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Wave function statistics for ballistic quantum transport through chaotic open billiards:
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For ballistic transport through chaotic open billiards, we implement accurate fully quantal calculations of the
probability distributions and spatial correlations of the local densities of single-electron wave functions within
the cavity. We find wave-statistical behaviors intrinsically different from those in their closed counterparts.
Chaotic-scattering wave functions in open systems can be quantitatively interpreted in terms of statistically
independent real and imaginary random fields in the same way as for wave-function statistics of closed systems
in the time-reversal symmetry-breaking crossover regime. We also discuss perceived statistical deviations,
which are attributed to the coexistence of regular and chaotic waves and given analytical explanations.
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. INTRODUCTION ((r) ¢ ()= const< Jo(Kr), 1.3

Complexity in the quantum mechanical behavior of clas-Wherer=|r,—r,| andJy(x) is the Bessel function of zeroth
sically nonintegrable systems may be one of the most inerder. Later, within the super-symmetry formalism, the
triguing subjects in the field of quantum chaos. The study oflisorder-averagetequivalently space-averagespatial cor-
morphological complexity in the eigenstates of chaotic bil-relation of the local densities in disorderée., chaoti¢ 2D
liards has been actively carried ofit]. The properties of billiards was found to b¢5,7]
nodal lines(or pointg in the wave dynamics are closely re- 5
lated to spectral geometry in optif2]. Po(kr)=(y(ry)y(rz))=1+cJ(kr), (1.4

Historically, McDonald and Kaufman first numerically re-
vealed the complicated eigen function structures in a closelynere ¢=2 for GOE (TRS) and c=1 for GUE (broken

two dimensional(2D) chaotic billiard[3]. We denote the | RS eigenfunctions. _ .
scaled local density ag(r)=V|y(r)|?, whereV is the vol- Investigations of the continuous transition of the wave-

ume of the system, in which a single-particle wave functionfunction statistics between GOE and GUE symmetries have

#(r) is normalized in terms of the position It is well been also worked out. Assuming a complex wave function,

known that the probability distribution of the local densities ¥ U*+W. whereu and are independent random variables
of a chaotic eigenfunction of a closed system is the Porter¥ith & common mean valugu)=(v)=0, & common vari-

Thomas(PT) distribution[4] ance(u?)=(v?=1 and({uv)=0, we introduce a transition
' parameterbe (1,2] into the weights foru and v as ¢
P(y)=(1/\/m)exp(—y/2), (1.1) =+1bu+iy1-1/bv. Then we have the probability distri-

bution[8-12):
described by a Gaussian orthogonal enserf®BIBE) of ran-

dom matrices, when time-reversal symmet(yRS) is P(y)— b oxd — b? | b(2—b)
present, i.e.iye R. On the other hand, the distribution is an y 2/b—1 4(b—-1) Y|to 4(b—-1) Y]
exponential4,5], (1.9

P(y)=exp —Y), (1.2 wherel y(x) is the modified Bessel function of zeroth order,
and the spatial correlatigri 3]:

described by a Gaussian unitary ensem{@d&E) of random
matrices, when TRS is broken in the closed system, je.,
e C. ¢ has nodal lines in the former case while it has nodal
points in the latter case. At the same time, Berry has dis-
cussed the coordinate dependence of the semiclassical waker b—1 andb—2, both equations tend to the GOE and
function in the classically chaotic regime, adopting an ideaGUE cases, respectively. We should note that the transition
of an infinite superposition of plane waves with a fixed wave(1.5) may be described as well by other probability distribu-
numberk, but with random directions and amplitudés-  tion functions derived by an interpolation of tlxé, distribu-
called Berry functiop [6]. He showed that the space- tion with v continuously varying between 1 and[24], an
averaged spatial correlation of the 2D wave function isenergy averaging of the random matrix elements of Hamil-
given by tonians representing the GOE-GUE crossoM&s] and the

2
Po(kr)=1+|1+ ZT) }Jé(kr). (1.6)
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supersymmetry method for disordergnperfectly opeh  zero probability current density:  j(r)
systems.in an .arbitrary magnetic fi.eﬂdi6]. However, the = (#/m)Im[4*(r)Vi(r)]. Such boundary conditions can
assumption of independent fluctuations foand v in the  he naturally obtained only for complex wave functions pre-
derivation of Eqs(1.5 and(1.6) is most naturally adopted in  scribing the distribution of incoming flows on the boundary.

the context OT this paper, as we will see .Iater. Experimentabn the other hand, the Hamiltonian operafﬁr of the sys-
agreement with these theoretical predictions is obtained us- . ' ”

ing thin microwave cavities with TREL7,18, without TRS tem in our case is real and invariant on rev.erse.of tirrte
[18], and in the TRS-breaking crossover regifiis]. The ——t by gleflnltlon. Therefqre, the re_al and imaginary -parts
predictions are also confirmed numerically for closed bil-Of Scattering statej(=us+ivs), are independent solutions
liards with TRS[19—-23. On the other hand, there is also a ©f the time-independent Schtimger equation for a station-
remarkable work for a “partially” open chaotic resonator &Y Staté. In other words, for an incoming wayg=Uo
[24]: Assuming a real random matrix model associated with™ V0, Us andvs can respond in different manners inside the
the internal real eigenfunctions with RT distribution and ~ Scattering domain, which are determined by the initial wave
adding an imaginary effective potential representing a prob€omponentsiiy andu, [€.g., Neumann and Dirichlet bound-
ing point contact, the authors showed that the density distri@"y conditions, respectively, for a plane wayg~cosk-r)

bution of the wave function at the point contact coincides™ i Sink-r) at a boundaryk-r=0]. This fact is remarkable
with Eq. (1.5). when we apply the random matrix theofRMT) to the

All the conventional considerations mentioned aboveWave-function statistics in open systems. It is expected that
however, are basically concerned with closed systems or ifi) the resulting statistics is close to the GOEiifandu; are
the limit of imperfectcoupling. To the best of our knowl- Strongly correlatedi.e., ys can be expressed with real func-
edge, one work was carried out for the wave-density distrifions only, while (i) it is the GUE if they are completely
bution and its joint probability distribution in relation per-  uUncorrelatedi.e., us andv are statistically independent and
fect coupling to the environmenftl1]. Using independent have equal weight An extreme example of the cagi¢ is a
Gaussian variables for Reand Imy following from the §|ngle—mode total reflection where the entire space reciproc-
central limit theorem to great number of random wave superily recovers and the GOE statistics holds completely. The
positions, they derived Eq1.5) for the wave-density distri- v_veak localization effect,_ i.e., coherent backscattering by
bution in the crossover regime between closed and open syime-reversed paths, partially plays the same role, however,
tems. Nevertheless, the way how to identify the independerit may be hard to distinguish this effect from another if both
random variables in general situations, the validity of theCO€Xist. In any case, the value bfmay provide a quantita-
random variable assumption in real systems etc. still remaiffveé measure of the degree of the space-reciprocity breaking
unclarified in spite of the fact that they are more closely!n OPen systems.
related to experimental situations. Finally, we should remark that the expressions for the
The aim of this paper is to give deeper insight into theScattering wave statistics in open systems are in complete
wave statistics for perfectly open systems by consideringinalogy with those for the eigenfunction statistics in closed
ballistic quantum transport through chaotic open billiardsSystems with broken TR$L1]. This is because boundary
with no magnetic field. In Sec. I, we explicitly discuss time conditions allowing forj(#0) are introduced for a solution
reversibility, space reciprocity breaking and resulting waveof the dynamical state with broken TRS in the case of open
statistical crossover in the open systems. We present an aystems, and not because coupling to the environment breaks
ternative simple derivation of Eq&l.5) and(1.6) in Sec. Ill.  the TRS of the dynamics itself, which is completely deter-
More importantly, we also show how to identify the two mined byH.
independent random fields in a given wave function. We will
find in Sec. IV that Eqs(1.5 and (1.6) for the crossover IIl. ANALYTICAL SIMPLE DERIVATION OF WAVE-
regime are applicable to the ballistic transport through cha-FUNCTION STATISTICS IN THE CROSSOVER REGIME
otic open billiards. We also discuss statistical deviations at-

tributed to the coexistence of regular and chaotic waves. Sec- We start with a simple but essential assumption that an
tion V consists of conclusions. arbitrary chaotic-scattering wave functionjg(r), for a

single particle is related to itsanonical formby

Il. TIME REVERSIBILITY, SPACE RECIPROCITY ps(r)=€"*y(r), (3.1

BREAKING AND WAVE STATISTICAL CROSSOVER . . . . .
where ¢(r) is a phase-invariant canonical wave function

It is essential that the scattering wave functigg, in the  whose real and imaginary parts can be viewed as statistically
open systems is no more a real function in general, i.e., it isndependent Gaussian random fields. The rotation phase fac-
different from an eigenfunction of time-reversal closed sys-or, ¢, is attributed to the correlation between the two Gauss-
tems. It is because thepace reciprocityin conservative ian random fields. It is dependent on each system and can be
closed systems, which means that each plane wave in thidentified in experimental measurements or numerical simu-
Berry function ties up with its counterpart with the samelations.
amplitude and running in the opposite direction in phase, is We first derive the canonical form ofys(r)=ug(r)
lost by coupling to the environment in open systems. Thistivg(r). In sufficient large systems compared to the wave
requires the use of boundary conditions allowing for the noniength, us and v can be regarded as random afuak)
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=(vy=0. We introduce next notationsu’=(u2), o2
=(v3), oy ={(Ugy), ando?= o3+ a>=(|¢?). We multi-
ply both sides of Eq(3.1) by e™'*:

y=e "“Y=p+iq. (3.2
Herep andq are real and imaginary parts ¢f respectively,
and

p=ugCosa+tuvgSina, (=—UgSiNna+uvgCoSa.

(3.3

We have to choose in such a way thap and g become
statistically independen{pq)=0. Therefore, we get

20
tan 20 = ———

g,

" (3.4)

It is easy to show that the variancesmpandq are equal to

<p2>= %[0’2+ \/0'4—4(050'5—0'5v)],

1
(0%)=5[0?—Vo—4(ojo;—0g,)]. (35
Here we assumedﬁ> 05 without losing generality, because
we can always multiplys by =i (or equivalentlya— «
+7/2), if necessary, and then chooae: [ — w/4,7/4] from
Eq. (3.4. We note that botl{p?) and(qg?) are independent
of a. Introducing a parameteg(0<e<1) as (q%)/(p?)
=¢2, and together with the relatigip?) +(g?) = o2, we ob-
tain (p2)=[1/(1+£2)]o? and(q?)=[e?/(1+&?)]o?. Then
we reach the canonical form:

u(r)+ieuv(r)

J1+g?

P(r)= (3.6

O-!

whereu(r) anduv(r) are statistically independent Gaussian

random fields with(u)=(v)=(uv)=0, (u?)=(v?)=1 and
a Bessel correlation functioil.3). The parametes is calcu-
lated by

1-6

1+¢& 3.9

e=

where

_(P)—(@®) 1 :

o ?\/04—4(0303—01“, (3.8

The value ofe shows the degree of correlation betwaen
andvg. We havee =0 in the case thatiy andvg are com-

pletely correlated as in the case of time-reversal closed sys-

tems while we have =1 if ug andv are completely uncor-
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u2(r)+8202(r)

pe()=—— 2

(3.9

In the following, we investigate statistical dependence of the
normalized random wave densit®.9 on the parametes.

[An analogous derivation of E¢3.15 is found in Ref[11].

In their theory, however, the value efis not determined for

a given wave in general situatiofs.

We recall that chaotic wave densities in closed systems
follow the PT distribution(1.1) whose singularity ap=0 is
stipulated by the characteristic behaviorusi(r) in the vi-
cinity of “self-avoiding” nodal lines. In open systems, nodal
lines are disappeared for agy>0, and, as a result, the sin-
gularity of the density distributioril.l) is eliminated. This
becomes evident when we calculate the distribution of the
random wave densit{3.9) for arbitrary e.

We consider the cumulative distribution of the wave den-
sities. It is equal to the probability

u2+w?
1+¢&2

Ge(p)=P (3.10

<)

where we used the auxiliary random fieldr)=cv(r). The
probability (3.10 is equal to

G.(p)= f fc(pys)f(u,w)du dw, (3.11)

whereC(p,¢) is a circle in the plangu, w}, centered at the

origin and with radius(1+&%)p. Now, we take into ac-

count thatf (u,w) is a joint distribution of Gaussian random
valuesu, wand has the form

f(u,w)ziexr{—%(uq éwzﬂ. (3.12

Substituting this distribution into the integréd.11), we get

1 (27nl—exd— + v cosé

G.(p)= f A—pu(utv )]da
27 Jo M+ v coséH

(3.13

Here we used the notations:

1/1 ey 3
AP (utv=1lle, u—v=cg).
(3.19

After differentiating both sides of Eq3.13 with respect to
p, we get the wave-density distribution,

f.(p)=mexp—u’p)lo(urp), (3.19

related, i.e., the Berry function. In the following discussion,wherely(x) is the modified Bessel function of zeroth order.

o? [and o in Eq. (3.6)] is chosen to be unity, corresponding

to the normalization(| 5%y (={(|¥|?))=1.

Next, we derive wave-density correlation function de-
pending one. Using the rule of fourth moments of Gaussian

In particular, the random wave density in the system israndom fields splitting5,7], it is easy to show that the cor-

equal to

relation function is equal to
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b,(S)=(p:(r)p.(r+s)) 1 ¢
([uP(r) +&2?(n)][uP(r +5) + 2 *(r+9)])
B (1+€2)?
B
=1+c(e)J3(ks), (3.16 T
where the coefficient U
1+¢&4 0 A k
0(8)22(1+82)2 (3.17 187 188 189 190 1.91 1.92
kd/x
describes the influence of openness on the wave-density cor- (a)

relation function.
Finally, we notice that, by defining

e=+b—1, (3.18
Egs. (3.15 and (3.16 coincide with Egs.(1.5 and (1.6) T
obtained by RMT, respectively. D

IV. NUMERICAL ANALYSES AND DISCUSSIONS

For numerical analyses, we consider a 2D Bunimovich 463 464 465 466 467 468
stadium billiard[25]. It is characterized by the radius of a kd/z
semicirclea and the half-length of a straight sectibnThe ©)
maximum Lyapunov exponent reaches its maximum at the
fully chaotic limit (a=1I) [26]. In the following, we simply
refer to this limit as the stadium. The billiard is coupled to a
pair of leads with a common widtt.
In quantum dynamics, the dc current passes through the
leads. We solve the time-independent Sdimger equation T
for a single electron under Dirichlet boundary conditions
based on the plane-wave-expansion metf®d, giving re-
flection and transmission amplitudes as well as local wave
functions for each energy. 0
Figure 1 shows transmission probabilifyas a function of 463 484 465 466 467 4.68
Fermi wave numbek for the incoming wave with propagat- kd/n
ing moden in the lead.T is directly connected to conduc- (c)
tance of the systerf28]. We see a sequence of overlapping
resonances that are broader in the high-energy regi number for the open stadium billiarée) A low-energy region for
1(b?] tha.n th(_ay are in th? I(.)W-e_nergy. reg.@ﬁlg' La)] As n=1.(b) A high-e%ergy region fon=1. (c) A high-e%):ergg region
typical situations for statistical investigations of the scatter, -4
ing wave functions, we consider five points marked wkh
~E in Fig. 1: T=0(A), 0.5(B), 1 (C) for n=1 in the as the coincidence of the nodal lines between/Rad Imy
low-energy region and #0, 1 forn=1(D), 4 (E) in the in Fig. 3a).
high-energy region. In the calculation of the statistics, the In Fig. 3(b), we find a “turbulence” corresponding to the
spatial average is taken in the cavity region corresponding tgo-called bouncing-ball mode in the central region of the
the closed stadium. For convenience, the arég=V), of  stadium cavity. We see 14 vertical nodes associated with
the cavity region is normalized to be unity. marginally stable classical orbits bouncing vertically be-
Figure 2 shows the results of the numerical calculations ofween the straight edges. Bouncing-ball states are nonstatis-
the probability distributionP(|#|?) and spatial correlation tical states since the amplitude gfis strongly localized in
P,(kr) together with their analytical predictions in which the the middle region of the stadiufthe space reciprocity holds
parameteth was determined numerically by Eq®8.7) and  locally) and is very small in the endcafthe space reciproc-
(3.18. Correspondingly, Fig. 3 shows the wave probability,ity does not necessarily holdAs a result, the head and tail
density, and nodal lines. of P(|4]?) for such states dominafeee Fig. 2b)]. In order
In Fig. 2(a), we see that botR(||?) andP,(kr) are very  to evaluate the effect of the bouncing-ball structure itself on
close to the GOE predictions due to the almost total reflecthe wave statistical properties, we consider closed integrable
tion of the initial wave. We recognize the space reciprocityrectangle billiards. The probability distribution and spatial

FIG. 1. Transmission probability as a function of Fermi wave
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FIG. 2. Probability distributiorithick step$ and spatial correlatiotthick line in the insetof local densities in the open stadium billiard
for the condition(a) A, (b) B, (c) C, (d) D, and(e) E in Fig. 1. Two thin lines show GOE and GUE cag#se same for the insetDashed
thick line in (b) is Eq. (4.1) [Eq. (4.2) for the inset for the eigenstate with a pair of quantum numbgd5 andkd/7=1.879 16 in the
closed square billiard corresponding to the middle region of the stadium billiard. Dotted thick lige {d) and(e) is Eq.(1.5) [Eq. (1.6)

for the inset for b=1.10, 1.03 and 1.74, respectively.

correlation of the local wave densities in such systems shownd the aspect ratio of the rectangle. Correspondingly, the
strong deviations from the GOE predictiof29]. The ana- analytical form of the spatial correlation is also derisde
lytical form of the probability distribution is derive@see  Appendix B as
Appendix A as

1 y Pz(kl’)=1+%[JO(ZerOS‘y)-I—JO(ZkI’ sinvy)]
P(y):—K( 1——), 4.9

2y Z

whereK(x) (0=x<1) is the argument of the complete el-
liptic integral of the first kind with the amplitude/2. The
universal equatiort4.1) is independent of quantum numbers where y=tan *(k, /k,) (k; andk, are quantized wave num-

1
+ ZJO(Zkr), 4.2
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;]

- B e o T

FIG. 3. (Color Contour plot of wave probability densitffop), nodal lines(middle; red lines for Res and green lines for In), and
probability currentbottom in the open stadium billiard for the conditida) A, (b) B, (c) C, (d) D, and(e) E in Fig. 1. Initial wave comes
through the left lead into the cavity. The contours show about 97.5% of the largest wave probability density. Dotted light-blugéhines in
and (d) show some of the short classical orbits corresponding to the localization of the wave probability density.

bers corresponding to two sides of the rectahgide choose 2(b). We see that these analytical equations successfully de-
an eigenstate of a square billiard with a pair of quantumscribe the tendency of the overall deviations from the RMT

numberg1,15 andkd/7=1.879 16 that are almost identical predictions. More precise analytical agreements with the nu-
to the conditiorB, and Eqgs(4.1) and(4.2) are plotted in Fig. merical results may be obtained by taking into account the
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© i ()

FIG. 3. (Continued.

coexistence of regulatbouncing-ball and chaotic wave- tion in one(right) direction]. In this case, we may expect the
function regions in the cavitysee Appendix C for a pro- GUE statistics. However, the nodal lines between/Rmnd
posed analytical simple model Im ¢ are somewhat correlated as we see in Fig),%o that
In Fig. 3(c), we see fully chaotic probability-density struc- both P(|¢|2) andP,(kr) show the intermediate between the
tures in the cavity region with almost no reflecti@®e in the GOE and GUE predictionsee Fig. 2c)]. They are quanti-
nodal pattern in the left lead that the phase difference betatively consistent with Eqs(1.5) and (1.6) with b=1.10
tween Rep and Imy is 7/2, showing plane-wave propaga- obtained numerically fors, which is close to the GOE case.
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1
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n
@
2
b
1
0 5 10 15
n

(b)

FIG. 4. Transition parameter vs initial mode for the open sta-
dium billiard. (a) The case of leads shown in Fig. 3. The valudof
was obtained as an average for 4.64%8%/ w<4.667 22.(b) The
case of leads four times wider than those shown in Fig. 3. The value
of b was obtained as an average for 18.57388/7<18.668 88.

becomes large ad increases keeping the energy fixegwt
shown herg
In the high-energy regionN=4), Fig. 2e) shows that
both P(|]?) andP,(kr) are successfully described by Egs.
(1.5 and(1.6), respectively, witho=1.74 obtained numeri-
cally for ¢, which is very close to the GUE case. Figufe)3
confirms the uncorrelated nodal lines between/Rad Imys
in the cavity region. As we notice, the complete GUE statis-
tics is conjectured to be obtained only in the high-energy
(semiclassicallimit. Our investigations show that, until the
energy reaches such a limit, the wave-function statistics
demonstrate the crossover from the GOE to the GUE statis-
tics by increasing the energy. Generic featuresP¢ffy/|?)
andP,(kr) in this crossover regime can be described quan-
titatively by Egs.(1.5 and(1.6), respectively, with increas-
(&) ing b, which is independent of the initial modefor a fixed
FIG. 3. (Continued. d (for nL_Jm_ericaI evidences, see Fig. Ve should note tha}t
the statistics of Re (or Im ) in general shows the GOE in
spite of the crossover behavior ¢f(not shown herge
In general, the wave statistics show the GOE behaviors in the another possibility of the departure from the GUE is a
low-energy regionN=1, whereN is the number of trans- |ocalization effect reminiscent of the phenomenon known as
mittable mode in the leagigs was first reported in ReR29].  “scar” [30] describing an anomalous localization of quan-
The reason is that the difference of the boundary conditionum probability density along unstable periodic orbits in
that Rey and Imys “feel” at the entrance of the cavity is classically chaotic systems. The localization effect on wave-
relatively small in the low-energy case, so thatfzend Im¢s  function intensity statistics has been examined using a time-
respond in almost the same manner, each of them producirdgpendent approach, i.e., in terms of recurrences of a test
similar nodal patterns. This is certified by the fact that Gaussian wave packet, for closed and wedkiyperfectly)
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open systemg31-33. They showed that the tail of the (NUTEK) under Project No. P12144-1., the Swedish Royal

wave-function intensity distribution in phase space is domi-Academy of Sciences, the Swedish Institute, INTAS Grant

nated by scarring, departing from the RMT predictions. No. 97-11134, and the Russian Foundation for Basic Re-
In contrast, the most prominent effect of the localizationsearch(RFBR) Grant No. 00-02-16167. Part of the calcula-

of wave probability density in perfectly open billiards is the tions were carried out by using a resource in the National

local space reciprocity holding along the classical orbits corSupercomputer CentéNSC) at Linkoping.

responding to the localization not strongly coupled to any

(open transmission channgsee Fig. 8d)]: Along such or- APPENDIX A: PROBABILITY DISTRIBUTION

bits, nodal lines of Rg and Im¢ coincide, indicating coher- OF EIGENFUNCTIONS IN RECTANGLE BILLIARDS

ent overlap of time-reversed waves, and hence carrying no ] ) . )

net current. As a result, bof(| #|2) andP,(kr) are close to A standard eigenfunction of a rectangle billiard is

the GOE predictiongsee Fig. 2d)], and surprisingly in ex- A .

cellent agreement with Eqg1.5) and (1.6), respectively, pr)=Asin(koxy)sintkoxz), (A)

with b=1.03 obtained numerically fop. wherek?+k3=k? and A is an arbitrary constant. From the

_Inthe case of “localization” strongly coupled to both the gagistical point of view where we make a space average over

initial and one of th¢open transmission channels, the phase 4 the interior of the billiard, we can replace the arguments

dn‘fergnce bgtwgen Ri¢z a_md .Imf,/; along the corresponding o the eigenfunction bgk,x; = & andk,x,= 8, wherea and

classical orbits ist/2, which indicates plane-wave propaga- s 4re statistically independent random values uniformly dis-

tion with nonzero probability current, resulting in anomaly of yinuted over an intervdl— r, 7). Therefore, we can write the

the wave statistics. The localization depicted with a dOtteq)seudorandom wave-density fielg(r)=|4(r)|?, in the
line in Fig. 3b) is an example of this case, though the cou-g5,m, ’ '

pling to the transmission channel is not so strong, as we can

infer from both the value ofl and the amount of phase p=A?sir? a sir? g, (A2)
difference.

Finally, we note that, in the case of open integrable circleand obtain the value of its average as
billiards, our numerical calculations show much peculiar be- 2
haviors ofP(] ¢|2_) andP,(kr) depending on the energyot (p)=A2(sir? a)(sir? B)= A_ (A3)
shown herg This fact suggests that neith&(|#|?) nor 4

P,(kr) have universal expressions in the case of open inte- . . o _
grable billiards. We normalizeys in such a way thaf{p)=1, i.e., A=2. We

also obtain

V. CONCLUSIONS (p?)=16(sin* a)(sin* B)=9/4=2.25. (A4)

In conclusions, our numerical analyses show that chaotic- The distribution function of the eigenfunction density
scattering wave functions in open systems can be quantitgA2) is
tively interpreted in terms of statistically independent real
and imaginary random fields. Statistical deviations from g(p)=(3(p—pa)), (AS5)
RMT are discussed in terms of the coexistence of regular and o A - .
chaotic waves. This work leads to a deeper insight into thvherep=2 S'nza. andq=2 sng are statistically |_nd('apen—
connection between the wave-function statistics in chaoti(Ejent random variables with the identical distribution:
open systems and the RMT for the time-reversal symmetry- 1
breaking crossover regime in closed systems. The properties — — )= —gN=—
of nodal structures in the wave dynamics have a close con- f@=(3z=p)=(3z-) mNZ(2—2) 86
nection with the current statisti¢42]. ) )

The results presented in this paper are also relevant for tiequation(A5) can be written as
Poynting vector describing the electromagnetic energy trans- o\ dp
port through a thin microwave resonaf@], as well as for g(p):f f S(p—pa)f(p)f(q)dp dq:f f(p)f(_>__
sound propagation through an acoustic resori@®;36. We p/ P
propose that experiments performed in such devices will (A7)
yield statistical properties described with the formalism pre-, - P -
sented in this paper, and hence successfully verify theoretica%UbStItUtIng the distributionA6) into Eq. (A7), we get
predictions for a completely open ballistic system.

(p) ! f ‘ az (A8)
2(4—-2)(z—
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0

whereK(z) (0=<z<1) is the argument of the complete ellip- 3
tic integral of the first kind with the amplitude/2. In two

limits, g(p— 0)~[2/(7?\p)]In(1/p?) and g(4)=(4m) L. 2
The universal equatiofA9) is independent of the quantiza- &
tion {k;,k,} and the aspect ratio of the rectangle. Finally, we 551
note that Eq(A9) has a logarithmic correction fgr—0 by
comparison with the singularity-1/y2mp of the PT distri-

(b)

bution (1.1). This logarithmic correction is stipulated by the 9 5 0 % 3 0 15 20
presence of intersection points of nodal lines in integrable ks ks

billiards. The absence of the logarithmic factor for the PT 4 3

distribution is a witness of self-avoiding nature of nodal lines (© (d)

in the case of chaotic billiardS7].

APPENDIX B: SPATIAL CORRELATION
OF EIGENFUNCTIONS IN RECTANGLE BILLIARDS

be(ks)

In the analysis of the spatial correlation, it is broadly ac-

cepted to carry out not only averaging over the space of the o 5 10 15 20 0 5 10 15 20
billiard but additional rotation of the vectarthat prescribes ks ks
the distance of two sampling pointsandr +s. We write the FIG. 5. Spatial correlation of local densities in the rectangle

components of the vectaras (squarg billiard with Dirichlet conditions at the boundaries. Denot-
ing two sides of the rectangla,andb, and corresponding quantum
numbersm andn. We choosek; (=mm/a) andk,(=ns/b) as(a)
wheres=|s| and 6 is a random angle uniformly distributed Ezl;));((zl?é%?zé) (gmt;)r\ ):_(2(7423)8'2 2(b§72(;3’)t).)m (nz)iﬂ(fsznz))
over an interval — m,7]. Then the correlation function of the (d)’(a,b)=(12.48‘5 82,2.’872 93)',r(1,n)=,(.16,11). o e
normalized eigenfunction, ¢(r) =2 sink;x;)sinkoX,), is
equal to

S;=sco0sf, S,=ssind, (B1)

1 .
a(s)=4(sin(a)sin(a+k,s cosp)sin( B)sin( B+ k,ssin9)), b,(8)= Z<[2+ cos(2kys cos) ][ 2+ cos 2kyssin 0)15’ :
(B2) B7

where a(=k;X1), B(=k,x,), and 0 are statistically inde- where the angular brackets means averaging over the random
pendent random values uniformly distributed oYyers,]. 6. After carrying out this averaging, we obtain the final form:
Carrying out averaging over and 8, we obtain

1 1
a(s)=(cogk;s cosf)cog k,ssinf)) (B3) b,y(8) =1+ 5[Jo(2k1S) +Jo(2k;8) [+ 7 Jo(2KS).
B8
or, rewritingk,=k cosy andk,=k siny (k?+k3=k?), B8)
1 Contrary to the probability distributiofA9), the correla-
— tion function ofp(r) does not have the same kind of univer-
== k + 6))+cogk - : P
a(s) 2<[COS( scogy+ )+ codkscod y= ) DI) sality for the quantizatiofk, ,k,} and the aspect ratio of the
(B4) rectangle. We show some examplesiofs) for different

_ pairs of{k;,k,} (see Fig. 5. There we find that the correla-
Here the angular brackets means averaging over the randof, fnction b,(s) significantly differs for different choices

6. After carrying out this averaging, we obtain a Bessel COlof k. andk- and converges as,(0)=9/4 andb (-0)=1
relation function, 1 2 p p .

a(s)zJO(ks), (B5) APPENDIX C: PROBABILITY DISTRIBUTION
OF EIGENFUNCTIONS WITH MIXING CHAQOTIC
which is similar to Eq.(1.3). Nevertheless, the correlation AND REGULAR STRUCTURES

function of the local densityp(r), significantly differs from
Eqg. (1.4), as is shown below.

The correlation functiom ,(s) =(p(r)p(r+s)) is reduced
to the expression,

We discussed that the PT distributi@h1) applies to real
chaotic eigenfunctions and E@4.1) to eigenfunctions of
rectangle billiards. In realistic situations in experimental
measurements or numerical simulations, however, such a

_ - ; ; purely chaotic or regular state hardly arise. Instead we often
by(8)= 1§(siff()siff(a+k;s cosO)sir(B) see mixing of chaotic fields and some resonant regular
X sirf(B+Kk,ssing)), (B6)  modes. So it is worth proposing some simple model of wave-
density distribution in the case of mixing chaotic and regular

or, after averaging over the statistically independeands,  wave functions.

056208-10
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The simplest model for such a situation may be 10

uteop
= \/_2 (Cy 9
1+e€ &
al
Here u is a Gaussian random variable with zero mean and a

unit variance, and describing a chaotic figldis a contribu- 01

tion of a regular eigenfunction of a rectangle billiard, and
expressed as

0.01

=2 sinasing, (C2

¥

wherea and 8 are statistically independent values uniformly

distributed over an intervdl—m,l. In Eq. (C1), a mixing  yaye function(C1). Dotted thick line showsy,(p) for e=4/(

parametere prescribes the degree gfcontribution touand 1 4y(=s7.4). Two thin lines correspond to the casesesf0 and
is essentially different from the GOE-GUE transition param-e—c Thick steps are the same as are depicted in Kiy. 2

etere (andh). ) L .
We recall a general probabilistic relation tying up togetherCOffgsF)_C)nd'ng'){, the distribution of the wave density,

the distributionf(x) of an arbitrary random valu® and the (= #°), is described from E¢(C3) by

distributiong(z) of its squareZ=X?: f(\p)

i

It becomes Eq(1.1) in the casee=0 and Eq.(4.1) in the
limit e—. In Fig. 6,g.(p) is plotted in comparison with

FIG. 6. Probability distribution of local densities of the mixed

9:p)= (C6)

1
92)=—=[f(V2)+f(V-2)] (z>0). (C3
2\z

E;om Eq.(4.1), the probability distribution ofp is found to our numerical datéthe same shown in Fig.(B)] of the open
stadium billiard. There it is assumed that the regular wave in
1 P the central are& lying between the straight segments of the
P(p)= —zK( 1- —) (—2<@<?2). (C4  stadium is overlapped with the chaotic wave developed in
™ 4 the entire aread of the cavity. Reflecting the fact that the

data in Fig. 2b) is in the case of low-energy region where

Therefore, the distribution of the entire mixed wave function ) : ;
the real and imaginary parts of the wave function are some-

(CYis what correlated with each other in the entire region of the
2 1+&2 (1 1 cavity [see Fig. &)], the model(C1) based on mixing of
f ()= — ﬁf exp{ - §(¢\/1+ € real chaotic and regular waves shows rather good agreement
-1

—2em)?|K(V1—p?)du. (CH

with our numerical datgexcept the long taip=3.6, where
the singularity of the distributiofiC4) at p=4 plays a sig-

nificant rolg in spite of the simplification of the model.
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