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Chaos and the continuum limit in the gravitational N-body problem: Integrable potentials
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This paper summarizes a numerical investigation of the statistical properties of orbits evolved in ‘‘frozen,’’
time-independentN-body realizations of smooth, time-independent density distributions corresponding to in-
tegrable potentials, allowing for 102.5<N<105.5. Two principal conclusions were reached:~1! In agreement
with recent work by Valluri and Merritt, one finds that, in the limit of a nearly ‘‘unsoftened’’ two-body kernel,
i.e., V(r )}(r 21e2)21/2 for e→0, the value of the largest Lyapunov exponentx doesnot decrease systemati-
cally with increasingN, so that, viewed in terms of the sensitivity of individual orbits to small changes in initial
conditions, there is no sense in which chaos ‘‘turns off’’ for largeN. However, it is clear that, for any finitee,
x will tend to zero for sufficiently largeN. ~2! Even thoughx does not decrease for an unsoftened kernel, there
is a clear, quantifiable sense in which, asN increases, chaotic orbits in the frozen-N systems remain ‘‘close to’’
integrable characteristics in the smooth potential for progressively longer times. When viewed in configuration
or velocity space, or as probed by collisionless invariants like angular momentum, frozen-N orbits typically
diverge from smooth potential characteristics as apower lawin time, rather than exponentially, on a time scale
}NptD , with p'1/2 andtD a characteristic dynamical, or crossing, time. For the case of angular momentum,
the divergence is well approximated by at1/2 dependence, so that, when viewed in terms of collisionless
invariants, discreteness effects act as a diffusion process that, presumably, can be modeled by nearly white
Gaussian noise in the context of a Langevin or Fokker-Planck description. For position and velocity, the
divergence is more rapid, characterized by a nearly linear power-law growth,tq with q'1, a result that likely
reflects the effects of linear phase mixing. The inference that, pointwise, individualN-body orbits can be
reasonably approximated by orbits in a smooth potential only for times,N1/2tD has potential implications for
various resonance phenomena that can act in real self-gravitating systems.

DOI: 10.1103/PhysRevE.64.056209 PACS number~s!: 05.45.2a, 05.60.2k, 51.10.1y, 05.40.2a
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I. INTRODUCTION AND MOTIVATION

Many astronomical objects, including, e.g., globular clu
ters, are typically modeled by bulk gravitational potentia
that manifest a high degree of symmetry and that, being
tegrable, lead to completely regular characteristics with
possibility of chaotic behavior. One knows, however, th
such bulk potentials constitute idealizations, the true sys
corresponding~at least approximately! to a realization of the
gravitationalN-body problem. The important point, then,
that motion in theN-body problem, even for anN-body sys-
tem that samples a smooth, time-independent phase-s
distribution corresponding to an integrable potential, is ty
cally chaotic in the sense that orbits exhibit exponential s
sitivity towards small changes in initial conditions@1#. This
perhaps is not surprising. The true potential associated w
collection of point masses no longer possesses the sym
tries of the original integrable potential, so that there is
reason why the orbits should not be chaotic.

However, whatis, perhaps, surprising is the expectatio
derived both from theoretical arguments@2,3# and from nu-
merical simulations@4#, that theN-body problem remains

*Electronic address: kandrup@astro.ufl.edu
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chaotic even for very largeN. Suppose, e.g., that a system
total massM51 is represented by a collection ofN points of
massm51/N, so distributed as to sample the density dist
bution corresponding to an integrable potential. The cla
then is that, when expressed in units of a natural dynami
or crossing, timetD;1/AGr, with r a typical density, the
characteristic time scalet on which an initial perturbation in
any given orbit tends to grow will not diverge forN→`. In
this sense, the degree of chaos manifested by individua
bits is not expected to ‘‘turn off’’ for very largeN. There is
an apparent consensus, motivated both from theory and
merical experiments, thatt should not increase withou
bound forN→`, although there is some disagreement in t
literature as to whethert(N) should converge towards a
N-independent value@2# or whethert should instead slowly
decreasewith increasingN @3#.

If, however, this be true, one is confronted with sub
questions of principle regarding the nature of the continu
limit. It is generally assumed@5# that, for sufficiently largeN,
a self-gravitating system of discrete point masses may
characterized adequately by a smooth phase-space de
that solves the collisionless Boltzmann equation~CBE!, i.e.,
the gravitational analogue of the Vlasov equation fro
plasma physics. The obvious point, then, is that tim
independent solutions to this equation that manifest a h
degree of symmetry correspond typically to bulk potenti
©2001 The American Physical Society09-1
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HENRY E. KANDRUP AND IOANNIS V. SIDERIS PHYSICAL REVIEW E64 056209
that are integrable or, even if they be nonintegrable, ad
large measures of regular orbits. But how is one to recon
integrable or near-integrable behavior in such bulk potent
with the presumed fact that, even for very largeN, individual
orbits in the trueN-body problem typically manifest chaoti
behavior on a time scale;tD?

Strictly speaking, there is no logical contradiction: It
completely possible for collective properties of anN-body
system to be described correctly by the CBE, even if
characteristics associated with the self-consistent pote
do not coincide, even approximately, with realN-body tra-
jectories@6#. However, itwouldseem important to pin down
carefully what is actually going on:

Is it really true that individual trajectories in theN-body
problem are chaotic for very largeN, even if the bulk poten-
tial associated with the system is integrable? The indicati
are that the answer to this is: yes. However, most of the w
done to date on chaos in theN-body problem has focused o
systems with comparatively smallN and/or a hierarchy of
masses, or, for larger systems, on comparatively short-t
behavior. Little if any work has been done to provide es
mates of honest Lyapunov exponents over intervals@tD for
largeN systems comprised of bodies of comparable mas

How quickly doN-body trajectories diverge from smoot
potential characteristics with the same initial condition, a
is this divergence exponential or power law in time? Ev
presuming that theN-body problem is chaotic on a time sca
;tD , is there some time scaleT@tD over which individual
N-body trajectories are well approximated in a pointw
sense by characteristics given by the CBE?

These conceptual issues are also related directly to
problem of ‘‘softening.’’ It is generally recognized that, fo
small N, close encounters between individual masses
more important dynamically than for largerN @5#. For this
reason,N-body simulators interested in exploring the phys
of theN-body problem for largerN often suppress the effect
of close encounters artificially by replacing the true 1/r po-
tential by a softened potentialV(r )}(r 21e2)21/2 for some
‘‘softening parameter’’e. This certainly suppresses encou
ters with impact parameters,e which, presumably, is a
good thing. However, there are strong indications@7# that
orbits integrated with such a softened potential tend to
‘‘less chaotic’’ in their behavior, so that the introduction
softening also has the potentially undesirable effect of
moving N-body chaos that really ought to be present, ev
for very largeN. In any event, earlier investigations of cha
in theN-body problem based on simulations that incorpor
a large amount of softening must be viewed with suspici
since such simulations could suppress precisely the eff
that one might wish to explore.

The role of softening is also related closely to any eff
to provide a rigorous justification for a gravitational mea
field theory. The natural approach to this problem wou
entail considering a collection ofN masses with finite ‘‘size’’
e and studying the double limitN→` ande→0. The obvi-
ous point, then, is that the conclusions of such an anal
could well depend on the order in which these~highly sin-
gular! limits are taken. To the extent that a nonzeroe sup-
presses chaos, one may envision a situation in which ta
05620
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the limit e→0 first yields orbits that remain chaotic where
taking the limitN→` first yields orbits that have a vanish
ing Lyapunov exponent.

This paper summarizes a detailed exploration of chao
time-independent potentials generated by sampling
smooth densityr(r ) associated with a time-independent s
lution to the CBE to create a frozenN-body realization of
that equilibrium. Most of the work focuses on the partic
larly simple case of an integrable Plummer potential@5#,
which derives from a spherically symmetric mass distrib
tion. However, it was also confirmed that, modulo one po
discussed in the concluding section, the same qualitative
sults obtained for the potential associated with a cons
density spherical configuration.

In certain respects, this paper complements a recent p
by Valluri and Merritt @8#, which considered similar issues
albeit from a somewhat different perspective. As does
present paper, that paper concluded that, in the absenc
softening, the Lyapunov exponentx is not a decreasing func
tion of N, but they did not investigate how a nonzeroe may
alter this basic conclusion. They too noted that, asN in-
creases, orbits in a frozen-N potential become progressivel
smoother, but they did not effect detailed comparisons
tween frozen-N orbits and characteristics in the correspon
ing smooth potential, or attempt to quantify the rate at wh
frozen-N orbits and smooth characteristics diverge. In th
sense, they did not provide an estimate as to the time s
over which frozen-N orbits and smooth characteristics r
main ‘‘close’’ in a pointwise sense. Neither did they asce
tain whether the divergence of frozen-N orbits and smooth
characteristics proceeds exponentially or as a power law
time. They did probe the effects of graininess on collisio
less invariants by examining visually how, after a fixed tim
'20tD , the root-mean-squared variations in a suitably ch
sen invariant scale withN, but they did not consider suc
issues as the sharpness of the orbital power spectrum, w
has important implications for the susceptibility of orbits t
wards various sorts of perturbations.

Section II begins by describing the numerical experime
that were performed. Section III summarizes a computat
of honest Lyapunov exponents in frozenN-body realizations
of the Plummer potential, exploring how the largest expon
x associated with representative initial conditions varies a
function ofe andN. The principal conclusion here is that,
least for small values ofe, orbits in such potentials are in
variably chaotic; and that, even for a particle number as la
asN5105.5, there is no sense in which increasingN ‘‘turns
the chaos off.’’ Section IV demonstrates that, even thou
the Lyapunov exponents do not decrease with increasingN,
there is a well-defined sense in which, asN increases, orbits
in frozen-N potentials remain ‘‘close to’’ smooth potentia
characteristics with the same initial condition for progre
sively longer times. Section V concludes by summarizing
basic conclusions, providing a simple physical interpretati
and then commenting on potential implications.

The principal conclusion of this paper is that, for int
grable smooth potentials that admit no chaos, the continu
limit makes sense even at the level of pointwise propertie
individual trajectories.N-body trajectories and smooth po
9-2
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CHAOS AND THE CONTINUUM LIMIT IN THE . . . PHYSICAL REVIEW E 64 056209
tential characteristics exhibit only a modest power-law div
gence, and there exists a time scale;N1/2tD over which
orbits in a frozen-N potential remain close to characteristi
in the corresponding smooth potential. The possibility
chaotic characteristics leads necessarily to very different
havior and, for this reason, the case of nonintegrable po
tials that admit both regular and chaotic characteristics
be considered in a separate paper.

II. DESCRIPTION OF THE NUMERICAL EXPERIMENTS

The numerical computations reported here were p
formed for a so-called Plummer potential@5#,

F~r !52
GM

Ar 21b2
. ~2.1!

This potential is generated via Poisson’s equation from
density profile

r~r !5S 3M

4pb3D S 11
r 2

b2D 25/2

, ~2.2!

and corresponds to an equilibrium solution to the CBE s
isfying

f ~E!5H A~2E!7/2, if F~r 50!,E5
1

2
v21F,0;

0, if E5
1

2
v21F.0.

~2.3!

Units were so chosen thatG5M5b51.
The principal aim was to compare orbits generated in

smooth potential with orbits evolved in time-independe
N-body realizations of the potential. For a variety of fixe
values of N and e, 20 different time-independentN-body
potentials were constructed. Each of these was assoc
with a random sampling of the smooth density distributi
generated using a von Neumann rejection algorithm~cf. @9#!.
This entailed constructing singular density distributions

rN~r !5
M

N (
i 51

N

dD~r2r i !, ~2.4!

which, allowing for a softening parametere, yielded poten-
tials of the form

FN~r !52
GM

N (
i 51

N
1

A~r2r i !
21e2

. ~2.5!

The objective then was to select individual initial conditio
(r0 ,v0) and to evolve these same initial conditions in bo
the smooth potential and each of the 20 ‘‘frozen’’N-body
potentials, while simultaneously tracking the evolution o
small initial perturbation, periodically renormalized at fixe
intervalsdt, so as to extract an estimate of the largest~short-
time! Lyapunov exponent@10#. A comparison of the 20 orbi
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‘‘ensembles’’ generated from the 20 different frozen-N po-
tentials with the smooth potential characteristic with t
same initial condition facilitated a quantitiative characteriz
tion of the average rate at whichN-body orbits diverge from
orbits in the smooth potential.

The integrations were performed for a time correspond
physically to ;100tD using a Runge-Kutta integrator tha
typically conserved energy to at least one part in 104. The
value 100tD was selected~i! because it corresponded to a
interval sufficiently long that one began to see converge
towards a well-defined Lyapunov exponentx and, perhaps
more importantly,~ii ! because, for physical systems like re
galaxies, 100tD corresponds to an interval comparable to t
age of the Universe.

The total particle numberN in the ‘‘frozen’’ N-body po-
tentials was allowed to vary betweenN5102.5 and N
5105.5. Physical interest focuses primarily on the limite
→0, this corresponding to an ‘‘honest’’N-body calculation.
However, for reasons described already, the effects of a n
zeroe were also considered in some detail.

III. SHORT-TIME LYAPUNOV EXPONENTS

The principal diagnostic here was the mean~short-time!
Lyapunov exponent̂ x&, generated, for a given choice o
initial condition and for specified values ofe andN, as the
average value ofx at t5100tD for 20 different frozen-N
potentials. The fundamental question was how, for a fix
initial condition, this^x& depends one andN. Figure 1 ex-
hibits ^x& as a function of log10e for multiple integrations of
one representative initial condition, with radial and tange
tial velocities comparable in magnitude@11#, allowing for
several different values ofN. Figure 2 giveŝ x& as a func-
tion of log10N for the same initial condition, now allowing
for several different values ofe. It is evident from Fig. 1 that,
at least for comparatively large values of softening para
eter, decreasinge tends to make the orbit more chaotic. Th
is hardly surprising: Since the smooth potential is integrab

FIG. 1. Mean short-time Lyapunov exponent^x& as a function
of softening parametere for N5105 ~solid line!, N5104.5 ~dotted!,
N5104 ~dashed!, N5103.5 ~dot-dashed!, N5103.0 ~triple-dot
dashed!, and N5102.5 ~broad dashed!. The integrations were al
performed for a single ‘‘typical’’ initial condition.
9-3
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HENRY E. KANDRUP AND IOANNIS V. SIDERIS PHYSICAL REVIEW E64 056209
one anticipates that the chaos is associated completely
close encounters between the test mass and individual fr
masses. The introduction of a nonzero smoothing co
spondsde facto to the introduction of a minimum impac
parameter~since the potential is bounded in magnitude
Vmax52GM/Ne) but the existence of such a minimum im
pact parameter limits the maximum effect that can arise fr
a close encounter.

However, for sufficiently small values ofe, the precise
value of e appears to be largely immaterial. This again
hardly surprising: As long ase is small compared with the
value of the closest separation between the test particle
any of the frozen particles during the course of the integ
tion, the test particle feels an essentially unsoftened pote
and should behave~at least statistically! as if e50. The point
then is that, forN<106 and an integration time as short a
100tD , the minimum separation associated with the clos
encounter between the test mass and any of the fro
masses should be greater than or comparable toe;1024.
Indeed, a simple geometric argument indicates@12# that the
time scalete for a close encounter with minimum separati
as small ase scales as

te

tD
;

1

N S Rsys

e D 2

, ~3.1!

whereRsys is the size of the system in question.
One obvious implication of these results is that the int

duction of a large amount of softening into a numeric
simulation may have the unnatural result of significantly d
creasing the amount of chaos manifested by individual or
in a real astronomical system.

For comparatively large values ofe, ^x& decreases rap
idly with increasingN but, for sufficiently small values ofe,
it appears that̂x& is nearly independent ofN ~although there
are hints that̂ x& may continue toincreasevery slowly!.

FIG. 2. Mean short-time Lyapunov exponent^x& as a function
of particle numberN for e51025 ~solid line!, e51024 ~dotted!, e
51023 ~thin-dashed!, e51022 ~dot-dashed!, and e51021 ~triple-
dot dashed!, all computed for the initial condition used to genera
Fig. 1. The short timê x& for a different initial condition corre-
sponding to a smooth radial orbit, again evolved withe51025, is
indicated by the curve with thick dashes.
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That, for largee, ^x& should decrease with increasingN may
again be explained by comparing the magnitude ofe with the
typical distance between masses in the system, which i
ordern21/3;Rsys/N

1/3, with n a characteristic number den
sity. If e is larger than, or comparable ton21/3, even weak
close encounters are essentially ‘‘turned off,’’ so that t
source of chaos has been largely reduced, if not comple
removed. The fact that^x& should be essentially independe
of N in the limit e→0 has been argued by various authors
a number of different ways@2,3#. A simple physical expla-
nation is provided in the concluding section.

If a single orbit be integrated for progressively long
times, how quickly will the short-time Lyapunov expone
x(t) converge towards the true time-independentx? Studies
of orbits in smooth nonintegrable potentials reveal that, wh
the phase space is highly complex and, because of the
nold web, orbits may be ‘‘stuck’’ temporarily in region
where the short-time Lyapunov exponents are especi
small or especially large, the time required for a reas
able level of convergence may be extremely lon
;105tD – 106tD or even more@10#. If, however, the phase
space is simpler in the sense that the Arnold web forms
of an impediment and such trapping is comparatively ra
the time required is typically much shorter. One way
which to quantify the overall rate of convergence is by p
forming a simple time series analysis: An orbit segment
lengthT may of course be divided intok segments of length
Dt5T/k and a short-time Lyapunov exponentx(Dt) com-
puted for each segment. The dispersionsx(Dt) then pro-
vides a useful probe of the degree to that, on time sca
;Dt, the degree of chaos exhibited by different orbit se
ments is more or less the same. Determiningsx as a function
of Dt provides a quantitative characterization of the rate
convergence towards a uniquex` . A simple argument based
on the central limits theorem suggests@13# that, if the acces-
sible phase-space regions are simple and trapping is rar
that the amounts of chaos manifested at timest andt1Dt are
essentially uncorrelated,

sx}~Dt !2p, ~3.2!

with p51/2. If, alternatively, the phase space is complex a
trapping is important, one would expect thatsx decreases
much more slowly with increasingDt.

Such a time series analysis was performed for the d
sets used to generate the mean exponents^x&. For each set of
20 integrations, each orbit segment of lengthT5100tD was
separated intok segments of lengthDt5T/k. A short-time
Lyapunov exponentx(Dt) was then computed for each o
the resulting 20k segments, and these were used to comp
the dispersionsx(Dt). Allowing for k52q, for q50, 1, 2, 3,
4, 5, and 6 was equivalent to varyingDt between Dt
5(100/64)tD and Dt5100tD . This time-series analysis le
to the conclusion that the dispersionsx is typically well fit
by a power-law dependence of the form given by Eq.~3.2!,
although the exponentp tends to be somewhat smaller tha
p51/2, the best-fit value typically satisfyingp;0.4. Several
examples are exhibited in Fig. 3. The fact thatp is compara-
tively close to 1/2, rather than the much smaller values t
9-4
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CHAOS AND THE CONTINUUM LIMIT IN THE . . . PHYSICAL REVIEW E 64 056209
are often observed in very ‘‘sticky’’ nonintegrable potentia
@13#, corroborates the intuition that, because the chaos in
problem is associated exclusively with close encount
trapping is rare and the degree of chaos exhibited at diffe
times tends to be statistically uncorrelated.

IV. COMPARISON OF SMOOTH AND N-BODY ORBITS

It is clear that, for sufficiently short times, a frozen-N
orbit will coincide almost exactly with the smooth potenti
characteristic associated with the same initial condition. A
similarly, it is clear that, at sufficiently late times, the irreg
larities in the frozen-N potential will cause the frozen-N or-
bit to deviate significantly from the smooth characterist
Probing the validity of the continuum limit at the level o
individual orbits thus devolves into determining the rate
which the frozen-N orbits and smooth characteristics d
verge. In this connection, two obvious questions arise.
frozen-N orbits diverge from the smooth characteristics e
ponentially or as a power law in time? And how does t
overall rate of divergence depend onN?

Such probes of the validity of the continuum limit diffe
from the ordinary point of view, where convergence is ty
cally defined in terms of quantities like bulk moments of t
system, ignoring completely the behavior of individual tr
jectories. A possible intermediate characterization is to fo
not on the pointwise behavior of the chaotic orbits but,
stead, on quantities that might be less sensitive to theN-body
chaos. In particular, one may also ask: How do frozenN
orbits deviate from smooth characteristics in terms of qu
tities that, in the smooth potential, correspond to tim
independent constants of the motion, like angular momen
in a spherically symmetric system?

These questions were addressed here both visually
quantitatively through a computation of the statistical pro
erties of frozen-N orbits. Givenn520 different trajectories
$„r i(t),vi(t)…%, i 51, . . . ,n, and the smooth characterist
„r s(t),vs(t)… associated with the same initial condition, the

FIG. 3. log10 sx(Dt) as a function of log10 Dt for three sets of
simulations:N531 623 ande50.0001~solid curve!, N5316, and
e50.0001 ~dashed curve!, and N5316 and e50.1 ~dot-dashed
curve!, all computed for the initial condition used to generate Fig
The thick solid line has a slope corresponding top50.4.
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are two types of moments that one might choose to consi
Quantities such as

^r &5
1

n (
i 51

n

r i ~4.1!

and

Dr 25^ur i2^r &u2&[
1

n (
i

ur i2^r &u2, ~4.2!

and the corresponding quantities generated fromv and J
5r3v focus on the frozen-N orbits in and of themselves
Alternatively, such moments as

Dr 2[^ur2r su2&5
1

n (
i

ur i2r su2 ~4.3!

and

dr 25^u^r &2r su2& ~4.4!

compare the frozen-N orbits with the smooth potential char
acteristic and, as such, their behavior as a function ofN is
particularly relevant in understanding the continuum lim
Overall, the quantitiesDr , dr , andDr were found to exhibit
comparatively similar evolutions, so that attention below
cuses on the momentŝr & and Dr , which seem especially
natural physically.

The most striking conclusion is that individual frozen-N
orbits typically diverge from the smooth characteristic as
power law in time,not exponentially@17#. This is true both
for comparatively large values ofe, where the frozen-N or-
bits are nearly regular, and for smaller values ofe, where the
orbits are much more chaotic. This result is perhaps surp
ing. One might naively have supposed that, since the froz
N orbits are strongly chaotic, at least for smalle, they would
tend to diverge exponentially from the smooth characteris
on a time scalet;x21. However, such an exponential d
vergence is most definitelynot observed.

Figure 4 exhibits the quantityDr[ur2r su for representa-

.

FIG. 4. ~a! The deviationDr 5ur2r su from the smooth potentia
characteristic for one representative frozen-N orbit evolved withe
51024 andN51000 for the initial condition used to generate Fi
1. ~b! Another frozen-N orbit evolved with the samee andN for the
same initial condition.~c! and ~d! The same forN5100 000.
9-5
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HENRY E. KANDRUP AND IOANNIS V. SIDERIS PHYSICAL REVIEW E64 056209
tive frozen-N orbits evolved withe51024 from the same
initial condition used to generate Fig. 1. The first two pan
are forN51000; the latter two forN5100 000. It is evident
that, rather than exponential, the growth ofDr is roughly
linear in time.

For how long does this power-law divergence persi
Does it cease when the distance between the frozen-N orbit
and the smooth characteristic is still small, or does the div
gence continue until the frozen-N orbit and the smooth char
acteristic tend to be widely separated in configuration spa
If, e.g., this divergence terminated at comparatively sm
separations, much smaller than the size of the system,
could argue that, even though the frozen-N orbits are chaotic,
they still remain ‘‘close’’ to the smooth characteristics. T
answer here is that this divergence continues until the typ
separation has become comparable to the size of
configuration-space region to which the orbits are confin
and the frozen-N orbit has become completely ‘‘decorre
lated’’ in appearance from the smooth potential characte
tic.

The same conclusion is also obtained if one averages
20 orbits generated in different frozen-N potentials~with the
samee andN) from the same initial condition. The six pan
els of Fig. 5, generated for the initial condition used in Fig
1–3, comparê x& for such frozen-N ensembles with the
smoothxs for orbits evolved withe51025, allowing for six
values ofN extending fromN5316 toN5100 000. In each
case, one finds that, for sufficiently larget, ^x&→0, as would
be expected if the frozen-N orbits have become complete
different from one another and move through configurat
space with random orientations. Figure 6 compares the ra
coordinateŝ r & andr s for the extreme case of an initial con
dition corresponding in the smooth potential to a purely
dial orbit @18#.

The time scaletG on which the frozen-N orbits diverge
from the smooth characteristic, and hence, the time scal
which Dr grows, increases with increasingN. Even though

FIG. 5. ~a! The trajectoryxs(t) in the smooth potential~thin
curve! and the mean trajectorŷx(t)& ~thick curve! derived from 20
frozen-N simulations withN5316 ande51024, performed for the
initial condition used to generate Fig. 1.~b! The same forN
51000. ~c! N53162. ~d! N510 000. ~e! N531 623. ~f! N
5100 000.
05620
s

?

r-

e?
ll
ne

al
he
d

s-

er

.

n
ial

-

on

the frozen-N orbits remain ‘‘equally chaotic’’ in the sens
that their Lyapunov exponentsx remain nearly constant
they remain close to the smooth characteristic for progr
sively longer times.

The left-hand panels of Fig. 7 exhibitDr /(21/2Rs), with
Rs

2 the mean value ofr 2 associated with the smooth chara
teristic, as computed for the same initial condition evolv
with e51024 for N51000 andN5100 000. The right-hand
side exhibits the same data, recorded at intervals of 0.025tD ,
once they have been subjected to a boxcar averaging ove
interval dt51.0tD . The large envelops associated with t
curves in the left-hand panels reflect, e.g., the fact that, at
times, individual orbits in then520 orbit ensembles are os
cillating about a value of unity.

That Dr /(21/2Rs) converges towards unity is a reflectio
of the fact that the orbits have indeed become comple
different from one another: Given that the frozen-N orbits

FIG. 6. ~a! The radial coordinater s(t) in the smooth potential
~thin curve! and the mean trajectorŷr (t)& ~thick curve! derived
from 20 frozen-N simulations with N5316 and e51024, per-
formed for an initial condition corresponding in the smooth pote
tial to a purely radial orbit.~b! The same forN51000. ~c! N
53162.~d! N510 000.~e! N531 623.~f! N5100 000.

FIG. 7. ~a! The quantityDr /A2Rs
2 for frozen-N simulations

with N51000 ande51024. ~b! The same data subjected to boxc
averaging over an intervalt5tD . ~c! and ~d! The same forN
5100 000.
9-6
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conserve energy, one might expect that their average
tance from the origin should, on average, be the same a
the smooth characteristic, so that

^r 2~ t !&→Rs
2 for t→`. ~4.5!

Assuming, however, that this is true and that

^r ~ t !•r s~ t !&→0 for t→`, ~4.6!

one infers thatDr2→2Rs
2 . Analogous behavior is observe

for the quantityDv/21/2Vs , with Vs
2 defined correspondingly

for the smooth characteristic.
As is manifested by Fig. 7, the growth ofDr andDv is

roughly linear in time. Indeed, when comparing an ensem
of frozen-N orbits with a smooth orbit characteristic gene
ated from the same initial condition, one finds that, for sm
e, Dr andDv are both reasonably well fit by a linear grow
law of the form

Dr

r s
5

Dv
vs

5
t

tG
. ~4.7!

The growth timetG , which is the same for bothDr andDv,
satisfies

tG'AGNptD , ~4.8!

with AG of order unity and p'1/2. Figure 8 exhibits
log10(tG /tD) as a function of log10N for two different initial
conditions evolved withe51025.

The fact thattG scales asN1/2 would suggest that the
divergence of the frozen-N orbits from smooth characteris
tics reflects a diffusion process, associated with a collec
of random close encounters. However, this might in tu
suggest thatDr andDv should grow ast1/2, rather than the
approximately linear growth that was observed in the
merical simulations. Interesting, though, such at1/2 behavior
is obtained for quantities such as angular momentum, wh

FIG. 8. Best-fit values of the time scaletG(N) associated with
the divergence of smooth and frozen-N orbits for two different
initial conditions:Dr /Rs5Dv/Vs[t/tG . The dashed line has slop
1/2, corresponding to anN1/2 dependence.
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are conserved absolutely in the smooth potential. Indeed,
finds that, for smalle, DJ satisfies

DJ2

Js
2

5
t

tJ
, ~4.9!

whereJs is the typical magnitude of the angular momentu
associated with a characteristic with the specified ene
The growth timetJ again scales asN1/2, but tends to be
somewhat larger thantG , so that

tJ'AJN
ptD , ~4.10!

with AJ;3AG andp'1/2. Figure 9 exhibits log10(tJ /tD) as
a function of log10N for the same integrations used to ge
erate Fig. 8.

There is also a clear visual sense in which, asN increases,
the frozen-N orbits become progressively more regular
appearance. This is, e.g., evident in Fig. 10, which exhib
the x-y projections of representative frozen-N orbits with N
varying betweenN5316 and N5316 228, all generated
from the same initial condition and integrated for a timet
525tD with e51025. The final panel exhibits the smoot
characteristic associated with the same initial condition. T
most obvious point is that, asN increases, the configuration
space region to which the orbit is restricted more clos
coincides with the region occupied by the characteristic.
example, only for the three largest values ofN is the orbit
‘‘centrophobic’’ in the same sense as the characteristic. T
lower-left panel of Fig. 1 in Valluri and Merritt@8# exhibits
similar data for an orbit that, in the continuum limit, be
comes@5# a regular ‘‘box’’ rather than a ‘‘tube.’’

Also evident is the fact that the orbit ‘‘looks smoother
for larger values ofN. This visual impression reflects the fa
that, asN increases, the power associated with the Fou
spectrum of an orbit tends to become more concentrated
a few special frequencies.~Since the smooth orbit associate
with the same initial condition is regular, all its power
concentrated at a countable set of discrete frequencies.! This

FIG. 9. Best-fit values of the time scaletJ(N) associated with
changes in angular momentum for frozen-N orbits for two different
initial conditions: DJ2/Js

2[t/tJ . The dashed line has slope 1/
corresponding to anN1/2 dependence.
9-7
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trend is illustrated in the eight panels of Fig. 11, each
which exhibitsux(v)u for a single frozen-N orbit generated
from the same initial condition. In each case, the data are
normalized that the peak frequency hasux(v)u51. The spec-
tra were generated from a time series of 4001 points,
corded at intervals of 0.025tD .

The degree to which the orbits become more nearly re
lar with increasingN may be quantified by determining@14#
the ‘‘complexity’’ of the orbits, i.e., the number of frequen
cies in the discrete Fourier spectrum that contain an ap
ciable amount of power. Two such measures of comple
are illustrated in Fig. 12, which was computed for ensemb
of frozen-N orbits with varying N, all evolved with e
51025 and generated from the same initial condition. T
solid curve exhibitsf 0.1, defined as the sum of the numbe
of frequenciesf 0.1,x , f 0.1,y , and f 0.1,z , which have more than
10% as much power as the peak frequencies forvx , vy , and
vz , i.e.,

f 0.15 f 0.1,x1 f 0.1,y1 f 0.1,z . ~4.11!

FIG. 10. Thex-y projection of representative frozen-N orbits
generated from the same initial condition, evolved fort525tD with
e51025. ~a! N5316. ~b! N51000. ~c! N53163. ~d! N510 000.
~e! N531 623.~f! N5100 000.~g! N5316 228.~h! The x-y pro-
jection of the same initial condition evolved in the smooth potent
05620
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The dashed curve exhibitsk0.95, defined correspondingly a
the sum of the numbers of frequencies required to cap
95% of the power in thex, y, andz directions. In each case
the curve represents an average over different orbits in
ensemble, and the error bars represent the associated d
sions. The obvious point is that both these quantities
crease with increasingN.

l.

FIG. 11. ~a! The Fourier transformedux(v)u for one frozen-N
integration of the initial condition used to generate Fig. 4, evolv
with e51025 and N5316. ~b! The same forN51000. ~c! N
53162. ~d! N510 000. ~e! N531 623. ~f! N5100 000. ~g! N
5316 228.~h! ux(v)u for a characteristic in the smooth potenti
with the same initial condition, with data recorded at the sa
intervals for the same total integration time.

FIG. 12. Two probes of the complexity of frozen-N orbits for an
ensemble of orbits with the same initial condition evolved withe
51025. The solid curve exhibitsf 0.1, the number of frequencies
that have power equal to at least 10% of the power in the p
frequencies. The dashed curve exhibitsk0.95, the number of fre-
quencies required to capture 95% of the total power. The horizo
lines showf 0.1 andk0.95 for a smooth characteristic generated ide
tically from the same initial condition, thus exhibiting the intrins
limitations associated with the discrete time series of data poin
9-8
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The fact that, asN increases, power becomes more co
centrated near a few special frequencies has important im
cations for various physical processes that rely on re
nances. For example, a variety of recent arguments in b
galactic and solar system dynamics invoke a process of
called ‘‘resonant relaxation’’@15#, which relies on the as
sumption that, in the presence of a large central objec~a
supermassive black hole in the center of a galaxy or the
at the center of the solar system!, N-body orbits behave very
nearly as if they were Keplerian trajectories in the fixed 1r
potential associated with the central object. If the chaos
hibited by individual orbits@16# implied that these orbits
were highly irregular, so that their power was not conce
trated near the special Keplerian frequencies, resonant re
ation might seem quite implausible. Given, however, that
orbits become progressively more regular for increasingN,
resonant relaxation would seem eminently reasonable
least for systems in whichN is sufficiently large.

Alternatively, one might be concerned with the respon
of orbits to nearly random perturbations, reflecting, e.g.,
external environment. In this case, perturbation act gen
cally via a resonant coupling between the natural freque
of frequencies of the perturber and the natural frequencie
the orbit @20# so that, in agreement with simulations@21#,
one might expect generically to see larger effects for or
with broader band Fourier spectra. The crucial point, then
that, even though frozen-N orbits remain chaotic in the sens
that their Lyapunov exponents do not decrease in magnit
they become more regular in the sense that their power s
tra become more sharply peaked.

The fact thatN-body orbits may have both a large positiv
Lyapunov exponent and a comparatively sharp Fourier sp
trum has profound implications for the meaning of chaos
N-body systems. In the context of time-independent Ham
tonian systems, it is customary@22# to consider positive
Lyapunov exponent and aperiodicity~and hence, continuou
Fourier spectrum! as two complementary notions of chao
and, at least for smooth lower-dimensional systems, ther
often a strong correlation between the size of the larg
short-time Lyapunov exponent and the Fourier complex
associated with chaotic orbit segments@14#. That orbits in
frozen-N potentials may have large Lyapounov expone
but still be nearly periodic suggests strongly that the ch
observed here is fundamentally different from the chaos
sociated with a bulk nonintegrable potential.

V. CONCLUSIONS AND DISCUSSION

Although trajectories remain chaotic in the sense that
largest Lyapunov exponent does not decrease towards
there is a clear sense in which, for increasingN, orbits in
frozen-N potentials exhibit a pointwise convergence towa
characteristics in the smooth potential that the frozen-N po-
tentials sample. Viewed in configuration or velocity spa
frozen-N orbits tend to diverge linearly from the smoo
characteristic with the same initial condition on a time sc
tG that is proportional toN1/2. Contrary to earlier specula
tions, N-body trajectories and smooth characteristics donot
diverge exponentially on a time scalet;x21;tD . In this
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sense, the continuum limit appears justified even at the le
of individual trajectories, at least for timest!N1/2tD . The
fact that frozen-N orbits remain chaotic for very largeN is
completely consistent with the existence of a well-defin
continuum limit.

It is easy to understand qualitatively why the frozenN
orbits should remain chaotic even for very largeN. Given
that the chaos disappears completely in the continuum lim
where the orbits reduce to integrable characteristics, it wo
seem clear that the chaos must be associated with a sequ
of ‘‘random’’ interactions between a ‘‘test’’ particle and
collection of ‘‘field’’ particles. However, this would sugges
that the time scale associated with the growth of a sm
initial perturbation may be estimated by considering the ti
effects associated with a pair of particles separated by a
tance comparable to the typical interparticle separation. T
tidal acceleration will of course scale as

d r̈5~dr•“ !a;
Gm

r 3
dr , ~5.1!

with r the separation andm the particle mass. Given, how
ever, thatr;n21/3;N21/3Rsys, with n a characteristic num-
ber density andRsys the size of the system, it follows that th
time scalet* associated with the interaction should satisf

t* ;1/AGr. ~5.2!

In other words, the time scale associated with any orb
instability induced by the graininess of the system should
comparable to the dynamical timetD , seemingly indepen-
dent of particle numberN. As N increases, the size of th
individual particle massm and the cube of the typical sepa
ration between particles,;n21, both decrease asN21 so that
their ratio is independent of particle number@23#.

That the chaotic frozen-N orbits appear to become ‘‘mor
nearly regular’’ asN increases is consistent with the obse
vation by Valluri and Merritt@8# that the ‘‘scale’’ associated
with N-body chaos decreases with increasingN. Specifically,
by comparing trajectories associated with two nearby ini
conditions evolved in the same frozen-N potential, Valluri
and Merritt found~cf. the lower-right hand panel of their Fig
1! that, when scaled in terms ofRsys, the size of the system
the typical separationRsat on which the initial exponentia
divergence saturates decreases with increasing particle n
ber, so thatRsat /Rsys is a decreasing function ofN. It should
be stressed that this ‘‘saturation’’ in the exponential div
gence of initially nearbyN-body trajectories is very differen
from the diffusive t1/2 divergence of frozen-N orbits from
smooth potential characteristics, which, seemingly indep
dent of N, only terminates when the typical separation h
become comparable to the size of the system.

That the rate of divergence of initially nearby frozen-N
orbits in the nonlinear regime slows more and more
largerN may be quantified by tracking the actual evolutio
of two orbits generated from nearby initial conditions a
determining the time required before their separation
comes ‘‘macroscopic.’’ The result of such an investigation
illustrated in Fig. 13, which was generated once again fr
9-9
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HENRY E. KANDRUP AND IOANNIS V. SIDERIS PHYSICAL REVIEW E64 056209
ensembles of 20 frozen-N orbits all evolved from the sam
initial condition withe51025. In each case, the unperturbe
orbits were identical to those used to generate Fig. 1;
perturbed orbits involved changing the initial value ofx by
an amountdx51026. Figure 13 exhibits as a function ofN
the mean timet required before the separation

dr 5~dx21dy21dz2!1/2 ~5.3!

had achieved the valuedr 51. ~For this initial condition, the
average value ofr associated with the smooth characteris
was Rs'1.83.! The error bars were derived by consideri
the first and second ten orbits in the ensemble separa
Because individual orbits diverge at vastly different rates,
dispersion associated with a 20 orbit ensemble is much la
than reflected by these error bars. It is clear thatt increases
systematically with increasingN, although considerably
more slowly than with theN1/2 dependence observed for th
divergence time scalestG and tJ .

When viewed in terms of collisionless invariants such
angular momentum, the divergence of frozen-N orbits from
smooth characteristics with the same initial condition is w
approximated as a diffusion process, in whichDJ grows as
(t/tJ)

1/2 and where, for fixedtD , the divergence time scaletJ
varies at least approximately asN1/2. This reinforces the con
ventional wisdom@19# that discreteness effects may be mo
eled as white, or nearly white, Gaussian noise in the con
of a Langevin or Fokker-Planck description. It might, the
fore, seem somewhat surprising that, although the diverge
time scaletG in configuration or velocity space again scal
as N1/2, the quantitiesDr and Dv grow linearly in time,
rather than ast1/2.

In this regard, it is significant that if the smooth Plumm
potential be replaced by the smooth potential associated
a constant density configuration, the linear growth exhibi
Dr andDv is in fact replaced by the ‘‘expected’’ diffusive
behavior. In this case,Dr and Dv both grow ast1/2, and,
when expressed in units of the dynamical timetD , the
growth time tG is somewhat longer, corresponding mo
nearly to the time scaletJ associated withDJ. This is, e.g.,

FIG. 13. The mean time required for two frozen-N orbits sepa-
rated initially by a distancedr 51026 to achieve a macroscopi
separationdr 51.
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evident from Fig. 14, which exhibitsDr 2 for one represen-
tative initial condition @24#, generated as in Fig. 7, forN
51000 andN5100 000.

This suggests strongly that the behavior ofDr and Dv
observed for the Plummer potential is associated with lin
phase mixing. Because of finite number statistics, the sa
initial condition (r0 ,v0) in different frozen-N realizations of
a Plummer potential will correspond to somewhat differe
energies, the values of which are conserved in the subseq
evolution. However, even neglecting discreteness effe
initially proximate orbits in a generic integrable potenti
will, if their energies be unequal, tend to diverge linear
For example, two orbits evolved in a smooth Plummer p
tential with the same initialr but slightly different values of
v and, hence, slightly different energies, will oscillate wi
somewhat different frequencies and, as a result, exhibit
overall linear divergence. If, however, the orbits are evolv
instead in the potential associated with a constant den
distribution, this is no longer true. A constant density sph
corresponds to a harmonic potential, where all orbits h
the same unperturbed frequencies; and, for this reason, o
in the smooth potential with slightly different energies w
not exhibit such a systematic divergence.

The fact that frozen-N orbits look ‘‘more nearly regular’’
for largeN suggests that the chaos associated with discr
ness effects in theN-body problem should be viewed ver
differently from the chaos associated with a bulk nonin
grable potential. When evolved into the future, two near
chaotic initial conditions in such a potential tend to diver
exponentially until they are separated by a distance com
rable to the size of the easily accessible~i.e., not significantly
impeded by the Arnold web! connected phase-space regi
to which the orbits are confined, a region that tends, ty
cally, to be macroscopic. By contrast, the scale associa
with chaos induced by discreteness effects in theN-body
problem is distinctly microscopic, at least for comparative
large N. It would appear that any single orbit with fixe
energy may access a phase-space region that is in fact
large; but the chaos that it experiences is a superpositio
short-range effects with characteristic scale!Rsys.
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FIG. 14. ~a! The quantityDr 2/2Rs
2 for frozen-N simulations

with N51000 ande51024, now considering discretizations of
constant density sphere with total massM51.0 and radiusR54.0.
~b! The same forN5100 000.
9-10



ss

th
o-

o

s-
of
’’

-

-
r,

ss

-

its
e
be

er,

e

v.

s

ith
rix

on

ten-
ses
of a
sfies

to
at

t
y L.

n-
alue

CHAOS AND THE CONTINUUM LIMIT IN THE . . . PHYSICAL REVIEW E 64 056209
@1# R.H. Miller, Astrophys. J.140, 250 ~1964!.
@2# H.E. Kandrup, Physica A169, 73 ~1989!.
@3# J. Goodman, D. Heggie, and P. Hut, Astrophys. J.415, 715

~1993!.
@4# H.E. Kandrup, M.E. Mahon, and H. Smith, Astrophys. J.428,

458 ~1994!, and references cited therein.
@5# J. Binney and S. Tremaine,Galactic Dynamics~Princeton Uni-

versity Press, Princeton, 1987!.
@6# Rigorous justifications of mean-field theory, such as the cla

paper on gravitating fermions@P. Hertel and W. Thirring,
Commun. Math. Phys.24, 22 ~1971!#, typically prove conver-
gence for quantities such as a free energy or some other
modynamics quantity, which has implications for bulk m
ments but says absolutely nothing about the behavior
individual orbits.

@7# H.E. Kandrup and H. Smith, Astrophys. J.374, 255 ~1991!.
@8# M. Valluri and D. Merritt, inThe Chaotic Universe, edited by

R. Ruffini and V.G. Gurzadyan~World Scientific, New York,
1999!.

@9# S.J. Aarseth, M. He´non, and R. Wielen, Astron. Astrophys.37,
183 ~1974!.

@10# A.J. Lichtenberg and M.A. Lieberman,Regular and Chaotic
Dynamics~Springer, Berlin, 1992!.

@11# In Cartesian coordinatesr5(1.557,20.236,0.564) andv
5(0.459,20.267,20.317). The dynamical time tD

52pur u/uvu'17.0.
@12# See Eq.~7.7! in H.E. Kandrup, Phys. Rep.63, 1 ~1980!.
@13# C. Siopis and H.E. Kandrup, Mon. Not. R. Astron. Soc.319,

43 ~2000!.
@14# H.E. Kandrup, B.L. Eckstein, and B.O. Bradley, Astron. A

trophys.320, 65 ~1997!, which discusses the pros and cons
the admittedly somewhat simplistic probes of ‘‘complexity
used in this paper.

@15# K.P. Rauch and S. Tremaine, New Astron.1, 149 ~1996!.
@16# A numerical investigation of theN-body problem in the pres

ence of a much larger central point mass@H. Smith, H.E. Kan-
drup, M.E. Mahon, and C. Siopis, inErgodic Concepts in Stel
lar Dynamics, edited by V.G. Gurzadyan and D. Pfennige
Springer Lectures Notes in Physics No. 430~Springer, New
York, 1994!, p. 158# suggests that, even if the central ma
MBH is much larger than the total massM5Nm of the indi-
vidual particles, theN-particle orbits continue to exhibit a sen
05620
ic

er-

f

sitive dependence on initial conditions. For example, for orb
in simulations withMBH510M , the characteristic time scal
t* associated with the exponential sensitivity was found to
less than three times longer than the value oft* for MBH50.

@17# Many astrophysicists, including the first author of this pap
had predicted erroneously@cf. H.E. Kandrup, Ann. N.Y. Acad.
Sci. 848, 28 ~1998!# that the divergence would in fact prov
exponential.

@18# More precisely,r5(1.557,20.236,0.564) andv5(0,0,0). The
dynamical timetD'7.0.

@19# S. Chandrasekhar, Rev. Mod. Phys.15, 1 ~1943!.
@20# I.V. Pogorelov and H.E. Kandrup, Phys. Rev. E60, 1567

~1999!.
@21# H.E. Kandrup, R.A. Abernathy, and B.O. Bradley, Phys. Re

E 51, 5287~1995!.
@22# M. Tabor, Chaos and Integrability in Nonlinear Dynamic

~Wiley, New York, 1989!.
@23# Recently, as part of his Ph.D. dissertation@I.V. Pogorelov,

Ph.D. University of Florida, dissertation, 2001#, Pogorelov has
made this heuristic argument more convincing. Starting w
an exact formula for the second derivative stability mat
F i j 5]2FN /]xi]xj associated with the frozen-N potential
FN , he derived a formal multidimensional integral expressi
for the probability distributionP(L) for different values of the
largest eigenvalueL associated withF i j , assuming thatFN is
given as a random sampling of some specified smooth po
tial F. He then proved rigorously that, for certain special ca
and geometries, e.g., a test particle located at the center
constant density system, the largest eigenvalue, which sati

d r̈ 5Ldr , is bounded from below by a positiveN-independent
constant; and by implementing a Monte Carlo algorithm
estimate the multidimensional integral, found numerically th
L appears, if anything, to be a very slowlyincreasingfunction
of N. These results do not constitute a rigorous proof thax
remains bounded away from zero — as stressed, e.g., b
Casetti, C. Clementi, and M. Pettini, Phys. Rev. E54, 5969
~1996!, x depends on both the moments ofP and how these
moments change in time — but it is almost impossible to e
vision a setting where the mean value of the largest eigenv
remains positive butx→0.

@24# Here, r5(1.557,20.236,0.564) and v5(0.258,20.267,
20.217). The dynamical timetD52pur u/uvu'24.0.
9-11


