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Selective communication and information processing by excitable systems
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The phenomena of selective response of an excitable system to external pulse stimulation relating to inter-
neuron communication and information processing problems are discussed. Subthreshold dynamics of the
FitzHugh-Nagumo-like excitable system modeling of a neuron with the synaptic input is investigated. It is
shown that the system response on various incoming information messages can be described by one- and
two-dimensional linear and nonlinear point maps. Nonlinear integrating and resonant properties of the system
are analyzed.
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I. INTRODUCTION low the threshold at a limit cyclérue oscillationg or near a
fixed point of focus typddamped oscillations

The problems of interneuron communication and informa-  In this paper | consider an excitable dynamical system of
tion processing in central nervous systé@NS) have been FitzHugh-Nagumo type capable ofitegrating, resonant,
intensively studied in recent years. The investigation of in-and integrating at resonanceesponses on various informa-
formation pathways in CNS, the functions of synaptic transtion messages. It is shown that the problem of the response
mission, information encoding, and communication concern§an be reduced to the analysis of 1@ne-dimensionaland
both fundamental scientific understanding of global CNS2D linear and nonlinear point maps. Section Il describes the
functions and related applicatiofis—9]. Then, the design of model, its phase space and basic properties. In Sec. Ill the
artificial systems based on the principles of neurodynamicdD nonlinear point map describing nonlinear integrating re-
intensively develops in connection with possible engineeringPonse is analytically obtained and analyzed. Section IV is
applications. Take, for instance, cellular neural networksdevoted to possible responses on stimulation when the sys-
reaction-diffusion lattices, optical neurocomputers, gt6—  tem exhibits damped oscillation. In the linear approximation
18] the 2D point map describing basic resonant properties is de-

At Sing|e cell level the prob|em of neuron communication rived. Nonlinear resonance response is analyzed with the 2D
concerns the dynamics of a neuron stimulated by pulse séonlinear map. Section V illustrates the possibility of re-
quences with variable interspike interval that represent, irfPonse on “inhibitory” stimulation. Section VI proposes a
fact, encoded information messaggs-8. Typically, the  brief discussion of the results.
single neuron may have one or many different synaptic con-
nections with other neurons and should produce adequate
response on various incoming signals. From the behavioral Il. MODEL
or functional point of view there are two major types of the

responsd2—5]. The first type integrate-and-fire neurons From the functional or behavioral point of view the syn-

summarizes or integrates the incoming signals and wheﬁsrt;get:jaggrgﬁgwgzoé]ex]'t?n“ount frglr:ei‘%llr;os(;e"enrlﬁ)r/bg(teigr?_
reaching the excitation threshold generates the respon§ — put p P

pulse. The number of input pulses to be integrated is define %héhgxgﬁi?rma%gscﬁ! ?C"e%tggtsgégagzz pglfr:(zﬁg?ﬁe
by the interspike interval characterizing the message and b y postsynaptic p P

the intrinsic characteristics of the cell. Neurons of the secon%embrane bringing neuron to its excitation threshold. When

type exhibit a resonant response. They fire when the spik € th;eshold tls ;??Ch_?ﬁ’ thehnbe_turon eXht'b'ts e>§p|tat|C)tn F;.“'fe
frequency is in a resonant relation with the intrinsic frequen-Or ac 'ﬁn po eln 1al. he Inhibrtory r()jQS synaptic poten '?
cies of the cel[2-5,19,20. Such neurons can communicate .(IPSH lyperpoarizes t € neuron te_n Ing tp dec_re_ase _|ts Ir-
only at selective frequencié8—5]. Recent experiments have ing activity. The synaptic transmission is unidirectional

confirmed that the resonant neurons play the key role irpgrtszlgti(r)nnoi?ht?\ge ongirg{;n Egpf;]%e;tz]tge?; a?qianozxr:_ernal
functional neuronal circuits responsible for different globalp ' b

functions of the CNS. For example, the thalamocortical cir-t'al) of the smg!e neuron be desp_nped by t_h.e variat(g
=X(t,Xg) evolving from some initial conditions<g=x(t

cuit responsible for the associative memory CNS function : o .
=0). In the simple approximation we may take into account

uses~40 Hz frequency, the olivocerebellar circuit at10 . . o
Hz plays a crucial role in the motor performance and move—the PSP perturbation by the instant jurtipcrease for the

ment coordination2,3]. EPSP and decrease for the IP®Pthe state variablémem-

In modeling, various dynamical systems accounting fO'brane potential at time momentt, when th.e |r_1put pulse
functional properties of real neurons can be udgdIn par- comes. Then, the state of the neurontfort, is given by
ticular, for integrating response one can use FitzHugh-
Nagumo-like excitable systems with relaxation dynamics.
Resonant response may occur in the systems oscillating be- X(O)=X(tXe)),  Xtg=X(tXo) +Up. @)
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ues the systen{2) becomes auto-oscillating with a limit

y o cycle describing periodic sequences of excitation pulaes
tion potential$ [5].

f ™ Let the systeni{2) get a “synaptic” input(1) in the form

of a periodic sequence of pulses with the interspike interval
7,. Each pulse at the time moments,=7yn, n
=0,1,2 ..., perturbs the current state of the system accord-
ing to Eq. (1), after that, it evolves autonomously. For ex-
ample, let the system initially be at rest, i.e., at the fixed
point O,. If the strength of synapse, is large enough, then
even a single pulse brings the system over the threshold
(separatrixW;) and the excitation pulse is generatédg.

@ 1(a)]. It is the case of “strong synapse” and the system
represents a pulse follower. For example, in CNS cerebellar
Purkinje cells getting excitatory input from climbing fibers
provide a response for sure on each incoming pLB$elLet

\\\0, P " = us focus on the opposite situation whepis low enough and
0~ « z,,, 3 the system has to accumulate perturbations for some time
N evoking the response on the definite number of pulses,
three, etg. In this case the subthreshold dynamics(®f
o) plays a major role.
FIG. 1. (8 Qualitative phase portrait of syste(@) for e<1. I1. NONLINEAR INTEGRATING RESPONSE
W ,andW3 , denote the incoming and outgoing separatricies of the
saddleO,, respectively(b) One-dimensional dynamics of EQ) Let us consider the systef@) whene—0. Then,
for e—0 at IineV=yl. _
x=f(x)-y,

In other words, at=t, the input pulse sets the initial con-

ditions for the system. In such an approximation we have

ignored the dynamics of the synaptic transmission taking i - . , .

into account with just one paramete characterizing the h the sy;tem(_Z) |n|t|§1IIy s at _rest (fixed pomtOl_),_then

“ strengtht of synapse. It is positive for EPSRy,>0, and under stimulation1) its dynamics occurs at the ling=y;

negative for IPSPy,<0. and is described by Eq$3) [Fig. 1(b)]. Let us assuma=
The single neuron dynamicgt) can be described by the 1+ £&. Then, in the interval between the rest point and the

following two-dimensional FitzHugh-Nagumo-like system threshold point the functiof(x) can be represented with its
power expansion

y~y=const. (3)

x=100-Y, f(—1+8=—§+£+0(&). @
y=e[g(x)—y—J], 2 _ _ .
In this case, the coordinates of the fixed po®y4 can be

wheref(x)=x—x3/3, J>0, ande >0 and the functiomgy(x) obtained explicitly,

has the form

a—2- Va?—4(a+3-2/3)

ax, if x<0, 2
go0={ )
Bx, if x=0. a(a—2)—aa®—4(a+I-2/3)
yl: 2 —-J.

X1

Let the systent2) be in theexcitablemode. Its phase portrait
for e<1 is shown in Fig. a). The system has three fixed Introducing a new variable=x—x, and using Eqs(3)—(5)

points,O4(X1,Y1), Ox(Xs2,Y5) andO3(X3,Y3). The pointO3 — o
is unstablgnode or focugs O, is of saddle type, an@®, is a ohneeé:;una?ig?lw that at the lipe=y, the dynamics is given by
)

stable node or focus depending on the parameter values. Trt1
stable fixed poinO; defines the system rest stdtest po- S,
tentia). The incoming separatrix of the saddW, , accounts Z=7"" 14y, (6)
for the excitation thresholdthreshold manifolgl It means

that for a strong enough perturbation exceeding the threshoiherez,, denotes the threshold poifftig. 1(b)],

the system exhibits a long excursion in the phase plane form-

ing the response pulse. Note, that for suitable parameter val- Zn=vVa’—4(a+I-2/3) —a.
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FIG. 2. Behavior of the nonlinear 1D m&®). Parameter values: FIG. 3. Parameter planeuf,r,) illustrating integrating re-
@=0.2J=0.4. (1) The map has two fixed pointsy,=0.2,7,=9.  sponse on pulse stimulatigdoublets, triplets, et. Dashed curves,
(2) Saddle-node £ 1) bifurcation,u,=0.2,7,=7.24.(3) No fixed 9, c§, C?, are obtained analytically using the 1D m&, solid
points,u,=0.2,7,=5. Arrows show the map trajectory correspond- curves,C9, C3, C2, are calculated numerically using E@) with
ing to excitation. Units are arbitrara.u). £=0.003. The regions restricted between cur@g, Cy. corre-

spond to the response dht-1 number of pulses. Parameter values:

Let the system be stimulated with the interspike intervale=0.2J=0.4. Units are arbitrarya.u,).

7o It follows from Eq. (1) that for two neighboring pulses
Eq. (6) satisfies the conditions

2
, Zjj, eXp( — 2z 7p)
F'(z,)

2(t=0)=2,>0, 2z(t=17,)=2141—U,>0, {z[1—expl —zn7p) ]~ Zin}?
wherez, denotes the state of the system wimgpulses have It follows from Eq. (8) that F(u,)>u,, henceF'(z;)<1,
been accepted. Then, and the fixed pointz} is stable,F'(z7)>1 andz] is un-
stable. Exact equality condition in EQ) indicates saddle
Zy1-up  dz node or+ 1 bifurcation resulting in the disappearance of the
szf - fixed points(Fig. 2). The inequality(9) defines the region in
the parameter planeuf,r,) shown in Fig. 3. It is located

1 (Zns1—Up)(Zo—2Zp) above the boundary curv€®. Here the system does not
== a n 2 (Znoa—U—27g) (7) respond to the stimulation at all because all trajectories of the

P map are attracted by the stable fixed pahtlocated below
the threshold. Note that in this region, the characteristic re-
laxation time of the system is much shorter than the inter-
spike interval, hence it has enough time to recover its rest
state until the next pulse in the sequence has come.

_ . . When the magg8) has no fixed points, its trajectories after
Znl Up~ (Up ™+ Zin) EXP( ~ Zin )] Upth. some number of steps, overcome the thresholdy >z, . It
Z[1—exp(—2zin7p) ]~ Zin means that the system respondshbpulse message. Let us

(8) consider a doublet stimulud=2. Using the mag8) with
initial conditions z;=u, one can show that the condition
Z,> 27,y is satisfied if the parameter values satisfy the inequal-

ity
- :zth+upi \/(zth+up)z[l—exﬂ—zthrp)]—élupz”1 u
1,2 2

2
A 1—exp(—2zip7p)] ’ o<7p<rg=a|n zm—pup' (10)

Zy ZZ—ZZm

Hereu,<zy,, z,<zy, i.e., at then step the system has not
yet reached the threshold. In the interjal,,z,] the equa-
tion (7) defines 1D nonlinear point map,

Z,.1=F(zy)=

The behavior of the ma(8) is illustrated in Fig. 2. It has
two fixed points

if the parametersi, and 7, satisfy the inequality In Fig. 3 this region is located below the cur@é. Similarly,

the system responds on a triplet>z,, , if

2 zptu
7= —In—0—P 9)
Pz zm—Up 1 uy(zgp+uy)
Tr2)< Tp< TﬁZ-lﬂL’;. (11
The functionF(z,) is monotonically increasing with Zth  (Zh—Up)
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FIG. 5. Qualitative phase portrait of the systé® when it has
oscillatory dynamics near the fixed poi@t. The tangent lind-(z)
approximates the separatiithreshold manifold W} near the fixed

ol X point O,.
0.5
00 In possible applications of the model such selectivity to a
05 number of input pulses can be used when designing the unit
Lol of a conventional neurocomputelt represents a network of
15 many intercoupled cells with programmable connections and
20] t makes processing by means of temporal summation or inte-

o 20 3 4 S0 6 7 gration of incoming signalg16].

®)

IV. RESONANT RESPONSE
FIG. 4. A response oN=4 pulse messagéa) The map trajec-
tory in the phase pland€b) Time evolution of the systen2). Pa-
rameter valuesa=0.2, 3=10,J=0.4,6=0.1,u,=0.33, andr,
=6.8. Units are arbitrarya.u).

For suitable parameter valuésr example, for increasing
) the fixed pointO, of system(2) acquires oscillatory prop-
erties(Fig. 5. Let us suppose that it is a stable focus with
eigenvalues\; ,= —h=*lw,
This inequality defines the region located between the curves
CY andC} (Fig. 3. By increasing the number of pulses one e—fy \/ (fo—€)?
can obtain the sequence of boundary cur@saccumulat- h= 5 -0, o= ela—fa)— 4 (12)
ing to C2 with N—os.

To verify the results Fig. 3 also shows the curve@§  with f,; X2=1—x§‘2, respectively. Hence, near the rest point
obtained in numerical simulation of the systé®) with Eq.  the system2) displays damped oscillatory behavior.
(1) for e=0.003. Here the curv€s, estimates the boundary
curveC . There is a good agreement between the analytical A. Linear approximation
and numerical results. Growing difference between the
curves with increasingN andu, can be explained using the
phase portrait of systeii2) (Fig. 1). For nonzerc the vari-
abley(t) is slightly increasing below the nulicling(x) —J
bringing the system to the region below the fixed pdnt,

First, let us consider a linear approximation of the system
(2) when it evolves below the threshold. Linearizing E2).
near the fixed poinD; we obtain

z=f,,z—w,
x<X; (refractory statg Then, to overcome the threshold the . Xt
value ofu, should be higher at the next coming pulse. Thus, w=g(az—w), (13
in the parameter planeuf,7,) the curvesCy, goes below
than the corresponding curves . with z=x—x; andw=y—y;. Initial conditions for Eqs(13)

Let us fix the parametar, characterizing the “strength” @€ defined by Eq(1). Then, for two neighboring pulses
of the EPSR1). Then, for variable characteristic of the ex-
ternal signalinterspike intervalry) the system can select the 2(t=0)=2z,, w(t=0)=wy,
doublets, triplets, and more complex messages summarizing (14)
or integratingthem in the single response pulse. For illustra- Z(t=Tp) = Zyr 1~ Up W(t=17p) =Wy,
tion, the four-pulse response is shown in Fig. 4. As expected, . .
the trajectory of the mag8) lies near the Iin(-:37= y, and where the point%, ,w,) defines the sta_lte of the system when
jumps over the threshold ai=4 [Fig. 4@)]. Figure 4b) n pulses hgve been acc_epted. So_lvmg _Ilnear _problem_ Egs.
shows time evolution of the systef@). To be excited it (13)—(14) yield the following two-dimensional linear point

accumulategintegrate$ perturbations below the threshold. map
To describe further evolution of the systdnot considered

here one must take into account the response pulse duration
and the refractory period. W,.1=Cz,+dw,, n=1,2,..., (15

Z,,1=az,+bw,+u,,

056210-4



SELECTIVE COMMUNICATION AND INFORMATION . .. PHYSICAL REVIEW E64 056210

with 55 1D,
D '
fath o ’
a=exp—hry)| codwrp) + sinwTy) |, 30+ k=1
in(w7) o
SIN(w T
_ _ P
b= —exp th)—w . 20/ |
I
I
(futh)?) 151 |
C—exp(—hrp)(aH—T SiNwTp), € :
10 I
I
fx1+h . 54
d=exp(—hrp) | codwTp) — siNwTp) |
) ) ) ) QE===- e —_
The single fixed point of the mayl5) has the coordinates 0.15 0.20 0.25 0.30u
P
* _ Up(l_d) w* = upC FIG. 6. Resonant response in linear approximation. The regions
(1-a)(1—d)—bc’ (1-a)(1—d)—bc’ of doublet and triplet response are filled with light and dark gray
colors, respectively. The curv@,. corresponds to the location of
and the multipliers the fixed point £* ,w*) of the map(15) at the threshold liné(z).
Parameter valuesi=0.5,J=0.15, ande =0.1. Units are arbitrary
ri=exg(—hzlw)7p]). (a.u).

(16) Since the systen{2) has oscillatory properties the re-

Hence the fixed point is a stable focus that attracts all théPONSe regiong-ig. 6) appear in a resonance way. The linear

trajectories of the linear point mapis). resonance relation for damped oscillation near the point

'For simplicity, let us approximate the threshold manifold 'S

i - .
W; by the following linear function, . 2mk

o=—,k=12,..., (18
w=L(2)=—y1t (flo= M) (Z2+X9), 17 ©
5 If it is satisfied, the map15) splits into a pair of linear
N e \/(fx2)_8) —e(a—fy) one-dimensional maps
X2 2 4 x2/ -

zn+1=exp(—hr',§)zn+ Up,
It is tangent to the separatrix at the fixed poBy (Fig. 5).

Let the system initially be at rest, henzg=u, ,w;=0. The Wo 1= exp(—h7§)w,,
excitation threshold for single pulse perturbations 1, is ) i )
given by with the stable fixed point
SV L phe P yrk=Q, (19
R P W 1-exp—h)

For u,<Z;, iterating the mayi15) with the initial conditions In this case the sufficient conditions for excitation becomes

one can obtain the poiniz(,wy). Then, the inequality z*¥>7y,. Using Eqs(17) and(19) we find that for response
at exact resonance

Wn<L(zn), Up>uk=2z¢[1—exp —h7¥)]. (20)

ensures that the system evokes responsl WISQS in the It shows that, for damped oscillation the resonance regions
¥xponentially decay for increasirig(Fig. 6). Note that the
regions(their maxima are slightly shifted relative tcr'g in

he result of the finite slope of the lirle(z) approximating

he thresholdFig. 5).

blets D,, and tripletsD3, in the parameter planeug,p).
The dashed curve€,,, binds the region below the curve
corresponding to the fixed point located above the threshol
w* <L(z*). Since it is a stable focus and all the trajectories
are attracted, this inequality provides sufficient conditions
for excitation. Note that when it lies below the threshold
w* >L(z*), the trajectories can reach the threshold and the Let us now take into account nonlinearity of the system
system can be excited at some number of pu(B&s 6). (2). Along with the appearance of the resonance behavior

B. Nonlinear resonance response
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FIG. 7. Nonlinear resonant response regiddg,andDj , cor- !
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responding to the doublet and triplet EPSP stimuli, respectively.
Parameter valuegi=0.5,J=0.15, ande =0.1. Units are arbitrary

(a.u). (®)

FIG. 8. Resonant response of the systdimand(2) integrating
predicted by linear theory one may expect various nonlineaghe message o=8 EPSP pulses. Parameter values: 0.5, 3
effects including a shift of the response curves and responsesio, J=0.15,e=0.1, u,=0.172, andr,=27.5.(a) The trajectory
at composite frequencies. In particular, for higher values obf the nonlinear majf leading to excitation(b) Time evolution of
up, when approaching the separathy; the oscillation be- the systen(2). Units are arbitrarya.u).
comes nonisochronous and the system evolves for a long
time near the separatrix threshold. Furthermore, the separ
trix itself is given by a nonlinear curvé-ig. 5).

The trajectories of the syste(®) with the conditiong14)
define nonlinear mag-, (z,,w,)—(Zn+1,Wn+1). FOr the
particular trajectory the functioR can be derived by numeri-
cal integration of Eqs(2). If after N steps the trajectory
jumps over the sep(:lratrlwi1 (also numerically calculated

then the system respondsNepulse message. Figure 7+”|U5' Many neurophysiological experiments have shown that
trates the response regions for doubfs and tripletsD3 . neurons when stimulated may fire at hyperpolarized state
As expected the structure of the bifurcation set has resonangs 4. |t means that inhibition of the cellPSP may also
character with exponential dec0), but it is quite different  c4yse an action potential. Qualitative models have explained
from that obtamed_m linear approximation. The curves forg,.h nossibility by complex behavior of the threshold mani-
triplet response dt=2,3 form two Sep?‘rate regions. Further- fold or by the presence of the second excitation threshold at
more, the system may respond.to either doublgts or tnpletﬁm hyperpolarized staféh,5]. The models(1) and (2) may

for values ofr, that are even antipha¢g) according to the also exhibit nonlinear integrating and resonant response on

linear theory. This is the result _of nonlsochronous behawor,[he IPSP. Note that in the regiorcx, of the phase plane the
Note that the response on increasing number of pulses

(N=4,5, ...,) becomes more complicated. It is also re- _separatrixWil_ (threshold manifollgoes “P(Fjg- 5 provid-
stricted within a number of separate regiofret shown N9 the poss!blllty of excitation caused by “inhibition,l,,
herd. For example, the behavior of the 2D nonlinear map<0. The regions of the IPSP response on doubBts)(and
obtained numerically at some point in the,(7,) plane for  triplets (D3) numerically calculated are presented in Fig. 9.
N =8 is illustrated in Fig. &). Before reaching the threshold Their structure is quite similar to that obtained for the EPSP
the trajectory behaves quite complex. Time evolution of thestimulation. The triplet response occurs near the doublet
system(2) is shown in Fig. &). Here the excitation pulse Within two separate regions at each resonance nuniber,
(action potential appears after long lasting subthreshold os-=2,3. Then, for variable interspike intervaj, the system
cillation. responds on definite number of pulses coming at selective

Thus, excitable systems with oscillatory subthreshold befrequencies. Note that more complex response may occur in
havior even when the oscillations are damped can provide the neighborhood oD, ;. For illustration, the trajectory of
selective communication with nonlinesgsonantproperties.  the nonlinear map and time evolution of the system when
There are separate regions of selective response on messagesponding olN= 12 number of the IPSP stimuli are shown
with definite number of pulses, hence the system is nonlinean Figs. 1Ga) and 1@b), respectively.

ﬂitegratoras well. In possible applications the model may be
useful in the design of aascillatory neurocomputetts pro-
cessing functions are based on resonance communication be-
tween the unit§neuron$ and their connectivity16].

V. NONLINEAR RESPONSE ON IPSP
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FIG. 9. Nonlinear resonant response on the IPSP stimuli. The
regionsD; and D; correspond to the response on doublet and N
triplet messages, respectively. Parameter values0.5,J=0.15,
ande=0.1. Units are arbitrarya.u). N
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VI. DISCUSSION 0 100 200 300 400 500

The paper has discussed some problems of communica- (b)
tion and information processing by excitable systems. The
FitzHugh-Nagumo-like model with a threshold manifold k|G, 10. Resonant integration of a compléx= 12) message of
based orfunctional properties of neurons is investigated. It the |IPSP pulses. Parameter values=0.5, 5=10,J=0.15,¢
has been shown that the analysis of the system response 4®.1, u,= —0.96, andr,=33.5.(a) The trajectory of the nonlinear
information messages taken here as simple periodic SenapF leading to excitation(b) Time evolution of the systert®).
guences of pulses and packages of two, three or more puls&sits are arbitrarya.u).
with a characteristic interspike interval may be reduced to _ . . .
the analysis of transient trajectories and limit sets of 1D an ration, gelecnon on _fr_quency, and_ integration at sele_ctlve
2D linear and nonlinear point maps. The bifurcation sets il- requencies. Hen_ce, It s, n fact,ra_mlmal processing _unlt
lustrating different responses have been obtained and anghe next task will be the Integration of such units in net-
lyzed. It is shown that if the system has relaxation subthresh\f\’ork.S to reproduqe various funct|0n§ qf CNS such as pro-
old dynamics the response appears when integrating tH ssing of v_|sual |_nformat|on, associative memory, etc. In
definite number of spikes. The regions of the response ha fference with various neural network modésscillatory

been analytically estimated and numerically verified. Wherpetworks, conventional networks, cellular neural networks,

the dynamics is oscillatory, the system responds integratin gction_ diffusiqn_lattices, gi)cthe a_ssemblies of excitable
Yy y 4 P g ag:nts might exhibit processing at single “cell level.” Such

signals at the selective frequencies. The response is charac-. . . ;
terized by both oscillations near rest point and by the nonUnits, of course, have relatively complex internal dynamics,

linear behavior near the threshold manifold. Moreover, thé)Ut display clear functions.
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