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Unnested islands of period doublings in an injected semiconductor laser
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We present a theoretical study of unnested period-doubling islands in three-dimensional rate equations
modeling a semiconductor laser subject to external optical injection. In this phenomenon successive curves of
period doublings are not arranged in nicely nested islands, but intersect each other. This overall structure is
globally organized by several codimension-2 bifurcations. As a consequence, the chaotic region existing inside
an unnested island of period doublings can be entered not only via a period-doubling cascade but also via the
breakup of a torus, and even via the sudden appearance of a chaotic attractor. In order to fully understand these
different chaotic transitions we reveal underlying global bifurcations and we show how they are connected to
codimension-2 bifurcation points. Unnested islands of period doublings appear to be generic and hence must be
expected in a large class of dynamical systems.
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[. INTRODUCTION region of chaos can be reached and left only by period dou-
blings; see Fig. 2 below.

A semiconductor laser on its own exhibits only simple In this paper we show that the curves of period doublings
dynamics: typically any perturbation damps out in an oscil-need not be nested, but can intersect; an example is shown in
latory fashion with the relaxation oscillation frequeneyg Fig. 3(a@) below. This is possible only if the period-doubling
[1]. However, low facet reflectivitiegof around only 30%  curves interact with and are linked to other bifurcations, as is
and the self-phase modulation effdttie refractive index in illustrated in Fig. 8b) below. This complicated web of bifur-
the semiconductor material depends on the population invecations will be studied in detail. It is crucial how certain
sion) make this type of laser very sensitive to external influ-codimension-2 bifurcations organize the dynamics; [de%
ences, such as optical injection or optical feedback. It is welfor a study of an optically pumped three-level laser model.
known that in their presence a semiconductor laser may beéur overall result is that the chaotic region in an unnested
come very unstable and produce amazingly rich and compleisland of period doublings can be reached in other ways,
nonlinear dynamicg2,6]. A semiconductor laser with optical most importantly via sudden chaotic transitions such as a
injection constitutes the simplest semiconductor laser systefmoundary crisis and saddle node of periodic orbit bifurcation
that produces dynamics ranging from periodic output to sevtaking place on a chaotic attractdr9].
eral types of chaotic behavip8—5]. Although most applica- Although the first theoretical studies of sudden changes in
tions take advantage of stable operation, their chaotic outputhaotic dynamics started in the early 198020—24 the
makes optically injected semiconductor lasers very interestproblem is still of great interest, also in laser systems
ing from several points of view. First, chaotic dynamics hag19,25—-3(Q, and not completely understood yet, especially in
recently received a lot of interest due to its possible use fothe case that periodic dynamics suddenly replaces chaos
dynamics based computati¢f] and chaotic communication [31,32. In order to fully understand discontinuous changes
[8-11,14. Second, studying the complex dynamics of opti-of chaotic attractors we compute stable and unstable mani-
cally injected semiconductor lasers appears to be an impofelds of appropriate saddle orbits. To complete the picture,
tant step on the way to understanding these devices. Furthere identify bifurcation curves in the two-dimensional param-
more, the theoretical model is simple enough to allow foreter plane[the (K,w) plane introduced in Sec. [llalong
bifurcation analysis and, most importantly, it describes exwhich these sudden chaotic transitions occur. While our re-
perimental observations surprisingly wéB,15]. This pro-  sults are important for understanding complicated dynamics
vides a rare opportunity for studying chaotic transitions in ain the laser systems at hand, the phenomenon described here
system that is experimentally accessible. will also appear in other dynamical systems.

There exist several ways in which a dynamical system can We want to make clear that by a sudden transition we
become chaotic, of which the period-doubling route to chaosnean a sudden or discontinuous change in the nature of the
is the best known; see, e.416,17. In a two-dimensional attractor when parameters are changed. However, in a real
parameter space one finds that the curves of period doublingystem nothing happens instantly, so that one needs to let
locally accumulate according to the Feigenbaum constantransients die down in order to see the new attractor. Never-
finally leading to a region of chaotic dynamics. If thesetheless, the changes described here are sudden compared to
curves are all closed curves that are nicely nested then thsdtuations where an attractor changes continuously with the

parameters during the bifurcatidias is the case, for ex-
ample, for a periodic orbit disappearing in a Hopf bifurca-
*Corresponding author. Electronic address: sebek@nat.vu.nl  tion).
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The paper is organized as follows. In Sec. Il we introduce
and discuss the rate equation model of a semiconductor laser 0.8
with optical injection. Unnested period doublings and the
resulting discontinuous chaotic transitions are presented in 0.6
Secs. lll and IV. In Sec. V we explore global bifurcations 8 5
underlying these sudden chaotic transitions and reveal their El £
origin in parameter space in certain codimension-2 bifurca- g 0.2
tions. Conclusions are drawn in Sec. VI. <
0
Il. THE RATE EQUATION MODEL 02
A single-mode diode laser with monochromatic optical
S . . -04
injection can be modeled bthree-dimensionaltate equa-
tions for the slowly varying complex electric field=E, 0.1 0.2 0.3 0.4
+iE, and the normalized inversiaminside the lasef3]: injection strength K
1 FIG. 1. The bifurcation diagram of Eqg€l) in the (K,) plane.
E=K+ —(l+ia)n—iw) E, In this and all figures of theK,w) plane,w is in multiples of wg
2 while K is dimensionless.
h=—2In—(1+2Bn)(|E|2—1). 1) lll. THE BIFURCATION DIAGRAM

Transitions between different kinds of dynamics are bifur-

Equations(1) are scaled for convenience; the connection becations, and curves of different bifurcations divide the ¢)
tween the scaleddimensionless quantities used here and Pplane, the parameter space of E@s, into regions of differ-
experimental quantities is given [8]. ent qualitative dynamics of the laser. We now study the bi-
The most important parameters are the stremgthf the ~ furcation diagram which consists of bifurcation curves in the
field that is injected from an external source into the laser(K,») plane together with representative phase portraits.
and the detuningy of its frequency from the frequency of The bifurcation curves presented here were computed with
the free-running laser. Both can easily be changed during affie packagenuto [33]. Figure 1 shows the bifurcations of
experiment and, therefore, are natural operational paranstationary points, namely, the saddle-node and Hopf bifurca-
eters. The quantitieB andT’, on the other hand, represent tion curvesSNandH, and curvesP of (first) period dou-
material properties of the laser and are fixed to the realisti®lings; se€ 3] for the full picture and its dependence en
valuesB=0.015 andl'=0.035. The paramete is called Note how the nested and unnested period-doubling islands
the linewidth enhancement factor, and it quantifies howfrom Figs. 2 and 3 are part of this bifurcation diagram. Su-
much the refractive index, and hence the instantaneous laseercritical bifurcations of stable objects are plotted in black
resonance frequency, changes with the population inversio@nd subcritical bifurcations of unstable objects in gray. The
n [3]. Throughout this paper we focus on the case2 for ~ black part of SN forms the lower boundary of the laser's
definiteness, but similar results can be found throughout #cking rangethe region in the K, ) plane where the laser
range of realistiax values. locks to the external fielgd because along this curve a stable
We look at Eqs(l) from a dynamica| systems point of stationary point is created. This Stationary point becomes un-
view and study different kinds of dynamical behavior repre-stable along the black part of the Hopf bifurcation cukve
sented by different objects in the three-dimensional phas@hich gives rise to an attracting periodic orbit. Physically,
space, the E,n) space. All these objects have a physicalthe relaxation oscillation is excited and the laser emits light
meaning and describe certain phenomena occurring in th&ith a periodically varying amplitude. The curve forms
laser. In order to translate a situation from the phase space to
“real life” one needs to remember that Eq4) are written .
in the reference frame of the injected field frequency. This 02
means that an attracting stationary point corresponds to the
laser operating at constant intensity, constant population in-
version, and the frequency of the injected light: the laser
locks to the injected field. A periodic orbit generally corre-
sponds to an oscillatory exchange of the energy inside the
laser between the population inversion and the electric field. »
A torus corresponds to beating between two oscillations, 04}
usually one associated with the detuningnd the relaxation ’ 5 5 5
oscillation, which tend to synchronize as their coupling injection strength K
strength increases. A chaotic attractor corresponds to irregu-
lar and unpredictable laser output. FIG. 2. Nested islands of period doublings.

detuning w

|
o
o
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other smallP* bubble from Fig. 1. Notice that there are two
a closed curves of secondary period doubliRg: one lies
08 strictly inside P!, but the other leaves the confines ®f.
This is possible only if there are intricate interactions with
/ other bifurcations, and this is shown in Figbg Most im-
portantly, there are toruéor Neimark-Sackegrand saddle-
node bifurcations of periodic orbit§ (and T2, SLandSL?).
They form an intricate web of bifurcation curves, which in-
volves several codimension-2 bifurcations. First, there is a
Bogdanov-Takens bifurcation for maps, also called a 1:1
resonance, denoted BT in Fig. 3(b). At BT the saddle node
of the curveSL? of periodic orbits changes from super- to
subcritical and a torus curvE? emanates.

Furthermore, a torus bifurcation curve can end at a
period-doubling curve at the codimension-2 point called a
1:2 resonance, which also changes the period doubling from
super- to subcritical. There are two cadese, e.g.[17])
depending on a normal form coefficient. The case in Fig.
3(b) is also called torus doubling because a period-doubled
torus emerges. This gives the possibility for a cascade of 1:2
resonance points with short pieces of torus bifurcation curves
connecting successive period doublings. Such a cascade ap-
pears at the point denoted by 1:2’s in Figbj3 but here the
1:2 resonance points are extremely close together. This phe-
nomenon is discussed in more detail in the Appendix.

Indeed it is the presence of these extra bifurcations that
allows the curves of secondary period doublings to go out-
side P. The parts ofP? from Fig. 3 that go outside*
correspond to bifurcations of either an orbit that became un-
stable via a torus bifurcation or of one of the two extra orbits

0.1 0.2 0.3 created in the saddle node of a periodic orbit bifurcation. In
injection strength K the next section we describe different transitions, while fur-
ther discussion of the bifurcation diagram in Figbgis the

FIG. 3. Unnested islands of period doublings, and the com-  topic of Sec. V.
plicated web of bifurcations involve(b).

detuning w

0.2

0.1 0.2 0.3

detunin,

IV. TRANSITIONS TO CHAOS
the upper boundary of the locking rangehere the phase is
constant. Note that aboveH initially the phase is still
bounded while it oscillates. The attracting periodic orbit

originating fromH may undergo further bifurcations, for ex- ? L
g 9 y g grossing an infinite number of curvés', so that we end up

ample, period doubling along the black parts of the curves’. . . X .
denpotedpPl. Note thatgthe regpelling perigdic orbit created W'th chaotic laser output. Then, since the period-doubling

along the gray part off doubles its period when the lowest islands are unnested, we can choose to leave the chaotic
subcritical period doubling bubble? is crossed. " region in Fig. 3 in such a way that no period-doubling curves

The superscript oP* denotes that we are dealing with a are crossed. What is then the transition from the chaotic at-

perod doubling of a "basic” periodic obi, which can then (RS 0 118 Perele ST KR 2 S SUSERT
undergo further period doublings as part of an infinite cas- y P

cade of period doublings leading to chaos. Secondary perio en in parametgr space. We illustrate .this below 'by plotting
doubling curvesP", wheren=2,4, ... ,accumulate at the he corresponding attractors of the Pomgamp defmed by
rate of Feigenbaum’s universal constfh?,20. In the sim- the pl_ane{nzo}. Furthermore, we S.hOW time series anq ap-
plest case, one would expect secondary period-doublin ropna@te s,table.and unstable manlfplds of saddle points in
bubbles to accumulate inside tRé bubbles. An example of € Pomcares_ecnon. All phase portraits pre'_sented here were
this is shown in Fig. 2 where all closed curves of periodcomputed withpsTooL [34], and the manifolds with the

doublings are indeed nicely nested insife The region of method 635,34, Throughout the paper, unstable manifolds

¥ . ) )
chaotic dynamics inside this bifurcation structure can be en\—N are in black and stable manifolds® are in gray.

tered or exited only via a cascade of successive period dou-
blings.

However, curves of successive period doublings need not In Fig. 4 we fix the injection strength t&=0.26 and
be nested, and this is shown in FigaBwhich shows the increase the detuning; see Fig. 3. The starting point is the

The existence of an unnested period-doubling structure
reveals an interesting question. Let us suppose that we
change parameters and enter #A& bubble in Fig. 3 by

A. Intermittent transition
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2@ () ®) FIG. 6. The unstable manifold just after the saddle-node bifur-
3 cation foro=0.311 andK =0.26 (a) has the shape of the destroyed
/é‘.\\ chaotic attractor from Fig. (). Panel(b) shows the homoclinic
S . ‘1 tangle in the central region of pang).
2/® ®) . @ saddle-node bifurcation taking place “on the chaotic attrac-
3 B 33 E 33 B 3 tor.” This is demonstrated in Fig. 6 by images of the stable

) ) ) and unstable manifolds of the saddle point very close to the
FIG. 4. Period-doubling route to chaos and sudden disappeakgqdle-node bifurcation. Notice that the unstable manifold
ance of chaos at a saddle-node bifurcation of a periodic @rbit WU from Fig. 6@ resembles the shape of the chaotic attrac-
termittent transition Shown are attractors in the Poincaection tor before tﬁe bifurcation and that the stable and unstable
{n=0}; K=0.26 while from(a) o (i) w takes the values 0.05, 0.1, . i¢o1 s W* andW") intersect in a homoclinic tang[€ig.
0.15,0.154, 0.16, 0.18, 0.25, 0.3105, and 0.311. 6(b)]. With decreasingw (going in the opposite direction
the two periodic orbits disappear and the complicated black

attracting periodic orbifFig. 4a)] that exists for parameters manjfold (technically, the center manifoldbecomes the cha-

below theP* bubble. Whenw is increased the curvBl is  gtic attractor.
encountered and the periodic orbit period doubkeg. 4(b)]. Next we show that a chaotic attractor created in the
On increasingy further, secondary period doublings are en-preakup of a torus can also undergo an intermittent transi-
countered[Figs. 4c), 4(d), and 4e)], resulting in the cre- tjon. To this end, in Fig. 7 we choose a path close to the
ation of a chaotic attractdiFigs. 4f) and 4g)]. From Fig.  point BT in Fig. 3(b). A torus grows in sizéFig. 7(b)] and
3(b) we observe that increasing further will not result in  then starts to break ufFigs. 7c) and 7d)] leading to a
inverse period doublings. In fact, the next bifurcation is thechaotic attractofFig. 7(e)]. This chaotic attractor suddenly
saddle node of periodic orbitSL* in which two period-2  disappears and we are left with an attracting periodic orbit
orbits, one attracting and one a saddle, are create@.Ass [Fig. 7(f)]. As is shown in Fig. 8, the time series again dis-
approached the chaotic attractor starts to anticipate the neplays intermittent chaotic bursts just before the bifurcation.
attracting orbit that is about to appdéig. 4h)]. As soon as |ndeed, Fig. 9 shows that stable and unstable manifolds of
SL? is crossed an attracting period-2 orbit appears and thghe saddle intersect transversely in a homoclinic tangle just
chaotic attractor is suddenly gofieig. 4(i)]. after the bifurcation, which is the hallmark of this bifurca-
In other words, we encountered a sudden transition frongjon.
chaos to periodic oscillations. Note that there is no bistability One may think that the intermittent transition is the only
or hysteresis present, so that there is a sudden appearances@tiden transition in the unnested period-doubling structure.
chaos at the saddle-node bifurcation whens decreased. However, this is not the case as we show now.
Due to the character of the time series just before the chaotic
attractor is destroyed, shown in Fig. 5, this is often called an

intermittent transition: the time series shows windows of pe- 3
riodic behavior interrupted by occasional chaotic bursts. & g
Closer to the saddle-node bifurcation the bursts are less and .
less frequent and they disappear entirely after the periodic
orbit is created. The sudden disappearance of chaos in a 3@
saddle-node bifurcation of periodic orbits is due to the 3
6 3
5 3@
= | [ 3 3

| 2
.unwuhl.”LLLLLLLL;.L“\.HI.II‘M.L;.LLLLLLLLA..LHLM‘..LL.LLLLLLLLAI‘IH

FIG. 7. Breakup of a torus and sudden disappearance of chaos at
a saddle-node bifurcation of periodic orbiistermittent transitiojy
FIG. 5. Intermittent time series of the chaotic attractor from (@) and (b) w=0.43, K=0.1139, 0.1145, and fronc) to (f) w

Fig. 4(h). =0.42,K=0.12, 0.145, 0.166, 0.167.

time (units of wg')
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FIG. 8. Intermittent time series of the chaotic attractor from

Fig. 7(e).

B. Boundary crisis

the values 0.115, 0.129, and 0.13.

In Fig. 10 we fixw=0.46 and increask from 0.115, so
that we are close to the poilXT in Fig. 3. We find a bista-

Eg

Ez

Ez

FIG. 10. A sudden destruction of the chaotic attra¢toeated in
the breakup of a torus, and coexisting with the gray attracting peri-
odic orbit in a boundary crisis; fronfa) to (¢c) = 0.46 andK takes

bility between a periodic orbitgray dot$ created onSL? 6
and a torugFig. 10@)], which then breaks up, giving rise to &
coexistence of a periodic orbit and a chaotic attra¢keg. B |
10(b)]. Then, suddenly the chaotic attractor disapp¢Bis. | Ll !
10(b)]. To understand what is going on we plot in Fig. 11 the 0 0 ;

time series for parameters just after the chaotic attractor dis-

time (units of wg")

appeared. It shows a very long chaotic transient, because we

started the system close to where the chaotic attractor was. FIG. 11. Long chaotic transient before the trajectory settles
This behavior is characteristic of what is called a boundarydown from near the former chaotic attractor to the attracting peri-
crisis[23], where a chaotic attractor hits the boundary of itsodic orbit in Fig. 1@c) for K=0.13 andw=0.46.

basin of attraction and disappears. To show that this is in-
deed what happens, Fig. 12 presents the stable and unstable
manifolds of a saddle periodic orbit on the chaotic attractor.
In Fig. 12a) one (the shor} branch of the stable manifold
accumulates on the stable periodic ofpitay dot$ while the

other branch accumulates on the chaotic attra¢lbis con-
jectured that a chaotic attractor is always the closure of some
unstable manifold; see, for examp|&3].) The stable mani-

fold forms the basin boundary between the two coexisting
attractors, the periodic orbit and the chaotic attractor. The
system will settle down to one of these attractors depending
on which side of the stable manifold the initial conditon is
chosen. AK is increased we observe a homoclinic tangency
[Fig. 12b)] giving rise to homoclinic tanglgFigs. 1Zc) and
12(d)]. Once the stable and unstable manifolds intersect, the
chaotic attractor and its basin boundary are destroyed. More
concretely, all trajectories will eventually “leak” to the at-
tracting periodic orbi{37]. This explains the disappearance

of the chaotic attractor as well as the long chaotic transients.
alslc\)lef%rdtst]z %g%%rggstg?sg #ﬁi;ei:c;r;l%rxr??r:nF;@igrxhere FIG. 12. Formation of homoclinic tangle of the black periodic

. . . - . . orbit (originally on the chaotic attractgrdemonstrating that Fig. 10
again a chaotic attract@in black) coexists with an attracting indeed sghow;/ a boundary crisisi—0.46 and from(g) - (d)QK

takes the values 0.115, 0.1297, 0.13, and 0.135.

1@
-1

3 1
<5
2 P &
0 Lﬂa
o)
-3 : ‘ L8 ia) 2 (1b) 2 (16) 2
3 i 15 g 15 g 15 g

FIG. 9. The unstable manifold just after the saddle-node bifur- FIG. 13. A sudden destruction of the chaotic attra¢toeated in
cation forK =0.167 andw=0.42(a) has the shape of the destroyed period doublings, and coexisting with the gray attracting periodic
chaotic attractor from Fig. (é). Panel(b) shows the homoclinc orbit) in a boundary crisis; fronfa) to (c) K=0.2885 andw takes
tangle in the central region of pangl. the values 0.253, 0.255, and 0.275.
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time (units of w;cl)

FIG. 14. Long chaotic transient before the trajectory settles
down from near the former chaotic attractor to the attracting peri-
odic orbit in Fig. 1@c) for K=0.2885 andw=0.26.

detuning w

chaotic
periodic orbit(gray dot$ [Fig. 13b)]. Notice that the chaotic region
attractor now has the typical, almost one-dimensional, shape
of an attractor created in period doublings. Again, suddenly
the chaotic attractor disappealBig. 13c)], which goes
along with long chaotic transients as is shown in Fig. 14. The
manifolds in Fig. 15 show that we are indeed dealing with a
boundary crisis. The homoclinic tangenffyig. 15b)] be-
tween the stable and unstable manifolds of the saddle orbit F|G. 16. Sketch of the structure of the unnested period dou-
leads to the destruction of this attractor. Again, all trajeCtO-angs from Fig. 3b). The homoclinic tangency along the left curve
ries will eventually go to the attracting periodic orlfray  of boundary crisis is shown in Fig. {® and the homoclinic tan-

injection strength K

dots. gency along the right curve of boundary crisis is shown in Fig.
15(b). See Fig. 17 for sketches of phase portraits in the numbered
V. THE ROLE OF GLOBAL BIFURCATIONS regions.

In the previous section we demonstrated that the chaotigepending on the sign of a certain normal form coefficient,
region in the period-doubling bubble under consideration camuyt in both there is a change in the period doubling from
be entered and exited via different transitions. In partiCU'arsuper- to subcritical. Apparenﬂy’ in our case there is a nega-
we found homoclinic tangencies corresponding to boundaryive normal form coefficientsee[17], Sec. 9.5. Although
crisis. All this information is put together in schematic form the unfolding for the two-dimensional vector field normal
in Fig. 16; compare Fig. 8). Different regions are num- form is known, the complete bifurcation picture in a three-
bered for reference. The overall structure is the following.dimensional vector field remains unknown. The accumula-
The saddle node of the periodic orbit curgd?® has two  tion of 1:2 resonances that we deal with here makes the
cusps. From the poirBT where the torus bifurcation curve sjtuation even more complex, and a detailed study of this
T2 touches and ends &L?, two curves of homoclinic tan- problem is beyond the scope of this paper. However, we
gencies emergédashed curves which bound a region of present in the Appendix a partial unfolding justifying the
homoclinic tangle. It is known from bifurcation theof$7]  existence of the curves sketched in Fig. 16. In particular, we
that the pointBT gives rise to a wedge with homoclinic found that there is a curve of homoclinic tangency emanating
tangle, whose boundaries are given by homoclinic tangenfrom the accumulation point of the 1:2 cascade on the right
cies. We found that the lower of these curves of homoclinidn Fig. 16, which also connects to the cur8&?. This de-
tangency connects to the cur@® at a pointH. At H the  fines the right boundary poiritl of the region whereSL2
stable and center manifolds of the saddle node are tangenjives rise to an intermittent transition.

This defines the left boundary of the left part ®£* giving These results were obtained by carefully computing stable
rise to an intermittent transition. and unstable manifolds in the respective parameter regions.

On the right hand side and starting frofl® there are  Furthermore, we could identify the intersection poiRtdy
infinitely many period-doubling curves connected by shorttheir property that the stable and center manifolds of the
pieces of torus bifurcation curves via 1.2 resonance points. Aaddle node are tangent. An extra difficulty is that the Poin-
1:2 resonance point can have two cases of unfoldi  caremap is not globally defined, but only locally in certain

regions of the sectiortfor example, close to intersections

0.2 (a) (b) (©) with attracting periodic orbijs This causes problems in
- U u u computing branches of stable and unstable manifolds. In this
o we w8 W respect the injected laser studied here differs from periodi-
\/Q L X w cally driven systems, where a Poincanap is defined glo-
or W Ll bally as a stroboscopic map; see, ¢12], p. 13.
05 g 0308 g 0305 - 03

VI. CONCLUSIONS
FIG. 15. Formation of homoclinic tangle of the black periodic

orbit (originally on the chaotic attractrdemonstrating that Fig. 13 Using the example of the injected semiconductor laser we
indeed shows a boundary crisk=0.2885 and fron(a) to (c) » showed that period-doubling bifurcation curves do not al-
takes the values 0.255, 0.26, and 0.275. ways accumulate inside each other but often form unnested
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islands. In consequence, the region of chaos inside these is-
lands can be reached in several different ways depending on
the chosen route in the parameter plane. We paid particular
attention to transitions where chaotic dynamics suddenly dis-
appear. Concretely, we identified a saddle-node bifurcation
of periodic orbits on a chaotic attract@ntermittent transi-
tion) and a boundary crisis.

Furthermore, we showed how these transitions are embed-
ded in a consistent bifurcation diagram of unnested period
doublings. The main ingredients are homoclinic tangencies
emerging from codimension-2 bifurcations, namely, from a
Bogdanov-Takens bifurcation of maps, and a 1:2 resonance
cascade. This latter phenomenon is still not understood in M
detail, although we presented a partial conjectural unfolding. 1

Preliminary explorations show that the sudden changes in
the output of the laser are accessible experimentally. This
work is in progress and will be reported elsewhere.

M,
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APPENDIX: THE DYNAMICS NEAR A CASCADE
OF 1:2 RESONANCES

We sketch here briefly the dynamics near the cascade of
1:2 resonance points that appears on the right of Fig. 16. An
image of such a cascade, involving only the period-doubling
and torus bifurcation curves can be found 1v], Sec. 9.6,
but the general unfolding of this codimension-2 bifurcation
phenomenon is still unknown. It is known, however, that the
individual 1:2 resonance points involved in the cascade are
starting points for curves of homoclinic tangencies that
bound regions with homoclinic tangle; see, for example,
[17].

We have investigated the 1:2 resonance cascade in the
laser system at hand, and this resulted in the bifurcation
structure shown in Fig. 17. The regions of different phase
portraits are numbered just as in Fig. 16, and sketches of the
respective phase portraits of a suitable Poincaap are
shown. There are infinitely many period-doubling curves
connected by short pieces of torus bifurcation curves via 1:2 FIG. 17. A conjectural partial unfoldingn two parameterg.,
resonance points. At each such 1:2 resonance the period dod #2) of a 1:2 resonance cascade; compare Fig. 16. The hetero-
bling changes from super- to subcritical and a curve of toruglinic tangency along “het” is shown in Fig. 1B).

bifurcation of a doubled torus appears. _ bistability where the boundary between the two basins of
To describe this structure we start to the right of the curveyraction is formed by the stable manifold of the saddle-type
SL® and explain what happens when the parameters argeriod-2 orbit. The period-2 attractor then undergoes succes-
changed in a loop around the 1:2 resonance cascade. Phag@e period doublings, when the supercritical period-
portrait 1 shows a single attractor, but note that points hoRioubling curved®? up to P~ are crossed, leading finally to a
from left to right and from top to bottom under the Poincarepistability between the original period-1 orbit and a chaotic
map, which has two negative eigenvalues. CrosS§ihfjre-  attractor in phase portrait 3. We found that this chaotic at-
sults in the creation of an attracting and a saddle-typeractor is destroyed in a boundary crisis along the curve
period-2 orbit in phase portrait 2. In other words, we havehom1; the numerical evidence of this homoclinic bifurcation
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(b) © manifold of the period-2 poift The chaotic repellor then
period-undoubles when the subcritical period-doubling
w w curves P* down to P? are crossed. This finally results in
é /¢ phase portrait 6 where the original period-1 orbit is still the
! only attractor. In the subcritical saddle-node bifurcation of
02 p 0302 5 0302 5 03 periodic orbits,SL?, the two period-2 orbits disappear. This

brings the dynamics back to where we started in phase por-
FIG. 18. Numerical evidence for the heteroclinic tangencyyajt 1.

sketched in Fig. 17¢=0.56 andK takes the values 0.3293, 0.329,

This loop around the 1:2 resonance cascade is a consistent
and 0.3288 fron{a) to (c).

bifurcation scenario. It is sufficient to explain the existence
of the curve of boundary crisis that appeared in Fig. 16 in the
was already presented in Fig. 15. The resulting phase portrdiaser system we studied. Our results are backed by a thor-
4 then only has the original period-1 orbit as an attractor, bubugh numerical investigation, during which we computed bi-
it also features homoclinic tangle between the stable and urfurcation curves and many stable and unstable manifolds.
stable manifolds of the period-2 saddle-type orbit. This led us to conjecture that Fig. 17 constitutes a partial

As we follow the parameter further around the top of theunfolding of a 1:2 resonance cascade in the general situation.
1:2 resonance cascade, we encounter the heteroclinic bifur- On the other hand, as was mentioned earlier, we did not
cation curve het leading to a chaotic repeller in phase portrasiccount for all homoclinic bifurcations that are known to
5. A numerical picture of this heteroclinic bifurcation ap- exist near the individual 1:2 resonance points. Consequently,
pears in Fig. 18. The chaotic repeller has initially a fractal-the general unfolding will be more complicated than
like boundary, which becomes more regular in the furthersketched here, and finding it remains an interesting topic for
homoclinic tangency hom@t is then formed by the unstable future research.
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