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Whispering gallery modes in open quantum billiards
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The poles of theS matrix and the wave functions of open two-dimensional quantum billiards with convex
boundary of different shape are calculated by using the method of complex scaling. Two leads are attached to
the cavities. The conductance of the cavities is calculated at energies with one, two, and three open channels
in each lead. Bands of overlapping resonance states appear that are localized along the convex boundary of the
cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes
known from classical calculations.
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The physics of nanoscale systems has advanced rapidtiie lead has a smaller extension than the cavity. Such a case
over the last few years. A consistent description of thesés intermediate between the two limiting cases discussed
small systems is a challenging task for quantum theory sincgbove. The examples we consider are cavities with a convex
their properties may be influenced strongly by attachingooundary that are discussed recently in optical and other de-
leads to thenj1-9]. They are simulated often by means of vices [12,13. In these systems, whispering gallery modes
quantum billiards. When the cavity is not fully opened, the(WGM) are known to appear classically. We show that in the
propagation of the modes is restricted to energies at whicguantum mechanical calculations, a certain nunfisgr K
the overlap integral between the wave functions of the resoof resonance states overlap, couple with similar strength to
nance states and the channel wave functions is nonvanishingie channels in both leads whiy,=N—N; ones are almost
In the case of well isolated resonances, the electron ca#lecoupled from the channels by resonance trapping.Njhe
propagate, therefore, only at the energies of the resonanctates are localized near the convex boundary in contrast to
stated“resonance tunneling). Due to the coupling between the other ones. The localized states correspond to the WGM
the internal states of the cavity and the channel modes, thend cause an increased conducti@m reflection of the
states get widths. When the coupling is sufficiently strongguantum billiard.
the resonances start to overlap and to interact via channel The properties of open quantum systems are described
modes. As a consequence, some redistribution in the resasually by means of the poles of tBamatrix. The resonance
nance states of the cavity takes place. It reflects the transitigpart of theS matrix readq8,10]
from the spreading K channel modes over ti¢resonance

states of the cavity at small opening to their free propagation ) N Yre' YRe
at large opening. In the last cas¢-K resonance states are SCC’:'R=1 _ Pi_ @
(practically)y decoupled from the channel while onk of E—-Er+ EFR

them are coupled strongly leading to a maximum propaga-

tion of theK waves in the cavity. An illustration fdK =1 is -~ =

shown in Ref[9]. This transition, called resonance trapping where the ‘_SR_ER_('IZ)FR are the (energy dependent
eigenenergies of the effective Hamilton operaftge=H,

[10], has been studied theoretically in many different sys- . ) N
tems such as nuclei, atoms, and molec(flesreferences see +W of the open quantum billiard, is the Hamiltonian of
¢ the closed cavity and the

Ref.[8]). In microwave cavities, it is traced as a function o

the opening of the cavity theoreticall$,6,8 as well as ex- LA -~ o~ A

perimentally[11]. _* fm YRR T g~ ~

The role of the structure of the cavity states themselves in Wer=5 2 2‘1 P ECdE E-E' 2 2‘1 YeeYrres (2)

the redistribution process is almost not studied up to now.

We will show in the following that the interplay between the are complex, generally;14]. Equation(1) is true also for

structure of the cavity states and the one-to-one alignment &verlapping resonanc¢40]. The poles of theS matrix cor-

a few states with channels characterizes the situation Wh%spond to the solutions of the fixed-point equaticfis
=Eg—(i/2)Tr=ERr(E=ER) — (i/2)T r(E=ER) and deter-
mine the energieEg and widthsI'y of the resonance states.
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from leadi to leadj+i and the reflectiorE|SS_ic),|2 in the  are two groups of short-lived states corresponding to the fact
) o~ S that the WGM splits, by the distorting cut, into two parts

leadi at the energyE. Itis yrc™=yrc Only for isolated reso-  yith gifferent lengths of the “ways” for reflection in chan-

nances. _ _ _ nel 1 and 2. The two separated parts of the WGM can be
In our calculations, we find the poles of tBamatrix and  geen in the wave functions of these states. One example is

the wave functionsbr, of the resonance states by using theshown in Fig. 2g).

method of exterior complex scaling together with the finite  Tpe eigenvalue picture shown in FiglcR corresponds to

element method. For details see R¢86]. The conductance e g|s with a shifted positios=1 of one of the leads, see

is calculated from the Schdinger equation for the closed Fig. 2(h). Also this eigenvalue picture shows some band

cavity that is modified by the boundary conditions due gyt re. The states of the baAdsplit into two parts: the

attaching the leads, see REL5]. localized pari{related to the WGWNlis coupled more strongly

We performed ca!culatlons for three s.mall flat' r'esonator% the unshifted lead than to the shifted one while the other
of different shape with comparable area: a semicircle as af

example for an almost regular cavty, a semicicle with angi? SCEIESR A SO O LR Se0 ¢ O e et
internal scatterefSlS), and a semi-Bunimovich billiard as ’ P ) P

examples for more chaotic cavities. Every resonator isstrongly at higher energy where two channels are open.

: ! The trajectories of the eigenvalues as a function of the
coupled to two leads, see Figs(ck1(j) for the SIS. The . . .
eigenvalue pictures are very similar to one another in aIPhlft s of the left lead[Fig. 2€)] show the mechanism of

three cases. There are different groups of pékee Fig. resonance trapping. The widths of the WGM decrease as a

1(a)]: one group is very near to the real axis while the otherfunc,t,Ion ,(,)f increasings while the w!dths of some st_ates of
ones are lying deep in the complex plane. The states near {Be sea (?f almost bound states |n-crease according to the
the real axis are trapped by those of the other groups. ~ Sum rule=I'g(E)=const. In the neighborhood &f=2.5,

The short-lived states start at the opening of threshold§€sonance trapping occurs between the latter states: the
lying at E=#2, (2m)2 and (3m)2 They form bands of Widths of three states become maximumsat2.5 by trap-

overlapping resonance states, i.e., their widths are larger th4ing the other ones that again approach the real axis at this
their distance in energy. The states of the ba#ndppear Value ofs. The wave functions of the short-lived states have
when the first channel opens. They are coupled strongly t& clear bouncing-ball structui&ig. 2i)]. The poles of the

the open channel in each of both led#gs. Xc), 1(d), and WGM are almost independent sfin the neighborhood of
1(g)]. At E=(2m)2, the second bandB) of poles starts S=2.5and their wave functions have kept their WGM struc-
whose wave functions are related to two channels in each'e[Fig. 24)]. The bouncing-ball structure is less stable than
lead [Figs. Xe) and 1h)]. Here, also another grouBl of the WGM_one since the degree of overlapping of the poles is
states arises the widths of which increase first but then desmaller[Fig. 2e)].

crease with increasing enerffig. 1(f)]. The bandsA andB The properties of the resonance states are reflgcted, at
continue to higher energy while a new baf@ starts ate least partly, in the conductivity of the cavity. Accord)mg to
=(3m)? where the third threshold opens. The wave func-Ed. (1), the maximum value of the matrix elemesf!) is
tions of these states are related to three channels in evergached fory(Fé)ﬁ yg% (j#1). While single short-lived states
lead[Fig. 1(i)]. Also here, another groupgC(l) of states ap- formed by resonance trapping are aligned each with one
pears whose widths first increase but then decrease with ithannel andyr. <7g., each of the two stateR andR’ is

creasing energfig. 1(j)]. coupled to both channels with almost the same strength when
In all three cases studied by Wsemi-Bunimovich and the poles overlap&§x ~&g) as the poles of the WGM do.
semicircle billiard$, the structure of the cavity states plays The WGM are expected, therefore, to cause a large conduc-
an important role in the trapping process. The most interesignce of the cavity when the leads are attached symmetri-
ing result is the localization of the wave functions of the cally.
states belonging to the bands B, andC, called WGM in In Fig. 1(b), the conductivity of the SIS is shown as a
the following. The first WGM is pushed in direction to the fynction of energy. The coherent structure of the conduc-
border of the cavity at higher energies while the second ongance in the energy interval between the two lowest thresh-
is parallel to it. Even some hint to a third WGM can be seery|ds can be seen clearly. The mean value of the conductance
when three channels are operEat (3)?. In contrast to the js about 0.9 in the energy interval between the two lowest
WGM, the long-lived states are spread over the whole cavitythresholds. In the next higher energy region, the value of the
The WGM are characteristic of the closed systems congonductance is never smaller than 1 meaning that the wave is
sidered by us. Attaching the leads to the cavities as shown ifeflected into one channel, at the most.
Fig. 1, the WGM get large coupling matrix elements, in We calculated also the conductance and reflection of the
relation to the channets When the cavities become opened, S|S, when its shape is distorted either by a cut in the circular
the widthsI'g of the WGM can further increase by trapping boundary of the cavityFig. 2(b)] or by a somewhat shifted
the other resonance states. The states belonging to the WGpbsition of one of the lead$ig. 2(d)]. The reflection shows,
form bands with anearly square root dependence on en-in the first case, the same coherent structure as the conduc-
ergy. tance in the undistorted case. The mean value is large in the
In Fig. 2(a), we show the eigenvalue picture for the SIS energy regions considered. In the other case, the conductance
whose convex surface is distorted by a [dtig. 2(g)]. There  decreases strongly with energy in the interval between the
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FIG. 1. The poles of th& ma-
trix (@) and conductanceG
=z|sg‘iigj|2 (b) for the SIS. The
poles of theS matrix (denoted by
starg are connected by lines for
guiding the eyes. The full lines in
(b) show the mean value of the
conductivity between every two
thresholds. Some wave functions
(|®g|?) of the SIS:(c) from band
A of the first energy intervalr?
<E<(27)?, (d), (e), and(f) from
bandsA, B, andB1 of the sec-
ond energy interval (2)?<E
<(3m)2, (g), (h), (i), and(j) from
bandsA, B, C, and C1 of the
third energy interval (&)2<E
<(4m)?. The energiesEr and
widthsT'g are in units?/(2md?)
whered=1 is the width of the at-
tached waveguide.
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FIG. 2. The poles of th& ma-

trix (a),(c), reflection R

60 70 80 9 100

=2|Sgiic)_,|2, (b) and conductance

G==3|s|? (d) for the SIS dis-
torted byJ a cut in the circular
boundary of the cavitya),(b) and
by a somewhat shifted position of
one of the leadsc),(d). One wave
function (®g|?) for each case is
shown in(g) and (h). The trajec-
tories of the poles of th& matrix
(e) and the mean valu& of the
conductance(f) as a function of

the positions of the left lead. In
(e), the poles at the positions

=0, 25, 3 are marked with
o, A and V. Two wave func-
tions (i),(j) at s=2.5. For further
explanations see Fig. 1.
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first and second threshold. This is caused by the fact that 2
modes with higher energy are localized nearer to the convex ” e 7//////////////////,{,, |
boundary of the cavity than those with lower energy. This o
result is supported by the behavior of the conductance at
higher energy that does not exceed the maximum value of
the conductance of a one-channel case. The conductance as a
function of the position of one of the leadBig. 2(f)] de-
creases strongly with approaching the bouncing-ball situa-
tion (s=2.5). Here, reflection is maximum.

To shed light on the quantum mechanical results we con-
sider the classical motion of a free particle inside billiards % 2 2 q 0 8 10
with the same geometry as discussed above. The potential is
assumed to be zero inside the billiard and the boundaries are FIG. 3. Classical Poincarsection for the SIS in the Birkhoff
mirrors for the motion of the particle along trajectories cal-variables: tangential momentup vs arc lengttg. The trajectories
culated from the laws of geometrical optics. The dynamics obf the WGM are distinguished according to the numiperof
the motion can be reduced to a canonical mapping irPounces at the boundary for<5.

B.'rkhOﬁ coordinates ¢.p), [16].Wh'Ch IS a Pomcar_emap— our quantum mechanical simulations, the wave functions of
ping at the boundary of the billiard. The coqrfjlnqte; that the states of the WGM band are localized close to the convex
of the arc length at the boundary of the billiard where they,, nqary in the closed systems and remain localized when
bounce takes place, amg=p-t/[p| is the tangential momen- he systems are opened to a few channels by attaching leads
tum at this point. Each trajectory starts at some arbitrantg them. Thus, the classical results are in qualitative agree-
initial point (Xo,Yo) of the attached leads with an anglg ~ ment with the quantum-mechanical ones.

characterizing the direction of the motion. The trajectories Summarizing the resultsve state the following. In open
that run close to the convex boundary of our billiard andquantum cavities with convex boundary, the structure of the
accumulate upon it are defined as the WGM of the billiard.wave functions of the cavity states plays an important role in
These trajectories occupy the major part of the surface othe trapping process. Some resonance states receive large
section as can be seen from Fig. 3 for the SIS. The symmetnyidths by trapping the remaining ones, form bands of over-
of the chosen geometry is reflected in the mapping of théapping resonance states, and are localized near the convex
regions corresponding to a different number of bounces aboundary of the cavity. These bands correspond to the WGM
the boundary. Additionally, we calculated the ratio of theknown from classical calculations for different systems with
number of trajectories of the WGM to the total number of convex boundary. When two leads are attached symmetri-
trajectories passing through the billiard. This ratio is aboutcally to the cavity, the WGM are coupled to both leads with
60% for the semicircle and about 70% for the SIS, since thalmost the same strength. WGM-like structures exist in rela-
non-WGM trajectories are hindered by the scatterer insidéion to every open channel in the two waveguides. The
the cavity. This result supports the idea that the WGM giveWGM are responsible for a high conductivity that decreases
the main contribution to the conductance. Further, a billiarddramatically when the symmetry of the system is distorted.
with a convex boundary possesses a family of invariant toriThis fact can be used surely for the design of quantum cavi-
that correspond to the motion close to the boundai@l. In  ties in practical applications.
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