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Control of hyperchaos
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A general method for controlling chaotic systems with one or more positive Lyapunov exponents is inves-
tigated analytically and numerically. The method retains the formal features of the adaptive adjustment mecha-
nism and can be equally applied to various types of the unstable fixed points. It is shown that the method
proposed here neither asks for any prior analytical knowledge of the system, nor any internal or external
controlling parameters in advance.
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It is well known that there is an infinite number of un
stable periodic orbits~UPOs! embedded in the chaotic attra
tors@1–3#. How to stabilize UPOs, i.e., control chaos, is no
an active topic in nonlinear sciences and has received m
attention in the last decade@4–13#. Since the original work
of Ott, Grebogi and York~OGY! @4#, many different control-
ling methods have been proposed and are being pur
@5–15#. However, most of these methods are only appro
ate for low dimensional chaotic systems~here, we refer to
the system with one positive Lyapunov exponent!. In this
situation, there is just one unstable direction along the c
otic orbit. The problem of how to stabilize high dimension
chaotic systems, the systems with multiple posit
Lyapunov exponents, i.e., the so-called hyperchaos, is c
sidered to be a tough one.

Recently, Yang, Liu, and Mao use a new remarka
method~we refer to the YLM method hereafter! to control
chaotic systems@14#. This method doesnot require preexi
tence of a stable manifold and can be applied to con
hyperchaotic systems efficiently. Similar to the OGY meth
and its variants, the YLM method is also based on a par
eter perturbations mechanism and so requires one to fin
least one adjustable controlling parameter of the system
advance. For the YLM method, by adjusting the correspo
ing control parameter, one of the unstable directions
comes stable so as to stabilize the unstable orbit. Unfo
nately, in many real systems such as biological, chemi
and social economical systems, one often cannot find su
parameter at all. Our approach to overcome this shortcom
is the adaptive adjustment mechanism~AAM !. The AAM
takes advantage of the variable feedback control and doe
require existence of adjustable controlling parameters. H
ever, the AAM can only be applied definitely to control som
special types of fixed points. Even if one utilizes the s
called nonuniform AAM@15#, there also exist some situa
tions to which the AAM or nonuniform AAM cannot be
applied. According to Ref.@15#, the fixed points are classi
fied into four types. If an unstable fixed point is either
type-I fixed point~aj,1 for all j 51,2,...,n! or a type-II fixed
point ~aj.1 for all j 51,2,...,n!, it can always be stabilized
by the AAM or nonuniform AAM. Here,aj ( j 51,2,...,n) are
the real parts of the eigenvaluesl j of the original system’s
Jocabian. However, if an unstable fixed point is a type
fixed point ~ai.1, aj,1, for somei, j!, then it cannot be
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stabilized by simple AAM at all and, on the other hand, the
only exist some special situations such as recursive syst
to which the nonuniformly AAM can be applied definitely
The type-IV fixed point~existing at least onej such that
either aj51 or l j51! is essentially related to bifurcatio
phenomenon and can be changed into either a type-I
type-II fixed points through varying the original system
parameters.

Is there an approach that preserves all advantages o
AAM and the YLM method and at the same time removes
disadvantages of them? According to the analytical and
merical investigations of this paper, we show that the ans
is positive.

Note that although it is just the discrete time systems t
are discussed in this paper, the approach developed here
also be applied to control the flows just by taking the cor
sponding Poincare´ sections.

Now, consider ann-dimensional chaotic discrete syste
defined by

xk115F~xk!, ~1!

where xPRn is an n-dimensional vectors, andF is the
smooth vector field.

Let xf be the fixed point of the system~1!, i.e., xf
5F(xf). In order to stabilize this fixed point, we take th
following control strategy described by

xk115F~xx!1M „F~xt!2xk…, ~2!

whereM is ann3n matrix to be determined. Although Eq
~2! takes the form of the AAM, it should be noted thatM is
restricted to be a diagonal matrix in the AAM@15#, however,
it is not always the case in our method. It is easy to kn
that the systems~1! and ~2! share exactly the same set
fixed points as demonstrated in Ref.@15#. Now let us define
an infinitesimal deviation ofxk from xf asdxk5xk2xf . Af-
ter taking a linear approximation of Eq.~2! in a neighbor-
hood,W, of the fixed pointxf , one gets

dxk11'Jdxk1M ~J2I !dxk , ~3!

where
©2001 The American Physical Society12-1
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J5S ]F

]xk
D

xk5xf

is the Jacobian matrix of the original systemF evaluated at
the fixed pointxf , and I is the n3n identity matrix. In
practice, the matrixJ can be experimentally accessible b
taking the well known embedding technique@4,16#. The goal
of controlling here is to make lim

k→`
udxku→0 ~which implies

that xk→xf , ask→`!. For this aim, we set

dxk5s~k2k0!dxk0
, ~4!

wheredxk0
5xk0

2xf , xk0
PW is the point from, hence, the

control is imposed on the original freely evolved syste
Without loss of generality, one may choosek050 hereafter.
And s(k) is a scalar function of its argument, which satisfi
s(k)→0, as k→`. Substituting Eq.~4! into Eq. ~3! and
eliminatingdxk0

, we have

M5S s~k11!

s~k!
I2JD ~J2I !21, ~5!

where we have assumed that the matrix (J2I ) is invertible
in the above.

There are many possible ways to define the funct
s(k), such ass(k)5exp(2ak) (a.0) or s(k)5b/k, etc.,
herea, b are all constants. In this paper, we would rath
defines(k) as

s~k!5gk, ~6!

whereg is a constant andgP(21,1). Making use of Eq.~6!,
the matrixM now becomes

M5~gI2J!~J2I !21, ~7!

whereg is a constant andgP(21,1) as mentioned above.
The control method as given by Eq.~7! doesnot require

anya priori analytical knowledge of the system under inve
tigation, since the elements of matrixJ can be gotten from
experimental data by using the known embedding techniq
As concerns the size of converging region, i.e., the neighb
hoodW defined previously, it is also under investigation.
addition, similar to the YLM method, our method is als
formulated for ann-dimensional system withn being an in-
teger. So our method can then be applied to any fin
dimensional system in principle, including chaotic and h
perchaotic systems, under the condition that the matrixJ
2I ) is invertible. Furthermore, by choosing an appropri
value of g between21 and 1, one may have an optim
control through Eq.~7!.

As compared to the YLM method, first, our method doe
not require any adjustable controlling parameters in adva
and so it can be applied to much more extensive syste
Second, once the constantg is chosen in the range of~21,
1!, thenM is definitely determined and need not be chang
with the discrete time. Therefore, it is much simple
implement.
05621
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On the other hand, by comparison with the AAM, th
main progress of our method is that it can be equally app
to different types of the fixed point, particularly, to the on
where AAM cannot be applied at all, as illustrated in t
example below.

We have successfully applied the proposed method
several typical chaotic and hyperchaotic systems, such
coupled logistic maps and He´non maps@17#, etc. Here, in
order to compare our method with the YLM method and t
AAM more definitely, we discuss the following two
dimensional map@14,18# described by

xk115122~xk
21yk

2!1p,

yk11524xkyk1q. ~8!

To be an illustrative example, this map can be investiga
more analytically. In Ref.@14#, the parametersp and q are
taken to be the adjustable controlling parameters. By adj
ing p and q, the unstable orbit is stabilized to the desir
fixed point. However, we may takep5q50 in this work.
Now, there exist four different fixed points for map~8!. They
are ~0.5, 0.0!, ~21.0, 0.0!, ~20.25, 20.75!, and ~20.25,
0.75!, respectively. Here we take the latest one, i.e., the p
~20.25, 0.75!, as an application. For the fixed point, th
Jacobian matrix is

J5S 1.0 23.0

23.0 1.0 D .

The two eigenvalues ofJ arel1522.0 andl254.0, respec-
tively. It can be verified definitely that this fixed point cann
be stabilized by using the AAM, or the nonuniform AAM
But this is not the case for our method. According to Eq.~7!,
one knows that

M5S 21.0 2
g21

3

2
g21

3
21.0

D ,

whereg is a constant andgP(21,1). The two eigenvalues
of M are 211(g21)/3 and212(g21)/3, respectively.
Since the constant satisfiesgP(21,1), the eigenvalue21
2(g21)/3P(21,1). That is, one of the unstable direction
becomes stable under the control. Then the equation an
gous to Eq.~2! is

xk115122~xk
21yk

2!2@122~xk
21yk

2!2xk#2~g21!

~24xkyk2yk!/3,

yk11524xkyk2~g21!@122~xk
21yk

2!2x#/3

2~24xkyk2yk!. ~9!

The numerical results are shown in the Fig. 1, forg50.5. In
Figs. 1~a! and 1~b!, the curves ofxk vs k and yk vs k are
plotted, respectively. Note that the control is imposed on
underlying system at the momentk050, as indicated by the
2-2



is
nd

f

e

nt is

-
e

g
ctor

ing
m.
and

he
rac-
hod
-

ntrol-
ber

he
s of
an-

d
an

f
art-
rbit
l

CONTROL OF HYPERCHAOS PHYSICAL REVIEW E64 056212
arrow in the figure. It is shown that the unstable orbit
stabilized to the desired fixed point monotonically a
quickly. In Fig. 2, the converging regionW is illustrated
schematically. The way that we use to evaluate the size oW
is described below. First, let us iterate system~9! for each
initial condition (x0 ,y0)5(r cosu,r sinu) ~at beginning,r
50! and check out whether it is converging. Here,r andu
are polar coordinates~origin at xf!. If d(5uxk2xf u) is
smaller than a given valuedmin , then one preserves the valu
of u unchanged and gradually increases the value ofr with
step widthDr . Iterate system~9! again untilr equals some
value r c where d is larger than another given valuedmax.
This point (r c cosu,rc sinu) is just one border point onW.

FIG. 1. Numerical results of Eq.~9!, for g50.5. ~a! and~b! are
curves ofxk vs k andyk vs k, respectively. The iterations are starte
at an arbitrary initial point and 5000 iterations are omitted as tr
sients. The control is imposed on the system at the momentk050
as indicated by the arrow.
05621
Next, increasingu with step widthDu and settingr 50, let us
repeat the above process again until another border poi
found. Here, uP(0,2p). In addition, Dr 50.005, Du
52p/500, dmin51024, and dmax58.0 are chosen, respec
tively, in the computations. It is interesting to find that th
border of the converging regionW looks like a rhomboid.
Starting from any inner point of the converging regionW, the
unstable orbit will approach the fixed point finally by usin
the proposed control strategy. For comparison, the attra
of the original system is also illustrated in the figure.

In summary, we present a general method for controll
chaotic system, and particularly for hyperchaotic syste
The method is based on the variable feedback control
generalizes the AAM. Since it doesn’t requirea priori ana-
lytical knowledge of the system under investigation, t
method can be conveniently applied to a large class of p
tical cases. Furthermore, as opposed to the YLM met
@14#, the OGY method@4# and its variants, the method intro
duced here needs not any accessible and adjustable co
ling parameters. So it is appropriate for much more num
of problems.

We acknowledge the financial support of this work by t
special funds for the Major State Basic Research Project
China under Grant No. G2000067104 and the National P
deng Research Project~95-Yu-41! of China.
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FIG. 2. Schematic illustration of the converging regionW for
the unstable fixed pointxf5(20.25,0.75). Here the attractor o
original system is also shown simultaneously for comparison. St
ing from any inner point of the converging region, the unstable o
will be stabilized to xf quickly by using the proposed contro
strategy.
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