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Limitation on stabilizing plane waves via time-delay feedback
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Previous work has demonstrated the possibility of stabilizing plane wave solutions of one-dimensional
systems using a spatially local form of time-delayed feedback. We show that the natural extension of this
method to two-dimensional systems fails due to the presence of torsion-free unstable perturbations. Linear
stability analysis of the complex Ginzburg-Landau equation reveals that long wavelength, transverse wave
instabilities cannot be suppressed by the method of extended time-delay autosynchronization. The conclusion
follows from symmetry considerations and therefore applies to a wide class of models with simple plane wave

solutions.
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[. INTRODUCTION does not alter this conclusion, so long as the new terms do
not destroy the relevant symmetries of the system.
It has been suggested by Ott, Grebogi, and Y¢ikehat In Sec. Il we present a proof that ETDAS cannot stabilize

by applying small perturbations to a dynamical system, ongertain torsion-free orbits. Section Ill contains the analysis of
can convert a chaotic attractor to any of a large number othe CGLE, emphasizing the existence of torsion-free insta-
time periodic motions_ One important e|ement required forb|||t|es In Sec. IV we discuss the Symmetries I’eSponSible for
exploiting this idea is the ability to stabilize an intrinsically the presence of torsion-free modes in the CGLE and show
unstable periodic orbitUPO). In systems that are either too that spatially local ETDAS still fails in the presence of
fast or too complex to permit the application of standardhigher-order terms.
control techniques, it is sometimes possible to achieve stabi-
lization using time-delay feedback, which has the advantage IIl. LIMITS OF ETDAS
of not requiring prior knowledge of anything but the period
of the desired orbit.

The method of “time-delay autosynchronization

In this section we review the result of Nakajima and Ueda
., showing that ETDAS cannot stabilize certain torsion-free or-

L : bits [7,8]. We present their argumefih a slightly modified
(TDAS) was first introduced by Pyrag4g]. It is based on form) for completeness and to make clear the application to

applying feedback proportional to the deviation of the cur- h . .
. L e CGLE problem discussed in Secs. Il and V.
rent state of the system from its state one period in the pasE. Let a dyﬁamical variabl@ be a complex vector quantity

Socolar, Sukow, and Gauthig8] have proposed an exten- ith dvnamics aoverned by the equation
sion of the scheme, referred to as ETDAS, which achieves ¥ y 9 y q

larger domai.n of control .in parameter space by using a sum aB(H)=F(B(1)), 1)
of states at integer multiples of the period in the past. The

sum takes the form of a geometric series that can be genefhereF is a given, smooth function. L&(t) be a solution
ated experimentally using only a single time-delay elemenbf Eq. (1) that is periodic with period:

in a feedback loop. It is known that the ETDAS method can

be effective for stabilizing simple systems such as a driven Bo(t+ 7)=Bg(1). (2
nonlinear penduluni4], and ETDAS has been demonstrated o ]

We are interested in the possibility of stabilizing spatially 2ddition of a control term based on the difference between
extended systems. Bleich and Socdlé} showed that ET- ~ System states separated in time by one peridthe equation
DAS can be used to enlarge the domain of stability of plangJoverning the controlled system is
waves in the one-dimensional complex Ginzburg-Landau w
equation(CGLE). The method studied involved the addition _ I .
of a spatially local feedback term to the CGLE. Here we a‘B(t)_F(B(t))erz) Ru(t7), &)
address the question of whether those results can be extended
to higher-dimensional systems. where

We find that in two or more dimensions the unstable plane ~
wave solutions of the CGLE cannot be stabilized by spatially u(t; ) =M()[B(t—=I7)—B(t—=Il7—7)]. (4)
local ETDAS. The reason is that there exist unstable pertur- ) ] )
bations of the plane waves that have purely real Floquet muliere ye Re is the gainRe (—1,1) is a parameter that de-
tipliers (no torsion. A theorem first proven by Nakajin{a] tf:rmmes the relative importance of past differences, and
precludes the control of such orbits using straight-forwardM (t) is a matrix that specifies the linear transformation re-
time-delay control. Adding higher-order terms in the CGLE lating the feedback sign@) to the measured components of
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B. Note that for anyR, when the system is on the desired Note thatU(r;y) depends orz, but not onp,(t). Thus the

UPO, we haves, =0 for all | and the control signal vanishes.
To determine the stability ofBy(t), let y(t)=B(t)
—By(t), linearize Eq.3), and reorganize the sum to obtain

w0=10w0+vmﬂ{yaﬂwR—Dg;N‘Wﬂ—h),

5
whereJ(t) is the Jacobian of evaluated on the UPO:
dF;(B)
‘]ij(t):T . (6)
I 1B=By(t)

Note that the uncontrolled system is described by &).
with y=0. Sincej(t) is evaluated on the periodic orbit and
is therefore periodic with period, andy is a real constant,
standard Floquet theory allows us to write

y(t>=§ e5'py(1), (7)

with eachp,(t) a strictly periodic function with period:

Pn(t+7)=pn(t). tS)

The stability ofB, is determined by the values sf,.
To determines,,, consider a single modg,(t). Dropping
the subscriph, let

v(t)=ep(t). 9
Define a time evolution operatdi(t; y) such that
v(t)=U(t;7)v(0). (10
Substitutingv(t) into Eq. (5), we find
v(t)=|J(t)+ yi_,s;l\%(t) v(t). (12)
1-Re

Substituting Eq(10) into Eqg.(11) and formally integrating,
we can writeU(t; ) in the following way:

1-z
1_

O(t;y) =T expfotdu(j(u)wL y

ZM(u)HT, (12

with T as the time-ordering product operatbrthe identity,
andzthe inverse Floquet multiplier defined zse™°". Note
that the denominator 4Rz is well behaved for anyR
e (—1,1) whenz#1/R. Thus for|R| <1 and any|z| <1,
integrating over any finite time interval yields finité(t; ).
Due to the periodicity op, we have

v(t+7)=e3"v(t), (13
which, together with Eq(10), implies
[T=20(7;y)|=0. (14)

Z's that are solutions to the above equation determine all the
values ofs,,.

The following theorem limits the applicability of ETDAS
control in cases where a UPO exhibits no torsion. Note that
the value of R does not affect the result as long &
e(—11).

Theorem Consider an UPO of a dynamical system, for
which U(7;0) has an odd number of real eigenvalues greater
than 1, with all other eigenvalues either real and less than 1

or members of complex conjugate pairs. IM{t) be any
7-periodic (or constant matrix that enters the definition of

U(7;y) as shown in Eq(12). If the eigenvalues oB(7;y)
are real or come in complex conjugate pairs for a# Re
andze (0,1), then the UPO cannot be stabilized via ETDAS
by any choice ofy.

Proof. Following Nakajima[7], let

G,(2)=|1-20(7; ). (15

The stability of the system is determined by the roots of
Go(2) for the uncontrolled system and,(z) for the con-
trolled system. The existence of a root wi} <1 implies
instability. Go(z) is just the characteristic polynomial for the
inverse eigenvalues &J(7;0), which by assumption has an
odd number of roots between 0 and 1. We will prove that
G,(2) has at least one root between 0 and 1.

Let ¢, be the eigenvalues &f(7;0). Writing Eq. (15) for
y=0 in the basis wher&)(r;y) is diagonal, we have

N
Go(Z):Iljl (1—z¢)). (16)

Now from Eq. (12), we also haveG,(1)=Gy(1), so Eq.
(16) implies

N
Gy<1>=lljl (1—¢y) (17)

for all y. Since the number o$,’s that are real and greater
than unity is odd and othep,’s come in complex conjugate
pairs,G,(1) must be real and negative. On the other hand,
from the definition of G,(z) we see immediately that
G,(0)=1 for all y.

G,(2) is continuous and has no singularities far
€(0,1). Moreover, by assumption, the eigenvallﬁ{s; v)
are either real or form complex conjugate pairs for all
€(0,1), soG,(2) is real for allz € (0,1). FromG,(1)<0
and G,(0)=1 it then follows thatG,(z)=0, for somez
€(0,1). Q.E.D.

The following remarks address special cases of the theo-
rem.

Remark 1In the case werB(t) e Re", the quantitiesi(t),
M(t), and y must all be real, which leads 1d(7;y) being
real for anyz e Re (exceptingz= 1/R, which lies outside the
unit circle and hence does not affect the argument this
case, the condition for the theorem to apply is simply that
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0(7;0) has an odd number of real eigenvalues greater than B=2 (1)eia-
1. (This is the case addressed directly in R§74.and[8].) 3 Ka '

Remarks 2When both] andM are time independent, the o o o
requirements of the theorem reduceﬁtbaving an odd num- .SUb.St'tUtmg the p(_erturbed solution into the CGLE, "“?a”z'
ing in ug, canceling a common factok,, and equating

ber of real eigenvalues greater than zenod all others either fficients of X in th btai t of
real and less than zero or members of complex conjugat(éOe icients o equ.~x) In the sums, we obtain a set of

. 43+ 1N havi . | h | ._coupled first-order differential equations in which the ampli-
pairg andJ+rM having eigenvalues that are real or come "Ntudesy, are mixed only in 2 2 blocks. Lettingy denote the
complex conjugate pairs for ame Re.

AU vector (ugq ,/,L’iq), we obtain an equation of the form of Eq.
Remark 3 In the case wher®(t) is a two component (5) yjth

complex vector, and andM are time independent, the con- , ,
ditions of the theorem are fulfilled if and only if the eigen- . [ —[«g®+ Bag] — Bay —a 0 }

values ofJ are pure, real, and have opposite signs and the - - B* aﬁ —(a*?+B* aﬁ) 0 a*

eigenvalues of+rM, for anyr e Re, are purely, real, or a (22)
complex conjugate pair. These conditions require only that

both the trace and determinantdf rM be real for allr and
that the determinant of be negative. For future reference we R {m 0 }

(21)

+2k-q

0O m* (23)

note that in the special case where bdtland M take the =
form
with a=1+ic, andB=1—icj.
, (18 Note that botiVl and the first term in Eq22) are of the
form J,, but the term in Eq(22) proportional tok - q is not.
. Thus the system describing the evolution of the complex
the theorem applies wheneVel]<0. vector (uq,u* ) is a candidate for satisfying the conditions
In the next sections we show that certain spatially ex-of the theorem if and only ik-q=0.
tended SyStemS Controlled by ETDAS giVe I’ise to instabi”' In one dimension, we never hakeqzo, (o) the theorem
ties of the form covered by the cade of Remark 3. does not apply. Indeed, it is known that spatially local ET-
DAS control can extend the domain of parametgrandc;
Ill. THE COMPLEX GINZBURG-LANDAU EQUATION over which a plane wave is stajlg]. In two or more dimen-
) ) ~sions, however, there always exist perturbation wave vectors
The CGLE with the simplest form of ETDAS control is  for which k-q=0. These must be analyzed further to deter-
mine whether the other conditions of the theorem are met.
Let J, indicateJ for the casek-q=0. If DefJ, ]<O0, the
* theorem(Remark 3 will apply, meaning that there will be no
+ym| A(X,t)—(1— R)E R'™IA(xt—17) |, choice ofy or m that suppresses the given transverse insta-
=1 bility. Calculating the determinant from E@22), we have
(19  DefJ, ]<0 for all g<q,,, where

a B

‘Jl: :8* o

FAX ) =€eA+(1+ic;) VZA—(1—ic3)|AJA

where A is a complex valued field¢,, c3, and e are real ) ,2(C1€3—1)
constants characterizing the systg®h and the last term on e = lay] T 142 (24)
the right hand side is the ETDAS control term with a !

complex number of unit magnitude. A family of solutions to Note thatq,, exists only in the regime,cs>1. It turns out

the above equation is the traveling wave given by in this case that the criterion for transverse instability and the
o ikex—0ut) criteria for application of the theorem are identical. All un-
Ax.t)=age “ (200 stable perturbation modes witk-q=0 are immune to
) ETDAS.
wherea, = \Je—k” and (= (c,+c3)k"—cze. In order for For completeness, we note that ETDAS may work in the
the solution to be physically meaningful, the wave number narrow parameter range where there exist unstable perturba-
must be smaller thar/e. tions withk- q+0, butc,c3<1. Note also that in this region,

We consider a spatially local and homogeneous ETDAS|though the plane wave under consideration may be un-

feedbackA(x,t) —A(x,t—7), that has been shown to be ef- staple, there exist plane waves with smakehat are stable
fective for the case of one spatial dimensid@]. We will  even with no control.

show that in two or more dimensions,dfc;>1, there is no
choice of ym that stabilizes an unstable plane wave.

We use standard techniques to analyze the stability of the
plane waveA,(x,t). We writeA= (A,+B), and expandB in In this section we demonstrate the existence of unstable
Fourier modes: torsion-free perturbations to plane wave solutions of higher-

IV. ADDITIONAL EXAMPLES
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The fact that the transverse perturbations lack torsion fol-

siderations guarantee that transverse perturbations will blews from a combination of symmetry considerations. First,
torsion-free, but a calculation is required to determinethe symmetry of the CGLE with respect to spatial transla-
whether there is only a single unstable eigenvalue in theions, A(x,t)—A(x+A,t), together with the symmetry un-
relevant subspace. For a broad family of CGLE's, unstablejer a global phase shif\(x,t)—exp(6)A(x,t), guarantees
transverse perturbations occur within a band of wave numge existence of simple, plane wave solutions for sufficiently
bers 0<q*<q; and ETDAS control always fails. As an ex- small k. The linearized equations fd (defined as aboye
ample, we analyze the CGLE with a fifth-order term added etain rotational symmetries about thexis, reflection sym-

It is also shown that @- V term, which breaks the isotropy metries through planes containing that axis, and the transla-
of the CGLE, does not help to extend the domain of controlyjgna| symmetry of the original equations. Reflection sym-

lable plane waves in more than two dimensions.
We consider systems of the form

L,J

OA=€eA+ D,

N a|j|A|2|V21A,
(i,j) (0,0

(25

where a;; are complex constants. We can fiior some
casep a traveling wave solution of the form

Ao(x,t) = YMe! k- x=2t), (26)

metry through the plane perpendicular o is broken,
however, by ak-VB term. (Note that a variation irB at
wave vectorg corresponds to a variation i at wave vector
k+q.)

The translational symmetry governing the perturbations
ensures that they can be resolved into sets of plane waves
B=3 u(t)exp(qg-x), with couplings only between waves
with wave vectorsy and —q. For generic wave vectors, the
two coupled waves are not related by any symmetry. For the
special case ok-q=0, however, the two waves in one sec-

The amplitude and frequency are determined by the equaor are related by a reflection symmetry. Perturbations in this

tions

e=—§ Rea;](—1)kM! (27)
)]
and

Q:IE Im[a,;1(—1)'k?M'. (28)
)

sector must either grow without translating in either ¢her
—( direction and hence have no torsion, or be resolvable
into eigenmodes that are complex conjugate pairs. In other

words, the form o’ﬁL is a consequence of two features of the
linearized equation foB: the translational symmetry that
permits couplings between wave vectgrand —q only; and
the reflection symmetry that relates perturbations with those
wave vectors in the cade q=0.

The systems under consideration are autonomous, and

Writing A=A, (1+B), expandingB in Fourier modes, and therefore possess a time-translation symmetry that guaran-
linearizing in the Fourier amplitudes, one obtains indepentees that one of the eigenvalues in tire 0 sector must be

dent evolution equations for the paira{,u* ), with

|§j: inFl,Zj(kyq) l}]: b|J|k21
= | . (29
IE,j by 1k?! le b F1 5i(k,—q)
where
bj=(-1)M'ay (30
and
Fioi(k,a)=|k+q|Z =k +1k?. (31)
Note thatF »;(k,q) =F;(k,—q) if and only if k-q=0.
For transverse perturbationk-@@=0), we have
PN pto p
J=J, = o prot| (32)

with p=3, ;b;Ik? and o=3, ;bj;[(k?®+q?)!—k?]. Note
thatJ, has the form ofl; (see Remark 3 aboye

identically zero. As shown in Ref8], the limitation on ET-
DAS control still applies in such a case; i.e., if the otlyer
=0 mode is unstable, ETDAS will fail. If, however, the
otherg=0 mode is stable, then there are several possible

situations. Let . (g% and\ _(g?) be the eigenvalues df ,

with either , >\ _ or A, =\* for all g2, and consider the
case\ , (0)=0,\_(0)<0.If x . (0")>0, then ETDAS con-

trol fails for small g since x_(0") is less than zero by
continuity. In this case, there is a band of unstable, long
wavelength, transverse perturbations that cannot be con-
trolled by ETDAS. IfA . (0%) <0, the situation is more com-
plicated. In particular, it is possible for the long wavelength
modes to be stable, for the two eigenvalues to collide and
become a complex conjugate pair for stable valuagpfind

then for their real parts to cross zero at some higiferin
such a case, the unstable transverse modes would not be
subject to the no-control theorem and ETDAS control may
be possible. This latter scenario requires that higher-order
gradient terms be prese(@; # 0 for somej=2) and thatay,
have a negative real part. A full analysis of this unusual case
is beyond the scope of this work.

To see how the symmetry argument is reflected in the
algebra of a specific case that is slightly more complicated
than the cubic case treated in Sec. lll consider the CGLE
with a quintic term:
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A= eA+(1+ic,)V2A—(by—ic3)|AI2A—(1—ics)|A|*A. where a, B, and v are combinations of the complex coeffi-
(33)  cients in the CGLE.

It is clear that the conditions of the theordRemark 3
Both € and b; can in principle take on any real value. The will be satisfied when the sum of the terms lineagimanish.
real part of the coefficient of the quintic term can be fixed atThis occurs for anygo«k X n. Thus, plane waves in three or
unity without loss of generalityassuming the equation must more dimensions that are unstable to transverse perturbations
not have any divergent solutionsn the notation of Eq(25), with wave vectors perpendicular to cannot be stabilized
we have using spatially local ETDAS. In two dimensions, stabiliza-

tion may be possible so long &sandn are not collinear.

an=1+1cy, V. CONCLUSIONS
ajo=—(bg—icy), ax=—(1—ics), For the CGLE in one dimension, Bleich and Socdlay
showed that the domain of stable plane waves can be en-
and all otherm; = 0. A traveling wave solution of the form of larged significantly using spatially local ETDAS. Here we
Eqg. (26) must have have demonstrated that in higher dimensions the same
method does not work. The reason is an interesting one: for
any parameter values such that transverse perturbations to
1 5 5 the desired plane wavej(k=0) are unstable, the dynamics
M= E[_b3i Vb3 +4(e—k)], (34 of those with sufficiently small wave number produce no
torsion in the relevant subspace of Fourier amplituthe
O =c;1k%— (CsM +CcsM?). (35) (tq,1* ) subspackand therefore cannot be suppressed.
We have analyzed only the most straightforward imple-

Note that the amplitude/M must be real. LeM , andM _ mentation of ETDAS in the CGLE. An important feature of

indicate the solutions corresponding to the different choicedne féedback term we chose is that it does not generate any
of sign of the square root. Fdy;>0, the M, solution is coupling between the22 blocks of Fourier amplitudes that

relevant fork?<e, but theM _ solution is unphysical. For arise in the standard stability analysis of the CGLE. We note

bs<0, both solutions are possible for some values ahdk.  that in some physical systems, the feedback may break the

To see that ETDAS control cannot work, it is sufficient to 9l0Pal phase shift symmetry of the CGLE, leading to addi-
. o tional couplings. This occurs, for example, when the feed-
consider the trace af, :

back term explicitly treats the real and imaginary part#\of
differently. The effect of breaking the global phase shift
A4 5 5 5 symmetry is to introducdtime-dependentfeedback cou-

T, J=—[M.(=Vb3+4(e—k%))+0g°]. ~ (360)  plings between thg andqg+ 2nk perturbation sectors, for all

R integersn. This fails to circumvent the theorem, however,

For allM | solutions, the square root is positive, s¢Jir] is  because the uncontrolled eigenvalues corresponding to the
negative for allg. Thus it is impossible for both eigenvalues 2x2 block associated with-n are precisely the complex
to have a positive real part and the only way for an instabilityconjugates of those associated witrso the full Jacobian for
to arise is to have D[eiL]<0, in which case the theorem any finite truncation of the ladder of coupled modes still has
applies. For théVl _ solutions, the square root is negative, soan odd number of torsion-free modes.
the trace is positive for sufficiently smajl In this case it is Pyragas has recently suggested a new method for stabiliz-
sufficient to consider thg=0 sector, where it is straightfor- ing torsion-free orbits with time-delay feedbafk0]. The
ward to confirm that one of the eigenvaluesiofis zero, and idea is to introduce into the system an auxiliary variable that

therefore the other eigenvalue must be positive. Again, thé?1dds one unstable, torsion-free perturbation mode, thereby

number of positive real eigenvalues is odd and the theorerfi’anging the total number of unstaple tprsmn—fr_ee modes to
applies. an even number. We note that application of this method to

The symmetry argument survives even when a term pro'ghe cases studied above encounters serious difficulties. We

portional ton- VA is present in the CGLE, explicitly break- h?]\_/eh not Eg(_amlingd Fa” pos?iltt)le_ vari?ttir(])nsf Ogbthii them:e,
ing the rotational invariance. The reflection symmetryW Ich might Include ourier filtering of the feedback signa

through the plane containing bothand n still guarantees or feedbapk that breaks the global phase shift symmetry. The
torsion-free perturbative modes. A straightforward calculaMOst straightforward attempts to adapt Pyragas’s scheme to

tion confirms this, showing the Jacobian to be of the form plane waves_in the CGLE fail_, however, e_:ither because they
' introduce pairs of unstable eigenvalues in the relevant sec-

tors or they add unstable torsion-free eigenvalues to sectors
. [~Lag?+paZ] - pa; v« J
= ) , that were previously controllable.
—B*a; —[a*q?+ B*ag The stabilization of spatiotemporal dynamics using time-
0 delay feedback is of interest primarily because implementa-
- 14

+2k-q +n-q

0 } 37) tion of the controller does not require the construction of any
e

0 o 0 external representation of the system. The stabilization of
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