use as initial

condition metastable states that have a negligibternal

The result of Eq(4) would actually indicate that all the tori dynamicsand a long enough unperturbed lifetime inside the
are destroyed by the perturbation, being the rational numbeiell. These are theesonancesf the potential well of Fig. 2
dense among the real ones. Nevertheless, the KAM theorefgfined in the quantum theory of scattering.

assures that the effects of the perturbation becomes smaller It is worthwhile to make the following remark. Since, in
and smaller with increasing the order of the resonance, i.ethe explored parameter range, the decay probability is negli-
with increasing the numeratan. This is clearly visible in ~ gible, the adoption of the eigenstates of Hamiltoni@n

Fig. 3 where we can only recognize the chains correspondingupplemented by periodical boundary conditions would lead
to m=1, i.e., the 1/5, 1/6, and 1/7 resonances. Howeveréssentially to the same results. As a first approximation, we
even for small perturbation, in the neighborhood of the sepacan thus consider the initial states as stationary state of the
ratrix of the unperturbed system the motion is always domiunperturbed system. For the sake of simplicity, in the follow-
nated by chaotic dynamics. In other words, trajectories thaing we shall refer to them as “eigenstates” of the unper-
in the absence of perturbation are bounded inside the potefiirbed Hamiltonian.

tial well, can now overcome the energy barrier and eventu- In Fig. 4 we show the time evolution of the population
ally escape from the well. Under the generic weak-chaodnside the wellP(t)= ™2, 4(q,t)|2dq, for different values
condition, the stochastic layer around the separatrix is dyef the forcing frequency). This figure has been obtained by
namically separated from the phase-space region corresponchoosing as initial condition the fourth eigenst¢@e of the

ing to bounded trajectories by unbroken tori, so that the prounperturbed well. It can easily be realized that the decay
cess of escape driven by chaos is limited in phase spacprobability can be strongly enhanced by the forcing term
Therefore, in the classical case, the decay of the populatioaven in the small perturbation regime=0.005). Note that
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FIG. 4. The time evolution of the well population in arbitrary
units. The different curves correspond to 20 different value8 of
included betweef)) = 1.5 and() =2.5. The values of the parameters
are V,=0.048, e=0.005, £#=0.025, and the initial state is the
fourth eigenstate of the unperturbed well. The horizontal dashed
line corresponds to the unperturbee O case.

0.0006

0.0004 1

in the unperturbed case the population decay is not visible ir
the scale of this figure, the population remaining practically %
unchanged in the studied interval of time. This shows that
the time scale of the unperturbed process is much longer tha 0002 -
the maximum time that we explored numerically and also
confirms that, within the observed time, the chosen initial
states can indeed be regarded as “stationary states” of the
unperturbed system.

To obtain a more quantitative representation of the phe-  0.0000
nomenon we could define the decay rate as the inverse of th
time integral of P(t), namely, the inverse of the area con-
tained under the curves of Fig. 4. This would imply a very FIG. 5. R, see Eq(6), calculated witht,,=400, as a function
long numerical simulation, up to a time where the populatior©f the driving frequency). The values of the parameters arg
has completely leaked out. However, we are not interested it 0-048,€=0.005,7=0.025. The two figures correspond to differ-
the absolute magnitude of the decay rate, but only in itent |n|t|a_1l conditions(a) is obtained by choosing as |_n|t|al state the
relative strength as a function of the system parameter ourth eigenstate of the unpgrturbed W(alﬂ)_by choosing the third. '
Thus, we can simply calculate the time integraRgt) up to he numbers and the vertical dashed lines refer to the classical

a certain timet and measure the rate by studvin thenonlinear resonances as discussed in Sec. V. The insets contain
quantit; IMELmax u y ying enlarged views. Arbitrary units.

figures show that, as a general tendency, the decay increases
1 tmax 1 1
J P(t)dt (6) as the forcing frequency decreases. .Th|s can b.e understood
0 using arguments based on the classical dynamics of system
(1). Indeed, as shown in Fig. 7, the chaotic features of the
as a function of the frequendy of the forcing term. Clearly, classical phase spacee., width of the stochastic layer and
the values oR depend ori,,,, but this dependence does not of the nonlinear resonangesicrease by reducing), thus
qualitatively affect the results, if the integration timg,is  demonstrating that the forcing term becomes more important
large enough. when() gets smaller. Eventually, for extremely sm@l| the
As shown in Fig. 5R shows a sequence of peaks, similar stochastic layer becomes so wide that, for the chosen initial
to a resonant dependence on the frequency of the perturbaenditions, the escape from the well via the direct classical
tion. We repeated the calculation for two different initial process becomes the dominant process. Since we are rather
conditions, by choosing the third and the fourth eigenstatesiterested in the quantum mechanism of escape from the
of the unperturbed well. The decay rate for the third state isvell, we shall not explore the condition of smé&l's corre-
smaller, as expected, since this state is more deeply locatesponding to strong classical chaos.
in the potential well, but in both cases we found a similar In addition to this, there is a further reason to limit the
behavior even if the position of the peaks and their intensityanalysis to not too smalll’s. Our evaluation of the decay
are not the same. Except for the presence of the peaks, thate, as the integral of the surviving population in the well

R=1-

max
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over a finite time, is meaningful only if the time of integra- fication of the levels can be so small as to become practically
tion is much longer than the period of the perturbation, andnegligible for normal dynamics. In fact the level separation
therefore, we shall limit ourselves to study the range of largeat the crossing point is related to the nonlinearity strength,
Q (27 Q<tpay. which in our case is represented by the strength of the time
However, it is important to point out that the numerical dependent perturbation, and the former vanishes exponen-
results represented in Figs. 4 and 5 do not account for thga"y as the latter decreasgss,28,29. Moreover, the levels
process of classical escape from the well, even for the smalinogjfication decreases once the order of the nonlinear reso-
est used value of). A direct calculation demonstrates in- pance increases. This can be seen as the counterpart of the
deed that the classical decay is always negligible in the cong Ap theorem because, strictly speaking, the level crossings
sidered parameter range @f This can easily be assessed by 516 dense in the spectrum in the same way as nonlinear reso-
numerically integrating syster(l) using a classical initial ances are dense in the phase spésze Sec. 1), but only
particle distripqtion mimicking the phase-space reprgsentathe lower order ones really affect dynamics.
tion of the initial quantum stat¢see Sec. VI for details This is still true if we consider a system with a spectrum
Even for the smallest value 61 used to obtain the results of gjmjjar to the one depicted in Fig. 1, but in this case we need
Figs. 4 and 5, the classical population in the well does almosfy compare the smallness of the levels modification with an-

not change with time. ~ other small effect, namely, with the level splitting due to the
Therefore, the peaks and the general tendency of Figs. inneling. It is clear that an avoided crossing, negligible if

and 5 are genuine quantum effects, but, while the latter cagompared to the energy scale of system dynamics, can be,

be associated with the increased effectiveness of the forcingayertheless, very important if we concentrate our attention
term in Eq.(1) with decreasind}, the former effect does not on, tunneling processes. The unperturbed splitting can be, in

have any simple interpretation. The next section will be defact, significantly modified and the tunneling rate can change

voted to deepening the understanding of this issue. by order of magnitude.
The effect of tunneling modification due to isolated
V. A SEMICLASSICAL ANALYSIS avoided crossings, i.e., to isolated nonlinear resonances, even

if broadly discussedl13—-19, received little attention in the

The results shown if Fig. 5 resemble the typical CAT CAT papers, which have been mainly concerned with the
behavior: when a system parameter is changed the decay ratde of the stochastic layer and the classical transport therein
presents an irregular sequence of peaks on a smooth backs the main contribution to the barrier crossing. This effect is
ground. It is thus natural to look for a connection betweensurely present, but its contribution is not always the most
CAT systems and our model. First of all, we notice that, duamportant, at least in a weak-chaos regime, where the effects
to the continuous nature of spectrum, the level dynamics obf the nonlinear resonances can dominate the dynaffiics
our system cannot be simply described in terms of avoided hese prechaotic structures cannot, in fact, contribute to the
crossings. Nevertheless, we believe that the phenomenon uclassical transport over the barrier, because they are embed-
derlying Fig. 5 retains much of the features of the CAT pro-ded in a regular region of unbroken tori, but they can perturb
cesses. In particular we think that the argument introduced ithe quantum dynamics as discussed above.
Ref. [9] to explain the tunneling irregularities of a quasi-  This process, which we think to be deeply connected with
integrable system, can be effectively used also in this modelCAT, in the weak-chaos regime can give a contribution to
In the cited reference, a connection between the peaks in thhe tunneling rate modification even more important than the
tunneling rate and the position of the nonlinear resonances iane connected to the chaotic region of the phase space.
the classical phase space was found. Moreover, due to the fact that the perturbing third state is not

The analysis of Ref 9] follows the line of Refs[28,29  chaotic, it is possible to obtain a quantitative prediction of
and is based on a semiclassical approximation that makes uiee avoided crossings and hence on the positions of the tun-
of simple arguments. We shall assume that the classical syseling irregularities. We shall now review the derivation of
tem is only weakly perturbed by the external perturbation:this prediction.
the size of the chaotic region is considered to be small with Let us first note that the Hamiltonian under study is time
respect to the portion of the classical phase space covered lgpendent and that this prevents us from adopting the
regular trajectories so that the main effect of the perturbatioftinstein-Brillouin-Keller(EBK) quantization conditiong30]
is the appearance of chains of nonlinear island in the classin their original form. However, following the work of
cal phase space as shown if Fig. 3. Under this condition, thBreuer and Holtaug29], who, in turn, extended the method
area of the regular region, that is, the phase-space regiasf the canonical operator as developed by Maslov and Fedo-
encircled by the last unbroken torus inside of the stochasticiuk [31], it is possible to adapt the EBK prescriptions to
layer, is much larger thaf. In this way, the regular region periodically time-dependent systems. The generalization of
can accommodate several quantum states and the semicldef. [29] is based on the prescription of Arno|@2] and
sical approximation becomes meaningful. leads to semiclassical quantization rules for the Floquet

As we discussed in the Introduction, the connection ofquasienergies and quasieigenstdted. This is made pos-
classical nonlinear resonances to avoided crossings was easiple by a suitable extension of the phase space, including the
recognized[14—16. For each nonlinear resonance in thetimet as a coordinate and adding the corresponding conju-
classical motion we can find a level crossing in the quantungate momentum. In the one-dimensional case the semiclassi-
spectrum. These crossings are actually avoided but the modial quantization prescriptions read
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1 v This equation can be simplified if we assume thais so
I=5-¢ pda=a|n+ 4/, small as to make the quantity(n—n’) negligible. If we
" now expand the right-hand side of this equation around this
1 small parameter, we obtain
En,m=—f (pdg—Hdt)+AQm. (7)
72

dHg
W(n—n’)wthﬂm:ﬁﬂm’, 9

The meaning of the symbols adopted in this expression can

be explained by remembering that in the one-dimensionalhich can be rewritten as

case the extended space is flogp,t} space. A regular tra-

jectory is contained on a flux tube in this tridimensional %E(n—n’)zhﬂ(m’—m) (10)
space, flux tube that repeats itself periodically along tthe dJ dn

direction. ThusJ is the action associated with the quantized

trajectory, y, is a close path winding once around the flux Of, by usingd=7(n+1/2),

tube and lying in the plane at a given tirhand vy, is a path
stretching itself out on the surface of the flux tube such that
it can be continued adopting periodic boundary conditions.
In other words, the pathy, in the extended tridimensional
phase space, moves from an initial point lying on the planévhere wo=wq(J)=dH,/dJ is the frequency of the unper-
t=0 to a final point lying on the plane=T. Note also that turbed motion as a function of the classical actignAn

we can choose to lay the path on the Poincarsection of ~=Nn’—nandAm=m-m’. The condition of levels crossing,

the flux tubes. Finally, if we restrict ourselves to consideringin the limit of vanishingfi, can thus be obtained by solving
the closed orbits inside the potential well, the Maslov indexthe classical equation that corresponds to the condition for
assumes only the value=2. the onset of the classical nonlinear resonances.

Worth a detailed discussion is the structure of the quan- EXpression(11) confirms the result of the literature,
tized energyEn m (for S|mp||c|ty, we shall use the terms nam6|y, that for SUfﬁCiently small’s, there is a correspon-
energyand stateas equivalents ofjuasienergyand quasis- ~ dence between the presence of a nonlinear resonance in the
tate). While the indexn, whose values are fixed by the first classical phase space and a level crossing in the spectrum
of Egs.(7), has the usual role of principal quantum number,and, therefore, a correspondence between the tunneling ir-
the indexm, and the dependence Bf, ,, on this one, reflects regularities and the nonlinear resonances. In other words, the
the periodicity of the time depend'ent term of the Hamil-tunneling peaks are the quantum manifestation of the reso-
tonian. In fact, an important aspect of the Floquet theory i1ant behavior of the underlying classical dynamics. The re-
the Brillouin zone structure of the energy spectrum: for eact$ult of Eg.(11) is even more specific, in fact, it yields the
physica| solution labeled by we have an infinite series of fOIIOWing relation: the CrOSSing of the two Unperturbed levels
representatives labeled by the valuenaf Naturally, all of ~ EQ, and Eg,,m, is related to the superposition between the
the physical information is contained in the first Brillouin semiclassical quantization torus of one of the two states and
zone O<E, ,<#(), or equivalently, we can say that any the nonlinear resonance of appropriate ordlemr/An.
solution of Eqgs.(7) can be folded back to the first Brillouin This process admits a simple intuitive representation. Let
zone by an appropriate choice of us consider, for example, a quantum state located deeply in

At this point it is important to recall that the earlier for- the well. Its quantization torus lies inside the well and the
malism represents a valid quantization procedure only irwave function in the semiclassical regime is mainly located
closed systems, where the notion of energy levels is meararound this torus. The decay rate in the unperturbed case can
ingful, and where the phase space is filled with regular toribe obtained by the usual semiclassical calculation of the
However, we are investigating the properties of states that liprobability of barrier crossing. In a regime of weak chaos, if
well inside the stability region, and that present a small dewe turn the perturbation on, we have a high probability that
cay probability(see Fig. 5. In this condition, we believe that nothing happens, due to the fact that most of the phase space
an analysis which, according to the prescriptions of CAT,inside the well remains unperturbed. But if we change an
connects the tunneling irregularities with the presence oé&xternal parameter as, for example, the forcing frequéhcy
avoided level crossings, can retain its validity. Let us pro-we obtain that the nonlinear resonances move in the phase
ceed disregarding the continuity of the spectrum and lookingpace and, for particular values of the parameter, one of them
for the presence of level crossings in the unperturbed Hamilean intersect the quantization torus, which is therefore de-
tonian spectrum as a function of the forcing frequefity stroyed. This would be probably reflected in a perturbation

Following Ref.[29] we can look for the level crossings by of the quantum state and thus in a modification of its decay
replacingH with Hy, let us in fact recall that we are always rate. This is exactly what is described by Efjl).
considering a perturbative approach. The condition of cross- As discussed before, E¢L1) involves resonances of any
ing between states andn’ in the Brillouin zone yields the order and this implies that a change of a system parameter
following equation: indicates that a chosen level undergoes a virtually infinite

number of crossings. However, the perturbation produced by
Ho[A(n+1/2) ]+ AOm=Hy[A(n'+1/2)]+AQm’. (8) the avoided crossings strongly depends on the otderof

Am

Ann+omx (11

wo=
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the resonance and in practice, if we restrict ourselves to the 0.050 '
perturbative regime, the only significant crossings are those , ‘ . \ . .
associated with the first-order resonancAsnE=1). On the ! \ |
other hand, the same happens in the classical dynamics, ¢ 0045 |} : \ \ N
discussed in Sec. Ill. ‘ | i \

The simple prediction of Eq(ll) is valid in the strong ! \ ‘\
semiclassical limit and is therefore unavailable for a numeri- ~ 0040 ! \ L \ F.
cal check, being the smallest valuefotlictated by the com- ! ‘\ \ v "
puter limitations. The relation between nonlinear resonance: — - 5 . ;
and tunneling peaks has been indeed checked in[BEehy 0035 || L i 4]
means of a further expansion of E&). To do that we pro- \ j ! A | '

ceed by evaluating the second-order ternfi{m—n’). We L4 I \6 L7 L8
obtain 0030 || \ \ ! ]
I ! ¢ \ \
i i ! ! \
1 dwg Am ) L o [ Y
wot EﬁwAn:HQ‘l‘O(ﬁ ) (12) 0~0251.3 18 23 2.8
Q
On the other hand, FIG. 6. The solutions of Eq.14) represented by the crossings
between the solid horizontal lines, indicating the energy of the third
ﬂ= % d_E: %w (13) and fourth eigenstates, and the energy of various nonlinear reso-
dJ ~ dE dJ dE O nances indicated by their order (dashed and dotted linesThe
crossings give the theoretical prediction on the position of the peaks
Thus we can write Eq(12) as follows: of decay, which is reported in Fig. 5 as the vertical dashed lines.
The values of the parameter avg=0.048, €=0.005, Q=2, #
Am Q ) =0.025. Arbitrary units.
wo(E)= An 7 dwg(E) )+O(ﬁ ). (149
2 dE

We are now able to justifya posteriorithe use of the
semiclassical theory of this section in the present case. The
main difference between the physical system of R&fand
Hamiltonian (1) is the discreteness of energy levels. In the

present work we cannot speak about level crossings and thus
dwg T 1 E(k) the calculations above could look invalidated. On the other
d_E:4k2\/V—0 K(k) 1= k' 2K (k)| (15 hand, we showed that the avoided crossings are nothing

more than therait d’union between the nonlinear classical
wherek’ 2= 1—k2. Equation(14) represents a generalization '€sonances and the peaks of the decay rate: the presence of

We give an analytical expression thwy(E)/dE, by using
Eq. (5), as

of the classical nonlinear resonance condition: the frequen

C}he nonlinear resonance produces a level crossing that is re-
ratio is renormalized by means of a quantum correction pro |
portional to#.

ected in a rate irregularity. The same happens for the sys-

tem of Hamiltonian(1): the classical phase-space structures
By using this prediction we are now able to verify our and the decay rate modifications are related even if the inter-

conjecture about the validity of this method also in themediate step is less clear due to the continuity of the quan-
present case. From El4) it is possible to predict the po- tum spectrum. Probably we could find a process similar to
sition of the peaks of decay. After fixing the values/f,

Eqg. (14) can be solved as a function of the eneigyfor

the avoided crossings, but we do not need to look for it as we
several values ofi. The graphical solution for the first-order

showed that the quantum-classical connection works.

The role of the nonlinear resonances in the perturbation of
crossingsAm=1, is shown in Fig. 6, where the thick solid tunneling seems thus to be established also in a system with
horizontal lines correspond to the semiclassical energies @ continuous spectrum, even if the prediction looks approxi-

the third and fourth eigenstates of the unperturbed Hamilmate. The nonperfect agreement between theory and numeri-
tonian(3), i.e., of the states that we chose as initial conditioncal calculation can be traced back to two major approxima-
in order to obtain the results of Sec. IV. The dotted andtions. The first is the finiteness df that makes Eq(14)
dashed curves represent the quantum renormalized energigightly inaccurate, while the second and the most important
of the classical nonlinear resonances of different ordghe  would be the approximation related to consider the unper-
order is indicated by the numbers in the figur€he cross- turbed states in Ed8). This last is in fact a double approxi-
ings between the horizontal lines and the curves thus indicatmation, because it disregards the effect of the perturbation,
the solutions of Eq(14). Their position should also indicate but this is not so important as shown in RE3], and the

the position of the peaks of the decay rate. This is, in facteffect of the unperturbed decay that actually destroys the
approximately true, as one can check by going back to Figdiscrete levels picture we used. Nonetheless, we think that
5, where we indicated the solutions showed in Fig. 6 with theour results are not questionable and to make them clearer to
numbered vertical dashed lines.

the reader, we shall now resort to a graphical picture.
056215-8



CLASSICAL NONLINEARITY AND QUANTUM DECAY: THE EFFECT . .. PHYSICAL REVIEW E 64 056215

VI. A PHASE-SPACE REPRESENTATION: QUANTUM-
CLASSICAL COMPARISON

As mentioned above, in order to connect the quantum_
dynamics to the classical phase-space characteristics, w
must extend the concept of phase space to the quantum cas
This can be done by using a phase-space representation |
the quantum state and among all the different possibilities,
we chose to use the Husimi representation, defined as

2
)

(1 =

p(q,p)=‘ | dxargp00000

where|aq ,) is @ minimum indetermination stateoherent
state centered in ¢,p). Using Eq.(16) we can obtain a
phase representation of a quantum state in terms of the pos
tive definite distributionp(q,p) [33].

In particular, we can calculate the Husimi distribution of = 0
the initial state and, due to the choice of quasistationary ini-
tial conditions, this will allow us to obtain the correspon-
dence we are looking for in an easy way. In fact, for small
decay probability, we can safely disregard the dynamics in-
side the well for the times we explored. This means that the
phase-space representation of the quantum state practical
does not change during the time interval considered in Fig. 5.,
and that in the comparison between quantum and classice
phase space we can limit ourselves to dealing with the initial

quantum distribution.

In Fig. 7 we show portraits of the classical phase space for
increasing values of). For clarity, we draw only the sto-
chastic web and the nonlinear resonances island structure:
all the rest of the phase space being filled with regular tori.
As explained in Sec. Ill, due to the choice of the particular *
form of the time dependent perturbation, to the first-order in
e we have only resonances of the fomwg(E)=Q/n where

04

04
0.3
0.2

01},

0

011

-0.2
0.3

wo(E) is the frequency of the motion inside the unperturbed
well. The frequencywy(E) is a decreasing function of the
energyE for 0<XE<2V,, being equal to/4V, for E=0 and FIG. 7. Classical phase-space portraits for different values of the
vanishing forE= 2V, that corresponds to the separatrix mo- driving frequency). The values of the parameter avg=0.048,
tion, see Eqgs(5). This means that as we approach the sepae=0.005,7=0.025. The value of), increasing from(@) to (j), is
ratrix we find resonances of larger-ordeiWe realize thatas (=1.4,1.6,1.7,18,1.9,2.1,2.2,24,25,2.7. The shaded area in
the value ofQ) is increased, the nonlinear resonances movéb) indicates the area under the Husimi distribution of the initial
inside the phase space, getting closer to the center of the wélate, which in this case is the fourth eigenstate of the unperturbed
and eventually disappearing when the relatidhcannot be  Well. Arbitrary units.
fulfilled any more. In the meanwhile, new resonances appear,
moving out of the stochastic layer that is the region of the This is done in Fig. 8 where we show the classical phase-
overlapping of all the infinite resonances of higher-omder space structures and we indicate by the two continuous lines
In this motion toward the center of the well, the variousthe borders of the Husimi distribution of the initial quantum
resonances cross the region of the phase space that is ocatiate. The expected results are confirmed by the observation
pied by the Husimi distribution of the initial quantum state that the peaks in the quantum decay rate are related to the
[shaded area in Fig.()] and, as discussed in Sec. V, we modification of the classical phase space under the quantum
expect this to be related to the peaks of Fig. 5. The region aifhitial distribution by a nonlinear resonance. The perturba-
parameters explored in Figs. 5 and 7 is the same and fromtioon seems to be effective when a nonlinear resonance enters
first inspection we actually realize that the number of resothe external border of the initial state distribution rather than
nances crossing the shaded area corresponds to the numbéren the nonlinear resonance passes over the center of the
of peaks in the decay rate. This first result is already condistribution where the quantization torus is located. This is
vincing but we can be more precise by singling out thequalitatively in agreement with E@14) that predicts that the
phase-space portraits that correspond to the decay peaks. perturbation appears when the nonlinear resonance is close to
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04
03 P
02| 8"
0.1 By

unperturbed condition. This is not the case in CAT, where
the avoided crossings can produce both enhancement and
decrease of tunneling, which can also vanish for particular
values of the parametef8]. For this reason we wrote in the
Introduction that the termassistedused in CAT is not really
appropriate, but it seems that it could be better used in the
present context. To explain this different behavior we con-
jecture that this can be seen as a consequence of the conti-
nuity of the spectrum in our system. In fact, the quenching of
the tunneling is produced by the accidental degeneracy of the
levels of the tunneling doublet, as seen in Fig. 1. This degen-
eracy is due to the modification induced by the crossing with
the third level. In our case we do not have discrete levels, but
a continuous density of states and thus the former picture
simply does not apply. In other words, for every value of the
parameter the modification of the spectrum due to the pres-

FIG. 8. Classical phase-space portraits for different values of th€nce of avoided crossings cannot lead to a complete degen-
driving frequencyQ). The values of the parameter avg=0.048,  eracy of the states and thus to a complete quenching of the
€=0.005, #=0.025. The values of) are chosen as the values decay. A similar situation and a graphical representation of
corresponding to the peaks in Figap i.e.,0=1.73(a), 2.015(b),  this process can be found in a recent pdBdt. On the other
2.25(c), and 2.44(d). The two continuous circular curves indicate hand, this continuous spectrum characteristic cannot com-
the outer and inner borders of the Husimi distribution of the initial pletely rule out the possibility that nonlinear resonances
quantum Statéthe fourth eigensta}eThe border is defined arbi- could produce also a decrease of the unperturbed decay rate,
trarily as the cont_our Ieve_l of the distribution at 0.2 times the maxi-yhich could be present in some region of parameters or for
mum height. Arbitrary units. different choices of initial conditions.

o1&
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04
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the semiclassical quantization torus, how much closer being VIIl. CONCLUSIONS
dictated by the quantum correction that modifies Eif)
with respect to Eq(4). In fact, the quantum correction to the A numerical calculation of the decay from a potential well
forcing frequencyQ is positive (the term dwo(E)/dE is due to tunneling showed that, in presence of clasglcal chaos,
negative for energy smaller than the barrier heights and thudie decay can be strongly enhanced and that this enhance-
the renormalized frequency is always larger téignand this ~Ment depends on the system parameters in a resonantlike
means that the decay peaks should appear for valués of Way. A qualitative inspection of the classical phase-space
smaller than the values for which the nonlinear resonancesiructure revealed a connection between the peaks in the de-
superpose the quantization torus. This is precisely what hajs:ay probability and the presence of classical nonlinear reso-
pens: the peaks correspond to the approaching of the nonliftances in the region of phase space occupied by the Husimi
ear resonances from the outside. distribution of the initial state. This correspondence has been
This result comes along with a simple intuitive explana-duantitatively explained using a semiclassical result that
tion: when a nonlinear resonance enters the external bord&@s been shown to be valid in the case of chaos-assisted
of the initial state, part of the initial distribution is moved tunneling. _ - _
outward by the islands structure, this produces a higher prob- This semiclassical prediction is based on a picture that
ability of tunneling across the barrier and thus an increase ofingles out the classical nonlinear resonances as the main
the decay. This effect becomes less important once the nof@ctor responsible for the fluctuations of the tunneling rate.
linear resonance penetrates inside the shaded region, untilihe presence of a nonlinear resonance in the region of the
disappears when the resonance is completely embedded Riiase space that represents the support of the quantum state
the central part of the distribution. leads to the tunneling perturbation, in a way that appears as
The results of Sec. V have been thus confirmed by théhe quantum manifestation of the classical “small denomina-
comparison of this section, making clearer the role of theors” problem[21]. This is a direct connection between the

classical nonlinear resonances. modification of a purely quantum effect, the tunneling, and
the classical phenomenon of destruction of integrable dy-
VIl. CHAOS-ASSISTED DECAY VERSUS CHAOS- namics that is at the basis of the chaotic behavior.
ASSISTED TUNNELING Finally, by studying a decay process, we addressed an

unbounded system, with a continuous spectrum, and this al-
When we reviewed the numerical results we noticed thatowed us to point out the differences between this process of
we found only enhancement of the decay compared to thaonlinearly assisted decay and CAT.
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