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Control of hyperchaos
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A general method for controlling chaotic systems with one or more positive Lyapunov exponents is inves-
tigated analytically and numerically. The method retains the formal features of the adaptive adjustment mecha-
nism and can be equally applied to various types of the unstable fixed points. It is shown that the method
proposed here neither asks for any prior analytical knowledge of the system, nor any internal or external
controlling parameters in advance.
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It is well known that there is an infinite number of un- stabilized by simple AAM at all and, on the other hand, there
stable periodic orbitsUPO9 embedded in the chaotic attrac- only exist some special situations such as recursive systems
tors[1-3]. How to stabilize UPOs, i.e., control chaos, is nowto which the nonuniformly AAM can be applied definitely.
an active topic in nonlinear sciences and has received muchhe type-1V fixed point(existing at least ong such that
attention in the last decadéd—13. Since the original work eithera;=1 or \;=1) is essentially related to bifurcation
of Ott, Grebogi and YorKOGY) [4], many different control- phenomenon and can be changed into either a type-l or a
ling methods have been proposed and are being pursudgpe-Il fixed points through varying the original system’s
[5-15]. However, most of these methods are only approprifarameters.
ate for low dimensional chaotic systerfisere, we refer to Is there an approach that preserves all advantages of the
the system with one positive Lyapunov exponemh this ~ AAM and the YLM method and at the same time removes all
situation, there is just one unstable direction along the chadisadvantages of them? According to the analytical and nu-
otic orbit. The problem of how to stabilize high dimensional merical investigations of this paper, we show that the answer
chaotic systems, the systems with multiple positiveis positive.

Lyapunov exponents, i.e., the so-called hyperchaos, is con- Note that although it is just the discrete time systems that
sidered to be a tough one. are discussed in this paper, the approach developed here can
Recently, Yang, Liu, and Mao use a new remarkablealso be applied to control the flows just by taking the corre-

method(we refer to the YLM method hereafteto control ~ sponding Poincareections.

chaotic system§l14]. This method doesnot require preexis- Now, consider am-dimensional chaotic discrete system
tence of a stable manifold and can be applied to controfiefined by

hyperchaotic systems efficiently. Similar to the OGY method

and its variants, the YLM method is also based on a param- Xk+1=F(Xy), (2)

eter perturbations mechanism and so requires one to find at

least one adjustable controlling parameter of the system iyhere xe R" is an n-dimensional vectors, ané is the
advance. For the YLM method, by adjusting the correspondsmooth vector field.

ing control parameter, one of the unstable directions be- | et x; be the fixed point of the systerfl), i.e., x;
comes stable so as to stabilize the unstable orbit. Unfortu=F(x ). In order to stabilize this fixed point, we take the
nately, in many real systems such as biological, chemicakg|iowing control strategy described by

and social economical systems, one often cannot find such a
parameter at all. Our approach to overcome this shortcoming
is the adaptive adjustment mechani$fhAM). The AAM
takes advantage of the variable feedback control and doesnot ) ) _
require existence of adjustable controlling parameters. HowVN€reéM is annxn matrix to be determined. Although Eqg.
ever, the AAM can only be applied definitely to control some (2) takes the form of the AAM, it should be noted thdtis
special types of fixed points. Even if one utilizes the so-festricted to be a diagonal matrix in the AANIS], however,
called nonuniform AAM[15], there also exist some situa- it is not always the case in our method. It is easy to know
tions to which the AAM or nonuniform AAM cannot be that the systemgl) and (2) share exactly the same set of
applied. According to Ref[15], the fixed points are classi- fx€d points as demonstrated in REE5]. Now let us define
fied into four types. If an unstable fixed point is either a@n infinitesimal deviation ok, from x; as 5x,=x,—x; . Af-
type-| fixed point(a; <1 for all j=1,2,...n) or a type-Il fixed &' taking a linear approximation of E() in a neighbor-
point (a;>1 for all j=1,2,...n), it can always be stabilized hood, W, of the fixed pointx;, one gets

by the AAM or nonuniform AAM. Herega; (j=1,2,...n) are

the real parts of the eigenvalugs of the original system’s X1~ IX+M(I—1) O, ©)
Jocabian. However, if an unstable fixed point is a type-ll|

fixed point(a;>1, a;<1, for somei, j), then it cannot be where

X4+1=F(Xx) + M (F(Xp) — Xy, (2
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E

is the Jacobian matrix of the original systdfrevaluated at
the fixed pointx;, and| is the nXn identity matrix. In
practice, the matrixJ can be experimentally accessible by
taking the well known embedding techniquk16]. The goal
of controlling here is to mak?_?loicdrﬁxk|eo (which implies
thatx,—X;, ask—o). For this aim, we set

JF

X

ox= o (k—ko) 6%, 4
where X =X —X¢, X, € W is the point from, hence, the
control is imposed on the original freely evolved system.
Without loss of generality, one may chodsg=0 hereafter.
And o (k) is a scalar function of its argument, which satisfies
o(k)—0, ask—o. Substituting Eg.(4) into Eqg. (3) and
eliminating Xy, WE have

|

where we have assumed that the matdx-() is invertible
in the above.

o(k+1)
o(k)

I—J)(J—I)l, (5)
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On the other hand, by comparison with the AAM, the
main progress of our method is that it can be equally applied
to different types of the fixed point, particularly, to the ones
where AAM cannot be applied at all, as illustrated in the
example below.

We have successfully applied the proposed method to
several typical chaotic and hyperchaotic systems, such as
coupled logistic maps and lHen maps[17], etc. Here, in
order to compare our method with the YLM method and the
AAM more definitely, we discuss the following two-
dimensional magp14,18 described by

Xes1=1—2(x2+y2)+p,

()

To be an illustrative example, this map can be investigated
more analytically. In Ref[14], the parameterp and q are
taken to be the adjustable controlling parameters. By adjust-
ing p and g, the unstable orbit is stabilized to the desired
fixed point. However, we may take=q=0 in this work.
Now, there exist four different fixed points for m&p). They

are (0.5, 0.0, (—1.0, 0.0, (—0.25, —0.75, and (—0.25,
0.75, respectively. Here we take the latest one, i.e., the point
(—=0.25, 0.73, as an application. For the fixed point, the

Yi+1= — 4% Ykt a.

There are many possible ways to define the function

a(k), such asr(k) =exp(~ak) (a>0) or o(k)=B/k, etc.,

here «, B are all constants. In this paper, we would rather

definea(k) as

a(k) =, (6)
whereyis a constant angte (—1,1). Making use of Eq6),
the matrixM now becomes
M=(y1-3)3-14, (7
wherey is a constant ang e (—1,1) as mentioned above.
The control method as given by E({) doesnot require
anya priori analytical knowledge of the system under inves-
tigation, since the elements of matrixcan be gotten from

1.0
-3.0

J

Jacobian matrix is
( — 3.0)

1.0
The two eigenvalues afare\ ;= — 2.0 and\,=4.0, respec-
tively. It can be verified definitely that this fixed point cannot
be stabilized by using the AAM, or the nonuniform AAM.
But this is not the case for our method. According to &9,
one knows that

y—1

3

-1.0

M

y—1
3

—-1.0

experimental data by using the known embedding techniquavhere y is a constant ang e (—1,1). The two eigenvalues
As concerns the size of converging region, i.e., the neighboref M are —1+(y—1)/3 and—1—(y—1)/3, respectively.

hoodW defined previously, it is also under investigation. In
addition, similar to the YLM method, our method is also
formulated for am-dimensional system with being an in-

teger. So our method can then be applied to any finite
dimensional system in principle, including chaotic and hy-
perchaotic systems, under the condition that the matiix (

—1) is invertible. Furthermore, by choosing an appropriate

value of v between—1 and 1, one may have an optimal
control through Eq(7).

As compared to the YLM method, first, our method does-
not require any adjustable controlling parameters in advance,

Since the constant satisfies= (—1,1), the eigenvalue-1
—(y—1)/3e(—1,1). That is, one of the unstable directions
becomes stable under the control. Then the equation analo-
gous to Eq(2) is

Xier1=1— 20+ YD) —[1-20E+yd) —x ]— (y—1)
(—4xYk—Yi)/3,
Yier1= — xyk— (y— D[1—2(x¢+y3) —x1/3

— (= XYk Y- 9

and so it can be applied to much more extensive systems.

Second, once the constaptis chosen in the range ¢f-1,

The numerical results are shown in the Fig. 1,$6¢0.5. In

1), thenM is definitely determined and need not be changedrigs. 1a and Xb), the curves ofx, vs k andy, vs k are

with the discrete time. Therefore, it is much simple to
implement.

plotted, respectively. Note that the control is imposed on the
underlying system at the momekg=0, as indicated by the
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FIG. 1. Numerical results of Eq9), for y=0.5.(a) and(b) are
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FIG. 2. Schematic illustration of the converging regidhfor
the unstable fixed poink;=(—0.25,0.75). Here the attractor of
original system is also shown simultaneously for comparison. Start-
ing from any inner point of the converging region, the unstable orbit
will be stabilized tox; quickly by using the proposed control
strategy.

Next, increasing with step widthA# and setting =0, let us
repeat the above process again until another border point is
found. Here, 6 (0,27). In addition, Ar=0.005, A#
=2/500, d;,i,=10"*, and d,,,,=8.0 are chosen, respec-
tively, in the computations. It is interesting to find that the
border of the converging regiow looks like a rhomboid.
Starting from any inner point of the converging regdéhthe
unstable orbit will approach the fixed point finally by using

curves ofx, vskandyy vsk, respectively. The iterations are started the proposed control strategy. For comparison, the attractor
at an arbitrary initial point and 5000 iterations are omitted as tranof the original system is also illustrated in the figure.

sients. The control is imposed on the system at the moien0d
as indicated by the arrow.

arrow in the figure. It is shown that the unstable orbit is
stabilized to the desired fixed point monotonically and

quickly. In Fig. 2, the converging regiolV is illustrated

schematically. The way that we use to evaluate the six¥ of

is described below. First, let us iterate systédn for each
initial condition (Xq,Yq) = (r cosé,rsiné) (at beginning,r
=0) and check out whether it is converging. Hereand 6
are polar coordinategorigin at x;). If d(=|x—x;|) is

smaller than a given valu#,,;,, then one preserves the value

of 6 unchanged and gradually increases the value with

In summary, we present a general method for controlling
chaotic system, and particularly for hyperchaotic system.
The method is based on the variable feedback control and
generalizes the AAM. Since it doesn’t requiepriori ana-
lytical knowledge of the system under investigation, the
method can be conveniently applied to a large class of prac-
tical cases. Furthermore, as opposed to the YLM method
[14], the OGY method4] and its variants, the method intro-
duced here needs not any accessible and adjustable control-
ling parameters. So it is appropriate for much more number
of problems.
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