PHYSICAL REVIEW E, VOLUME 64, 056209
Chaos and the continuum limit in the gravitational N-body problem: Integrable potentials
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This paper summarizes a numerical investigation of the statistical properties of orbits evolved in “frozen,”
time-independeni-body realizations of smooth, time-independent density distributions corresponding to in-
tegrable potentials, allowing for #<N=10>5 Two principal conclusions were reachdd) In agreement
with recent work by Valluri and Merritt, one finds that, in the limit of a nearly “unsoftened” two-body kernel,
i.e., V(r)=(r?+e?) Y2 for e—0, the value of the largest Lyapunov expongnioesnot decrease systemati-
cally with increasing\, so that, viewed in terms of the sensitivity of individual orbits to small changes in initial
conditions, there is no sense in which chaos “turns off” for laljeHowever, it is clear that, for any finite,

x will tend to zero for sufficiently largh. (2) Even thoughy does not decrease for an unsoftened kernel, there

is a clear, quantifiable sense in which Ngcreases, chaotic orbits in the frozBnsystems remain “close to”
integrable characteristics in the smooth potential for progressively longer times. When viewed in configuration
or velocity space, or as probed by collisionless invariants like angular momentum, foedits typically
diverge from smooth potential characteristics g®wer lawin time, rather than exponentially, on a time scale
«NPty, with p~1/2 andtp a characteristic dynamical, or crossing, time. For the case of angular momentum,
the divergence is well approximated byt# dependence, so that, when viewed in terms of collisionless
invariants, discreteness effects act as a diffusion process that, presumably, can be modeled by nearly white
Gaussian noise in the context of a Langevin or Fokker-Planck description. For position and velocity, the
divergence is more rapid, characterized by a nearly linear power-law grfuttith g~ 1, a result that likely
reflects the effects of linear phase mixing. The inference that, pointwise, individkbaldy orbits can be
reasonably approximated by orbits in a smooth potential only for tixnl$'%, has potential implications for
various resonance phenomena that can act in real self-gravitating systems.
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[. INTRODUCTION AND MOTIVATION chaotic even for very largd. Suppose, e.g., that a system of
total masdM =1 is represented by a collection Mfpoints of
Many astronomical objects, including, e.g., globular clus-massm=1/N, so distributed as to sample the density distri-
ters, are typically modeled by bulk gravitational potentialsbution corresponding to an integrable potential. The claim
that manifest a high degree of symmetry and that, being inthen is that, when expressed in units of a natural dynamical,
tegrable, lead to completely regular characteristics with n®r crossing, timetp~1//Gp, with p a typical density, the
possibility of chaotic behavior. One knows, however, thatcharacteristic time scaleon which an initial perturbation in
such bulk potentials constitute idealizations, the true systerany given orbit tends to grow will not diverge féf—. In
correspondingat least approximatejyto a realization of the this sense, the degree of chaos manifested by individual or-
gravitationalN-body problem. The important point, then, is bits is not expected to “turn off” for very larg&l. There is
that motion in theN-body problem, even for aN-body sys- an apparent consensus, motivated both from theory and nu-
tem that samples a smooth, time-independent phase-spagerical experiments, that should not increase without
distribution corresponding to an integrable potential, is typi-bound forN— o, although there is some disagreement in the
cally chaotic in the sense that orbits exhibit exponential senliterature as to whether(N) should converge towards an
sitivity towards small changes in initial conditioh$]. This  N-independent valug2] or whetherr should instead slowly
perhaps is not surprising. The true potential associated with decreasewith increasingN [3].
collection of point masses no longer possesses the symme- If, however, this be true, one is confronted with subtle
tries of the original integrable potential, so that there is noquestions of principle regarding the nature of the continuum
reason why the orbits should not be chaotic. limit. It is generally assumef®] that, for sufficiently largeN,
However, whatis, perhaps, surprising is the expectation, a self-gravitating system of discrete point masses may be
derived both from theoretical argume3] and from nu-  characterized adequately by a smooth phase-space density
merical simulationg4], that theN-body problem remains that solves the collisionless Boltzmann equati@BE), i.e.,
the gravitational analogue of the Vlasov equation from
plasma physics. The obvious point, then, is that time-
*Electronic address: kandrup@astro.ufl.edu independent solutions to this equation that manifest a high
"Electronic address: sideris@astro.ufl.edu degree of symmetry correspond typically to bulk potentials
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that are integrable or, even if they be nonintegrable, admithe limit e— O first yields orbits that remain chaotic whereas
large measures of regular orbits. But how is one to reconciléaking the limitN— first yields orbits that have a vanish-
integrable or near-integrable behavior in such bulk potentialing Lyapunov exponent.

with the presumed fact that, even for very lafgandividual This paper summarizes a detailed exploration of chaos in
orbits in the trueN-body problem typically manifest chaotic time-independent potentials generated by sampling the
behavior on a time scale tp? smooth density(r) associated with a time-independent so-

Strictly speaking, there is no logical contradiction: It is lution to the CBE to create a frozeW-body realization of
completely possible for collective properties of Brbody  that equilibrium. Most of the work focuses on the particu-
system to be described correctly by the CBE, even if thdarly simple case of an integrable Plummer potenf&,
characteristics associated with the self-consistent potentiavhich derives from a spherically symmetric mass distribu-
do not coincide, even approximately, with réddbody tra-  tion. However, it was also confirmed that, modulo one point
jectories[6]. However, itwould seem important to pin down discussed in the concluding section, the same qualitative re-

carefully what is actually going on: sults obtained for the potential associated with a constant
Is it really true that individual trajectories in tié-body  density spherical configuration.
problem are chaotic for very larde, even if the bulk poten- In certain respects, this paper complements a recent paper

tial associated with the system is integrable? The indicationby Valluri and Merritt[8], which considered similar issues,
are that the answer to this is: yes. However, most of the worlalbeit from a somewhat different perspective. As does the
done to date on chaos in tikebody problem has focused on present paper, that paper concluded that, in the absence of
systems with comparatively small and/or a hierarchy of softening, the Lyapunov exponeptis not a decreasing func-
masses, or, for larger systems, on comparatively short-timéon of N, but they did not investigate how a nonzeranay
behavior. Little if any work has been done to provide esti-alter this basic conclusion. They too noted that,Nasn-
mates of honest Lyapunov exponents over intervalg for ~ creases, orbits in a frozeéw-potential become progressively
large N systems comprised of bodies of comparable mass. smoother, but they did not effect detailed comparisons be-
How quickly doN-body trajectories diverge from smooth tween frozerN orbits and characteristics in the correspond-
potential characteristics with the same initial condition, andng smooth potential, or attempt to quantify the rate at which
is this divergence exponential or power law in time? EvenfrozenN orbits and smooth characteristics diverge. In this
presuming that th&l-body problem is chaotic on a time scale sense, they did not provide an estimate as to the time scale
~1p, is there some time scalE>tp over which individual —over which frozerN orbits and smooth characteristics re-
N-body trajectories are well approximated in a pointwisemain “close” in a pointwise sense. Neither did they ascer-
sense by characteristics given by the CBE? tain whether the divergence of frozéh-orbits and smooth
These conceptual issues are also related directly to theharacteristics proceeds exponentially or as a power law in
problem of “softening.” It is generally recognized that, for time. They did probe the effects of graininess on collision-
small N, close encounters between individual masses arkess invariants by examining visually how, after a fixed time
more important dynamically than for largét [5]. For this ~20tp, the root-mean-squared variations in a suitably cho-
reasonN-body simulators interested in exploring the physicssen invariant scale witiN, but they did not consider such
of the N-body problem for largeN often suppress the effects issues as the sharpness of the orbital power spectrum, which
of close encounters artificially by replacing the true fi6-  has important implications for the susceptibility of orbits to-
tential by a softened potenti®(r)o(r?+ €?) 2 for some  wards various sorts of perturbations.
“softening parameter’e. This certainly suppresses encoun-  Section |l begins by describing the numerical experiments
ters with impact parameters e which, presumably, is a that were performed. Section lll summarizes a computation
good thing. However, there are strong indicatigi$ that ~ of honest Lyapunov exponents in frozFbody realizations
orbits integrated with such a softened potential tend to bef the Plummer potential, exploring how the largest exponent
“less chaotic” in their behavior, so that the introduction of x associated with representative initial conditions varies as a
softening also has the potentially undesirable effect of refunction of e andN. The principal conclusion here is that, at
moving N-body chaos that really ought to be present, everleast for small values o€, orbits in such potentials are in-
for very largeN. In any event, earlier investigations of chaos variably chaotic; and that, even for a particle number as large
in the N-body problem based on simulations that incorporateas N= 105, there is no sense in which increasiNg‘turns
a large amount of softening must be viewed with suspicionthe chaos off.” Section IV demonstrates that, even though
since such simulations could suppress precisely the effectbe Lyapunov exponents do not decrease with increasing
that one might wish to explore. there is a well-defined sense in which,diéncreases, orbits
The role of softening is also related closely to any effortin frozendN potentials remain “close to” smooth potential
to provide a rigorous justification for a gravitational mean-characteristics with the same initial condition for progres-
field theory. The natural approach to this problem wouldsively longer times. Section V concludes by summarizing the
entail considering a collection &f masses with finite “size”  basic conclusions, providing a simple physical interpretation,
e and studying the double limkl—«~ ande—0. The obvi- and then commenting on potential implications.
ous point, then, is that the conclusions of such an analysis The principal conclusion of this paper is that, for inte-
could well depend on the order in which the$eghly sin-  grable smooth potentials that admit no chaos, the continuum
gulan limits are taken. To the extent that a nonzersup-  limit makes sense even at the level of pointwise properties of
presses chaos, one may envision a situation in which takingndividual trajectoriesN-body trajectories and smooth po-
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tential characteristics exhibit only a modest power-law diver- 5S¢ '
gence, and there exists a time scalN'% over which :
orbits in a frozerN potential remain close to characteristics 4f , E

in the corresponding smooth potential. The possibility of
chaotic characteristics leads necessarily to very different be-
havior and, for this reason, the case of nonintegrable poten-

A

tials that admit both regular and chaotic characteristics will ol ]
be considered in a separate paper. 2F E
Il. DESCRIPTION OF THE NUMERICAL EXPERIMENTS b E

The numerical computations reported here were per- g
formed for a so-called Plummer potentjall, Ot

GM
®(r)=- h24p2 (2.3) FIG. 1. Mean short-time Lyapunov exponent) as a function

of softening parameter for N=10° (solid line), N=10"® (dotted,

This potential is generated via Poisson’s equation from &/=10° (dashedl N=10°° (dot-dashefj N=10>° (triple-dot

density profile dashedi and N=10?° (broad dashed The integrations were all
performed for a single “typical” initial condition.

3M 2\ —5/2
P(f)Z( 3) ( 1+ —2) : (220 “ensembles” generated from the 20 different froznpo-
4b b tentials with the smooth potential characteristic with the
same initial condition facilitated a quantitiative characteriza-

and corresponds to an equilibrium solution to the CBE sat:. . L
P q tion of the average rate at whidfrbody orbits diverge from

isfying orbits in the smooth potential.
1 The integrations were performed for a time corresponding
A(—E)2 if ®(r=0)<E= Evz+<b<0; physically to ~100tp using a Runge-Kutta integrator that
f(E)= typically conserved energy to at least one part il. Ithe
0 i E— EUZ+<I>>O yalue 100, was selectedi) because it corresponded to an
' 2 ' interval sufficiently long that one began to see convergence

(2.3  towards a well-defined Lyapunov exponeptand, perhaps
more importantly(ii) because, for physical systems like real

Units were so chosen th@&=M=b=1. ~ galaxies, 10, corresponds to an interval comparable to the
The principal aim was to compare orbits generated in theyge of the Universe.

smooth potential with orbits evolved in time-independent The total partic]e numbek in the “frozen” N_body po-
N-body realizations of the potential. For a variety of fixed tentials was allowed to vary betweeN=10?° and N
values ofN and €, 20 different time-independem-body = 10%5 Physical interest focuses primarily on the limit
potentials were constructed. Each of these was associated this corresponding to an “honesti-body calculation.
with a random sampling of the smooth density distributionqowever, for reasons described already, the effects of a non-

generated using a von Neumann rejection algoritbfn 9]). zero e were also considered in some detail.
This entailed constructing singular density distributions

IIl. SHORT-TIME LYAPUNOV EXPONENTS

(r) v % Op(r—ri) (2.4)
pn(r)=— r—=ri, .
N N = P ' The principal diagnostic here was the meahort-time

. , i . Lyapunov exponenty), generated, for a given choice of
which, allowing for a softening parametey yielded poten- inisia| condition and for specified values efandN, as the

tials of the form average value ofy at t=100t, for 20 different frozenN
N potentials. The fundamental question was how, for a fixed
Dy(r)=— % D 1 _ (2.5) initial condition, this(x) depends ore andN. Figure 1 ex-
N =1 J(r—r)?+é hibits ( x) as a function of logye for multiple integrations of

one representative initial condition, with radial and tangen-
The objective then was to select individual initial conditionstial velocities comparable in magnitudé1], allowing for
(ro,vp) and to evolve these same initial conditions in bothseveral different values df. Figure 2 gives x) as a func-
the smooth potential and each of the 20 “frozeNbody  tion of log;gN for the same initial condition, now allowing
potentials, while simultaneously tracking the evolution of afor several different values @f. It is evident from Fig. 1 that,
small initial perturbation, periodically renormalized at fixed at least for comparatively large values of softening param-
intervalsdt, so as to extract an estimate of the largebbrt-  eter, decreasing tends to make the orbit more chaotic. This
time) Lyapunov exponerftl0]. A comparison of the 20 orbit is hardly surprising: Since the smooth potential is integrable,
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That, for largee, {x) should decrease with increasiNgmay
again be explained by comparing the magnitude with the
typical distance between masses in the system, which is of
ordern™3~Rg, /N3 with n a characteristic number den-
sity. If e is larger than, or comparable to %, even weak
close encounters are essentially “turned off,” so that the
source of chaos has been largely reduced, if not completely
removed. The fact thdty) should be essentially independent
of N in the limit e—0 has been argued by various authors in
a number of different wayg2,3]. A simple physical expla-
nation is provided in the concluding section.

If a single orbit be integrated for progressively longer
times, how quickly will the short-time Lyapunov exponent
x(t) converge towards the true time-independgftStudies
of orbits in smooth nonintegrable potentials reveal that, when
the phase space is highly complex and, because of the Ar-
nold web, orbits may be “stuck” temporarily in regions

dot dashey all computed for the initial condition used to generate Whelrle the sho!’t-lilmlte Lyapﬁno‘_’ expone_nts ?re especially
Fig. 1. The short timg x) for a different initial condition corre- small or especially large, the time required for a reason-

sponding to a smooth radial orbit, again evolved wita 1075, is ~ able_level of convergence may be extremely long,
indicated by the curve with thick dashes. ~10°tp—1CFtp or even moreg[10]. If, however, the phase

space is simpler in the sense that the Arnold web forms less

one anticipates that the chaos is associated completely wifff @ impediment and such trapping is comparatively rare,
close encounters between the test mass and individual frozdie time required is typically much shorter. One way in
masses. The introduction of a nonzero smoothing correVhich to quantify the overall rate of convergence is by per-
spondsde factoto the introduction of a minimum impact forming a simple time series analysis: An orbit segment of
parameter(since the potential is bounded in magnitude by!€ngthT may of course be divided intosegments of length
Vimax= — GM/Ne) but the existence of such a minimum im- At=T/k and a short-time Lyapunov exponegfAt) com-

pact parameter limits the maximum effect that can arise fronputed for each segment. The dispersiof(At) then pro-
a close encounter. vides a useful probe of the degree to that, on time scales

However, for sufficiently small values of, the precise ~At, the degree of chaos exhibited by different orbit seg-
value of e appears to be largely immaterial. This again isMents is more or less the same. Determiningas a function
hardly surprising: As long as is small compared with the of At provides a quantitative characterization of the rate of
value of the closest separation between the test particle arfgPhvergence towards a unigye . A simple argument based
any of the frozen particles during the course of the integra®" the central limits theorem suggepis] that, if the acces-
tion, the test particle feels an essentially unsoftened potenti&@ible phase-space regions are simple and trapping is rare, so
and should behav@t least statisticallyas if e=0. The point  that the amounts of chaos manifested at titnesdt + At are
then is that, foN<10f and an integration time as short as essentially uncorrelated,

100, the minimum separation associated with the closest _
o (AP, (3.2
encounter between the test mass and any of the frozen X

—4
masses should be greater than or comparable~d0 ". iy n—1/2 If, alternatively, the phase space is complex and
Indeed, a simple geometric argument indic4®4 that the  55ing is important, one would expect thaj decreases
time scalet, for a close encounter with minimum separation ,.,ch more slowly with increasingt.

as small as scales as Such a time series analysis was performed for the data
’ sets used to generate the mean expongyjtsFor each set of
t_e~ i( Rsys) 3.1) 20 integrations, each orbit segment of length 100, was
tob Nl € )’ ' separated int segments of lengtiAt=T/k. A short-time
Lyapunov exponenj(At) was then computed for each of
whereR;, s is the size of the system in question. the resulting 2R segments, and these were used to compute
One obvious implication of these results is that the intro-the dispersionr, (At). Allowing for k=29, forq=0, 1, 2, 3,
duction of a large amount of softening into a numerical4, 5, and 6 was equivalent to varyint between At
simulation may have the unnatural result of significantly de-=(100/64)Y, and At=10Q. This time-series analysis led
creasing the amount of chaos manifested by individual orbitso the conclusion that the dispersior is typically well fit
in a real astronomical system. by a power-law dependence of the form given by E332),
For comparatively large values @f () decreases rap- although the exponent tends to be somewhat smaller than
idly with increasingN but, for sufficiently small values of, p=1/2, the best-fit value typically satisfying~0.4. Several
it appears thaty) is nearly independent & (although there examples are exhibited in Fig. 3. The fact tpas compara-
are hints that(y) may continue toincreasevery slowly). tively close to 1/2, rather than the much smaller values that

FIG. 2. Mean short-time Lyapunov exponent) as a function
of particle numbeiN for e=10"° (solid ling), e=10"* (dotted, e
=102 (thin-dashe}ll e=10 2 (dot-dashel] and e=10"" (triple-
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FIG. 3. loggo,(At) as a function of log, At for three sets of FIG. 4. (a) The deviationAr =|r —r| from the smooth potential

simulations:N= 31 623 ande=0.0001(solid curvg, N=316, and  characteristic for one representative fro2érerbit evolved withe
€=0.0001 (dashed curve and N=316 ande=0.1 (dot-dashed =10"* andN=1000 for the initial condition used to generate Fig.
curve), all computed for the initial condition used to generate Fig. 1.1. (b) Another frozenN orbit evolved with the same andN for the
The thick solid line has a slope correspondingte 0.4. same initial condition(c) and (d) The same foN= 100 000.

are often observed in very “sticky” nonintegrable potentials are two types of moments that one might choose to consider.
[13], corroborates the intuition that, because the chaos in thiQuantities such as

problem is associated exclusively with close encounters, 1
trapping is rare and the degree of chaos exhibited at different (ry=—
times tends to be statistically uncorrelated. n

Zl r 4.1

and

- 1
IV. COMPARISON OF SMOOTH AND N-BODY ORBITS Dr2=<|ri—<r>|2)zﬁ E |ri_<r>|2, 4.2
It is clear that, for sufficiently short times, a frozéh- :
orbit will coincide almost exactly with the smooth potential
characteristic associated with the same initial condition. An
similarly, it is clear that, at sufficiently late times, the irregu-
larities in the frozerN potential will cause the frozeN- or-
bit to deviate significantly from the smooth characteristic. Ar2=(|r—r |2>:E 2 Iri—rg? 4.3
Probing the validity of the continuum limit at the level of s n< ' oS '
individual orbits thus devolves into determining the rate at
which the frozerN orbits and smooth characteristics di- and
verge. In this connection, two obvious questions arise. Do or2=(|(ry—rg? (4.4
frozenN orbits diverge from the smooth characteristics ex-
ponentially or as a power law in time? And how does thecompare the frozei orbits with the smooth potential char-
overall rate of divergence depend bi? acteristic and, as such, their behavior as a functioiN a$
Such probes of the validity of the continuum limit differ particularly relevant in understanding the continuum limit.
from the ordinary point of view, where convergence is typi- Overall, the quantitie®r, or, andAr were found to exhibit
cally defined in terms of quantities like bulk moments of thecomparatively similar evolutions, so that attention below fo-
system, ignoring completely the behavior of individual tra-cuses on the moments) and Ar, which seem especially
jectories. A possible intermediate characterization is to focusatural physically.
not on the pointwise behavior of the chaotic orbits but, in- The most striking conclusion is that individual frozBh-
stead, on quantities that might be less sensitive tdNthedy  orbits typically diverge from the smooth characteristic as a
chaos. In particular, one may also ask: How do frokken- power law in time,not exponentially[17]. This is true both
orbits deviate from smooth characteristics in terms of quanfor comparatively large values @f, where the frozemN or-
tities that, in the smooth potential, correspond to time-bits are nearly regular, and for smaller values pfvhere the
independent constants of the motion, like angular momenturorbits are much more chaotic. This result is perhaps surpris-
in a spherically symmetric system? ing. One might naively have supposed that, since the frozen-
These questions were addressed here both visually and orbits are strongly chaotic, at least for smglthey would
quantitatively through a computation of the statistical prop-tend to diverge exponentially from the smooth characteristics
erties of frozenN orbits. Givenn= 20 different trajectories on a time scaler~ y 1. However, such an exponential di-
{(r;(t),v;(t))}, i=1,...n, and the smooth characteristic vergence is most definitelyot observed.
(rs(t),vs(t)) associated with the same initial condition, there  Figure 4 exhibits the quantitgr=|r—r| for representa-

Oand the corresponding quantities generated forand J
=rXv focus on the frozemN orbits in and of themselves.
Alternatively, such moments as
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FIG. 5. (8 The trajectoryx(t) in the smooth potentiafthin FIG. 6. (a) The radial coordinateg(t) in the smooth potential

curve and the mean trajectof(t)) (thick curve derived from 20  (thin curvg and the mean trajectorr (t)) (thick curve derived
frozenN simulations withN= 316 ande=10"4, performed for the from 20 frozenN simulations withN=316 and e=10"*, per-
initial condition used to generate Fig. 1b) The same forN formed for an initial condition corresponding in the smooth poten-
=1000. (c) N=3162. (d N=10000. (69 N=31623. (f) N tial to a purely radial orbit.(b) The same forN=1000. (c) N
=100 000. =3162.(d) N=10000.(e) N=31623.(f) N=100 000.

tive frozenN orbits evolved withe=10"* from the same the frozenN orbits remain “equally chaotic” in the sense
initial condition used to generate Fig. 1. The first two panelghat their Lyapunov exponentg remain nearly constant,
are forN=1000; the latter two foN=100 000. It is evident they remain close to the smooth characteristic for progres-
that, rather than exponential, the growth &f is roughly  sively longer times.
linear in time. The left-hand panels of Fig. 7 exhiir/(2Y2R,), with

For how long does this power-law divergence persistR? the mean value of? associated with the smooth charac-
Does it cease when the distance between the frozenbit  teristic, as computed for the same initial condition evolved
and the smooth characteristic is still small, or does the diverwith e=10"* for N=1000 andN= 100 000. The right-hand
gence continue until the frozed-orbit and the smooth char- side exhibits the same data, recorded at intervals of 6025
acteristic tend to be widely separated in configuration space@nce they have been subjected to a boxcar averaging over an
If, e.g., this divergence terminated at comparatively smalinterval st=1.0t5. The large envelops associated with the
separations, much smaller than the size of the system, orwrves in the left-hand panels reflect, e.g., the fact that, at late
could argue that, even though the frozérorbits are chaotic, times, individual orbits in then= 20 orbit ensembles are os-
they still remain “close” to the smooth characteristics. The cillating about a value of unity.
answer here is that this divergence continues until the typical That Ar/(2Y°R,) converges towards unity is a reflection
separation has become comparable to the size of thef the fact that the orbits have indeed become completely
configuration-space region to which the orbits are confinediifferent from one another: Given that the frozsnerbits
and the frozerN orbit has become completely “decorre-

lated” in appearance from the smooth potential characteris- 15 15
tic. > -5
The same conclusion is also obtained if one averages over £ 0% g 1.0
20 orbits generated in different frozéhpotentials(with the % 0.5 ] % 05 ]
samee andN) from the same initial condition. The six pan- < (a) < (b)
els of Fig. 5, generated for the initial condition used in Figs. 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50

1-3, compare(x) for such frozerN ensembles with the 1t s
smoothxg for orbits evolved withe= 1075, allowing for six

values ofN extending fromN=316 toN=2100000. In each — " ~ "

case, one finds that, for sufficiently largéx)— 0, as would & 10 £ 1.0

be expected if the frozeN- orbits have become completely < 05 NG o5 ]
different from one another and move through configuration < (©) a7 @)

space with random orientations. Figure 6 compares the radial 0.0 0.0

coordinategr) andr for the extreme case of an initial con- 0 10 2?/30 40 50 0 10 zf/fo 40 20

dition corresponding in the smooth potential to a purely ra- ’ ’

dial orbit [18]. FIG. 7. (a) The quantityAr/\/ﬁg for frozenN simulations
The time scaleg on which the frozemN orbits diverge  with N=1000 ande=10"*. (b) The same data subjected to boxcar

from the smooth characteristic, and hence, the time scale afveraging over an interval=ty. (c) and (d) The same forN

which Ar grows, increases with increasiiyy Even though =100 000.
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FIG. 8. Best-fit values of the time scalg(N) associated with FIG. 9. Best-fit values of the time scalg(N) associated with

the divergence of smooth and frozBhorbits for two different  changes in angular momentum for frozirerbits for two different
initial conditions:Ar/Rs=Auv/V=t/ts. The dashed line has slope initial conditions: AJ?J2=t/t;. The dashed line has slope 1/2,
1/2, corresponding to aN*? dependence. corresponding to ai? dependence.

conserve energy, one might expect that their average disre conserved absolutely in the smooth potential. Indeed, one
tance from the origin should, on average, be the same as fdinds that, for smalk, AJ satisfies
the smooth characteristic, so that
At
(r2(t)—RZ for t—os, 4.5 RS 4.9
S
Assuming, however, that this is true and that whereJg is the typical magnitude of the angular momentum
FE) - ro(t 0 for t—o, 46 associated W!th a chargcterlsnc with the specified energy.
{r(V-rs(ty)— - 4.9 The growth timet, again scales adl*? but tends to be

one infers thatAr?—2RZ. Analogous behavior is observed somewhat larger thaty;, so that

for the quantityAv/2Y2V,, with VZ defined correspondingly
for the smooth characteristic.

As is manifested by Fig. 7, the growth &fr andAv is  wjth A;~3As andp~1/2. Figure 9 exhibits log(t,/tp) as

roughly linear in time. Indeed, when comparing an ensemblg, f,nction of logoN for the same integrations used to gen-
of frozenN orbits with a smooth orbit characteristic gener- grate Fig. 8.

ated from the same initial condition, one finds that, for small  There is also a clear visual sense in whichNdacreases,
€, Ar andAv are both reasonably well fit by a linear growth the frozenN orbits become progressively more regular in
law of the form appearance. This is, e.g., evident in Fig. 10, which exhibits
the x-y projections of representative frozéhorbits with N
EZA_U: t 4.7) varying betweenN=2316 and N=316228, all generated
r« vs tg ' from the same initial condition and integrated for a tine
=25, with e=10°. The final panel exhibits the smooth
The growth timetg, which is the same for bothr andAv,  characteristic associated with the same initial condition. The
satisfies most obvious point is that, & increases, the configuration-
space region to which the orbit is restricted more closely
te~AsNPip, (4.8  coincides with the region occupied by the characteristic. For
example, only for the three largest valuesNis the orbit
with Ag of order unity andp~1/2. Figure 8 exhibits “centrophobic” in the same sense as the characteristic. The
log;o(t/tp) as a function of logyN for two different initial  lower-left panel of Fig. 1 in Valluri and Merritt8] exhibits
conditions evolved withe=10"°. similar data for an orbit that, in the continuum limit, be-
The fact thattg scales asN*? would suggest that the comes[5] a regular “box” rather than a “tube.”
divergence of the frozeN orbits from smooth characteris- Also evident is the fact that the orbit “looks smoother”
tics reflects a diffusion process, associated with a collectioffor larger values oN. This visual impression reflects the fact
of random close encounters. However, this might in turnthat, asN increases, the power associated with the Fourier
suggest thatr andAv should grow ag'?, rather than the spectrum of an orbit tends to become more concentrated near
approximately linear growth that was observed in the nu-a few special frequencieéSince the smooth orbit associated
merical simulations. Interesting, though, suctabehavior ~ with the same initial condition is regular, all its power is
is obtained for quantities such as angular momentum, whiclsoncentrated at a countable set of discrete frequendibs

tJWAJNptD, (41@
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FIG. 11. () The Fourier transforme{k(w)| for one frozenN
integration of the initial condition used to generate Fig. 4, evolved
with e=10"% and N=316. (b) The same forN=1000. (c) N
2 o0 2 2 o 2 =3162. (d) N=10000. () N=31623. (f) N=100000.(g) N

X X =316 228.(h) |x(w)| for a characteristic in the smooth potential
with the same initial condition, with data recorded at the same
2 2 intervals for the same total integration time.

The dashed curve exhibitg, g5, defined correspondingly as
the sum of the numbers of frequencies required to capture
=21 (qg) -2 95% of the power in the, y, andz directions. In each case,
> o o > o o the curve represents an average over different orbits in the
N N ensemble, and the error bars represent the associated disper-

sions. The obvious point is that both these quantities de-
FIG. 10. Thex-y projection of representative frozé-orbits  crease with increasinly.

generated from the same initial condition, evolvedtfer25t, with
€=1075. (3 N=316. (b) N=1000.(c) N=3163.(d) N=10 000.
(e) N=31623.(f) N=100000.(g) N=316 228.(h) The x-y pro-
jection of the same initial condition evolved in the smooth potential.

3.0 T T

trend is illustrated in the eight panels of Fig. 11, each of { 25
which exhibits|x(w)| for a single frozerN orbit generated 2
from the same initial condition. In each case, the data are so ;é
normalized that the peak frequency hea&w)|=1. The spec- °
tra were generated from a time series of 4001 points, re- -+, ,
corded at intervals of 0.025. o

The degree to which the orbits become more nearly regu-
lar with increasingN may be quantified by determinifd4]

the “complexity” of the orbits, i.e., the number of frequen- 15 s s ‘
cies in the discrete Fourier spectrum that contain an appre- 2 3 4 5 6
ciable amount of power. Two such measures of complexity 10g10 N

are illustrated |n.F|g. 1'2, Whlch was computed for ensembles FIG. 12. Two probes of the complexity of frozéherbits for an
of frozenN orbits with varying N, all evolved with €  gnsemble of orbits with the same initial condition evolved with
=10"° and generated from the same initial condition. The=10-5. The solid curve exhibits,,, the number of frequencies
solid curve exhibits ;, defined as the sum of the numbers that have power equal to at least 10% of the power in the peak
of frequencied 14, fo1y, andfq,, which have more than frequencies. The dashed curve exhibiits,s, the number of fre-
10% as much power as the peak frequenciesfgro, , and  quencies required to capture 95% of the total power. The horizontal
w,, i.e., lines showf ; andkg o5 for a smooth characteristic generated iden-
tically from the same initial condition, thus exhibiting the intrinsic
for=foixtforytfoiz- (4.11 limitations associated with the discrete time series of data points.
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The fact that, adN increases, power becomes more con-sense, the continuum limit appears justified even at the level
centrated near a few special frequencies has important implaf individual trajectories, at least for timessNY2%,. The
cations for various physical processes that rely on resofact that frozenN orbits remain chaotic for very largd is
nances. For example, a variety of recent arguments in botbompletely consistent with the existence of a well-defined
galactic and solar system dynamics invoke a process of s@ontinuum limit.
called “resonant relaxation’{15], which relies on the as- It is easy to understand qualitatively why the fro2¢n-
sumption that, in the presence of a large central objact orbits should remain chaotic even for very larye Given
supermassive black hole in the center of a galaxy or the Suthat the chaos disappears completely in the continuum limit,
at the center of the solar systemi-body orbits behave very where the orbits reduce to integrable characteristics, it would
nearly as if they were Keplerian trajectories in the fixed 1/ seem clear that the chaos must be associated with a sequence
potential associated with the central object. If the chaos exef “random” interactions between a ‘“test” particle and a
hibited by individual orbits[16] implied that these orbits collection of “field” particles. However, this would suggest
were highly irregular, so that their power was not concenthat the time scale associated with the growth of a small
trated near the special Keplerian frequencies, resonant relaiitial perturbation may be estimated by considering the tidal
ation might seem quite implausible. Given, however, that thesffects associated with a pair of particles separated by a dis-
orbits become progressively more regular for increadinig tance comparable to the typical interparticle separation. This
resonant relaxation would seem eminently reasonable, aidal acceleration will of course scale as
least for systems in whicN is sufficiently large.

Alternatively, one might be concerned with the response . m
of orbits to nearly random perturbations, reflecting, e.g., an 5r:(6r-V)a~r—35r, 5.9
external environment. In this case, perturbation act generi-
cally via a resonant coupling between the natural frequ.encyvith r the separation anth the particle mass. Given, how-
of frequ.enC|es of the pgrturber and the.natu_ral fre_quenues ‘?Jver, thau,wnfl/&val/SRsys, with n a characteristic num-
the orbit[20] so that, in agreement with simulatiof®l], oy gensity andRs,sthe size of the system, it follows that the

one might expect generically to see larger effects for orbitg;,o calet, associated with the interaction should satisfy
with broader band Fourier spectra. The crucial point, then, is

that, even though frozeN-orbits remain chaotic in the sense t, ~14/Gp. (5.2
that their Lyapunov exponents do not decrease in magnitude,
they become more regular in the sense that their power spefy other words, the time scale associated with any orbital
tra become more sharply peaked. instability induced by the graininess of the system should be
The fact thalN-body orbits may have both a large positive comparable to the dynamical tintg, seemingly indepen-
Lyapunov exponent and a comparatively sharp Fourier spegtent of particle numbeN. As N increases, the size of the
trum has profound implications for the meaning of chaos inindividual particle massn and the cube of the typical sepa-
N-body systems. In the context of time-independent Hamilyation between particles; n %, both decrease & * so that
tonian systems, it is customaf22] to consider positive their ratio is independent of particle num{ées].
Lyapunov exponent and aperiodicitgnd hence, continuous  That the chaotic frozet orbits appear to become “more
Fourier spectrumas two complementary notions of chaos; nearly regular” asN increases is consistent with the obser-
and, at least for smooth lower-dimensional systems, there igation by Valluri and Merrit{8] that the “scale” associated
often a strong correlation between the size of the largesyith N-body chaos decreases with increasi@Specifically,
short-time Lyapunov exponent and the Fourier complexityhy comparing trajectories associated with two nearby initial
associated with chaotic orbit segmeftgl]. That orbits in  conditions evolved in the same froz&hpotential, Valluri
frozenN potentials may have large Lyapounov exponentsand Merritt found(ct. the lower-right hand panel of their Fig.
but still be nearly periodic suggests strongly that the chaog) that, when scaled in terms 8%, the size of the system,
observed here is fundamentally different from the chaos ashe typical separatiofRs,; on which the initial exponential
sociated with a bulk nonintegrable potential. divergence saturates decreases with increasing particle num-
ber, so thaRs,:/Rsysis a decreasing function . It should
be stressed that this “saturation” in the exponential diver-
gence of initially nearbyN-body trajectories is very different
Although trajectories remain chaotic in the sense that thérom the diffusivet'? divergence of frozemN orbits from
largest Lyapunov exponent does not decrease towards zemmooth potential characteristics, which, seemingly indepen-
there is a clear sense in which, for increasMgorbits in  dent of N, only terminates when the typical separation has
frozenN potentials exhibit a pointwise convergence towardsbecome comparable to the size of the system.
characteristics in the smooth potential that the frokepe- That the rate of divergence of initially nearby frozlin-
tentials sample. Viewed in configuration or velocity space,orbits in the nonlinear regime slows more and more for
frozenN orbits tend to diverge linearly from the smooth largerN may be quantified by tracking the actual evolution
characteristic with the same initial condition on a time scaleof two orbits generated from nearby initial conditions and
tg that is proportional taNY2 Contrary to earlier specula- determining the time required before their separation be-
tions, N-body trajectories and smooth characteristicsndd  comes “macroscopic.” The result of such an investigation is
diverge exponentially on a time scate- y 1~tp. In this illustrated in Fig. 13, which was generated once again from

V. CONCLUSIONS AND DISCUSSION
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FIG. 13. The mean time required for two frozBnerbits sepa-  avident from Fig. 14, which exhibitdr? for one represen-
rated initially by a distanceSr =10 ® to achieve a macroscopic tative initial condition[24], generated as in Fig. 7, fdd
separatiorsr =1. =1000 andN = 100 000.

This suggests strongly that the behaviorAof and Av
observed for the Plummer potential is associated with linear
ensembles of 20 frozeN-orbits all evolved from the same Phase mixing. Because of finite number statistics, the same
initial condition with e=10"5. In each case, the unperturbed initial condition (r,vo) in different frozenN realizations of
orbits were identical to those used to generate Fig. 1; th@ Plummer potential will correspond to somewhat different
perturbed orbits involved changing the initial valuexoby ~ €nergies, the values of which are co_nserv_ed in the subsequent
an amountsx=10"5. Figure 13 exhibits as a function &f evolution. However, even neglecting discreteness effects,

the mean timer required before the separation initially proximate orbits in a generic integrable potential
will, if their energies be unequal, tend to diverge linearly.

For example, two orbits evolved in a smooth Plummer po-
51 = (X2 + Sy2+ 522) 112 (5.3 tential with the same initiat but slightly different values of
v and, hence, slightly different energies, will oscillate with
somewhat different frequencies and, as a result, exhibit an
had achieved the valuér = 1. (For this initial condition, the overall linear divergence. If, however, the orbits are evolved
average value of associated with the smooth characteristicinstead in the potential associated with a constant density
was Ry~ 1.83) The error bars were derived by considering distribution, this is no longer true. A constant density sphere
the first and second ten orbits in the ensemble separatelgorresponds to a harmonic potential, where all orbits have
Because individual orbits diverge at vastly different rates, théhe same unperturbed frequencies; and, for this reason, orbits
dispersion associated with a 20 orbit ensemble is much largép the smooth potential with slightly different energies will
than reflected by these error bars. It is clear thaicreases Ot exhibit such a systematic divergence.
systematically with increasingN, although considerably ~ The fact that frozemN orbits look “more nearly regular”
more slowly than with théN*2 dependence observed for the for largeN suggests that the chaos associated with discrete-
divergence time scaldg, andt; . ness effects in th&-body problem should be viewed very
When viewed in terms of collisionless invariants such asdifferently from the chaos associated with a bulk noninte-
angular momentum, the divergence of fro2érerbits from ~ grable potential. When evolved into the future, two nearby
smooth characteristics with the same initial condition is wellchaotic initial conditions in such a potential tend to diverge
approximated as a diffusion process, in whith grows as ~ €xponentially until they are separated by a distance compa-
(t/t;)Y2 and where, for fixed, , the divergence time scalg _rable to the size of the easily accessifle., not S|gn|f|cantly_
varies at least approximately B8, This reinforces the con- impeded by the Arnold webconnected phase-space region
ventional wisdonf19] that discreteness effects may be mod-t0 Which the orbits are confined, a region that tends, typi-
eled as white, or nearly white, Gaussian noise in the contex§@!ly, to be macroscopic. By contrast, the scale associated
of a Langevin or Fokker-Planck description. It might, there-With chaos induced by discreteness effects in tbody
fore, seem somewhat surprising that, although the divergenddoblem is distinctly microscopic, at least for comparatively
time scaletg in configuration or velocity space again scaleslarge N. It would appear that any single orbit with fixed
as N2 the quantitiesAr and Av grow linearly in time, energy may access a phase-spape region that is in fqgt very
rather than as2. large; but the chaos that it experiences is a superposition of
In this regard, it is significant that if the smooth Plummer Short-range effects with characteristic SC&l&sys.
potential be replaced by the smooth potential associated with
a constant density configuration, the linear growth exhibited
Ar andAv is in fact replaced by the “expected” diffusive  The authors acknowledge useful discussions with Alexei
behavior. In this caseAr and Av both grow ast*? and,  Fridman, Salman Habib, and Ilya Pogorelov. This research
when expressed in units of the dynamical tirie, the  was supported in part by NSF AST-0070809 and by the In-
growth timetg is somewhat longer, corresponding more stitute for Geophysics and Planetary Physics at Los Alamos
nearly to the time scalg associated withAJ. This is, e.g., National Laboratory.
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