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Unnested islands of period doublings in an injected semiconductor laser
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We present a theoretical study of unnested period-doubling islands in three-dimensional rate equations
modeling a semiconductor laser subject to external optical injection. In this phenomenon successive curves of
period doublings are not arranged in nicely nested islands, but intersect each other. This overall structure is
globally organized by several codimension-2 bifurcations. As a consequence, the chaotic region existing inside
an unnested island of period doublings can be entered not only via a period-doubling cascade but also via the
breakup of a torus, and even via the sudden appearance of a chaotic attractor. In order to fully understand these
different chaotic transitions we reveal underlying global bifurcations and we show how they are connected to
codimension-2 bifurcation points. Unnested islands of period doublings appear to be generic and hence must be
expected in a large class of dynamical systems.
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I. INTRODUCTION

A semiconductor laser on its own exhibits only simp
dynamics: typically any perturbation damps out in an os
latory fashion with the relaxation oscillation frequencyvR

@1#. However, low facet reflectivities~of around only 30%!
and the self-phase modulation effect~the refractive index in
the semiconductor material depends on the population in
sion! make this type of laser very sensitive to external infl
ences, such as optical injection or optical feedback. It is w
known that in their presence a semiconductor laser may
come very unstable and produce amazingly rich and com
nonlinear dynamics@2,6#. A semiconductor laser with optica
injection constitutes the simplest semiconductor laser sys
that produces dynamics ranging from periodic output to s
eral types of chaotic behavior@3–5#. Although most applica-
tions take advantage of stable operation, their chaotic ou
makes optically injected semiconductor lasers very inter
ing from several points of view. First, chaotic dynamics h
recently received a lot of interest due to its possible use
dynamics based computation@7# and chaotic communication
@8–11,14#. Second, studying the complex dynamics of op
cally injected semiconductor lasers appears to be an im
tant step on the way to understanding these devices. Fur
more, the theoretical model is simple enough to allow
bifurcation analysis and, most importantly, it describes
perimental observations surprisingly well@3,15#. This pro-
vides a rare opportunity for studying chaotic transitions in
system that is experimentally accessible.

There exist several ways in which a dynamical system
become chaotic, of which the period-doubling route to ch
is the best known; see, e.g.,@16,17#. In a two-dimensional
parameter space one finds that the curves of period doub
locally accumulate according to the Feigenbaum const
finally leading to a region of chaotic dynamics. If the
curves are all closed curves that are nicely nested then
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region of chaos can be reached and left only by period d
blings; see Fig. 2 below.

In this paper we show that the curves of period doublin
need not be nested, but can intersect; an example is show
Fig. 3~a! below. This is possible only if the period-doublin
curves interact with and are linked to other bifurcations, a
illustrated in Fig. 3~b! below. This complicated web of bifur
cations will be studied in detail. It is crucial how certa
codimension-2 bifurcations organize the dynamics; see@18#
for a study of an optically pumped three-level laser mod
Our overall result is that the chaotic region in an unnes
island of period doublings can be reached in other wa
most importantly via sudden chaotic transitions such a
boundary crisis and saddle node of periodic orbit bifurcat
taking place on a chaotic attractor@19#.

Although the first theoretical studies of sudden change
chaotic dynamics started in the early 1980’s@20–24# the
problem is still of great interest, also in laser syste
@19,25–30#, and not completely understood yet, especially
the case that periodic dynamics suddenly replaces ch
@31,32#. In order to fully understand discontinuous chang
of chaotic attractors we compute stable and unstable m
folds of appropriate saddle orbits. To complete the pictu
we identify bifurcation curves in the two-dimensional para
eter plane@the (K,v) plane introduced in Sec. III# along
which these sudden chaotic transitions occur. While our
sults are important for understanding complicated dynam
in the laser systems at hand, the phenomenon described
will also appear in other dynamical systems.

We want to make clear that by a sudden transition
mean a sudden or discontinuous change in the nature o
attractor when parameters are changed. However, in a
system nothing happens instantly, so that one needs to
transients die down in order to see the new attractor. Ne
theless, the changes described here are sudden compa
situations where an attractor changes continuously with
parameters during the bifurcation~as is the case, for ex
ample, for a periodic orbit disappearing in a Hopf bifurc
tion!.
©2001 The American Physical Society04-1
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The paper is organized as follows. In Sec. II we introdu
and discuss the rate equation model of a semiconductor
with optical injection. Unnested period doublings and t
resulting discontinuous chaotic transitions are presente
Secs. III and IV. In Sec. V we explore global bifurcation
underlying these sudden chaotic transitions and reveal t
origin in parameter space in certain codimension-2 bifur
tions. Conclusions are drawn in Sec. VI.

II. THE RATE EQUATION MODEL

A single-mode diode laser with monochromatic optic
injection can be modeled bythree-dimensionalrate equa-
tions for the slowly varying complex electric fieldE5Ex
1 iEy and the normalized inversionn inside the laser@3#:

Ė5K1S 1

2
~11 ia!n2 iv DE,

ṅ522Gn2~112Bn!~ uEu221!. ~1!

Equations~1! are scaled for convenience; the connection
tween the scaled~dimensionless! quantities used here an
experimental quantities is given in@3#.

The most important parameters are the strengthK of the
field that is injected from an external source into the las
and the detuningv of its frequency from the frequency o
the free-running laser. Both can easily be changed during
experiment and, therefore, are natural operational par
eters. The quantitiesB and G, on the other hand, represe
material properties of the laser and are fixed to the reali
valuesB50.015 andG50.035. The parametera is called
the linewidth enhancement factor, and it quantifies h
much the refractive index, and hence the instantaneous
resonance frequency, changes with the population inver
n @3#. Throughout this paper we focus on the casea52 for
definiteness, but similar results can be found throughou
range of realistica values.

We look at Eqs.~1! from a dynamical systems point o
view and study different kinds of dynamical behavior rep
sented by different objects in the three-dimensional ph
space, the (E,n) space. All these objects have a physic
meaning and describe certain phenomena occurring in
laser. In order to translate a situation from the phase spac
‘‘real life’’ one needs to remember that Eqs.~1! are written
in the reference frame of the injected field frequency. T
means that an attracting stationary point corresponds to
laser operating at constant intensity, constant population
version, and the frequency of the injected light: the la
locks to the injected field. A periodic orbit generally corr
sponds to an oscillatory exchange of the energy inside
laser between the population inversion and the electric fi
A torus corresponds to beating between two oscillatio
usually one associated with the detuningv and the relaxation
oscillation, which tend to synchronize as their coupli
strength increases. A chaotic attractor corresponds to irre
lar and unpredictable laser output.
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III. THE BIFURCATION DIAGRAM

Transitions between different kinds of dynamics are bif
cations, and curves of different bifurcations divide the (K,v)
plane, the parameter space of Eqs.~1!, into regions of differ-
ent qualitative dynamics of the laser. We now study the
furcation diagram which consists of bifurcation curves in t
(K,v) plane together with representative phase portra
The bifurcation curves presented here were computed w
the packageAUTO @33#. Figure 1 shows the bifurcations o
stationary points, namely, the saddle-node and Hopf bifur
tion curvesSN and H, and curvesP1 of ~first! period dou-
blings; see@3# for the full picture and its dependence ona.
Note how the nested and unnested period-doubling isla
from Figs. 2 and 3 are part of this bifurcation diagram. S
percritical bifurcations of stable objects are plotted in bla
and subcritical bifurcations of unstable objects in gray. T
black part ofSN forms the lower boundary of the laser
locking range@the region in the (K,v) plane where the lase
locks to the external field#, because along this curve a stab
stationary point is created. This stationary point becomes
stable along the black part of the Hopf bifurcation curveH,
which gives rise to an attracting periodic orbit. Physical
the relaxation oscillation is excited and the laser emits li
with a periodically varying amplitude. The curveH forms

FIG. 1. The bifurcation diagram of Eqs.~1! in the (K,v) plane.
In this and all figures of the (K,v) plane,v is in multiples ofvR

while K is dimensionless.

FIG. 2. Nested islands of period doublings.
4-2
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UNNESTED ISLANDS OF PERIOD DOUBLINGS IN AN . . . PHYSICAL REVIEW E64 056204
the upper boundary of the locking range~where the phase is
constant!. Note that aboveH initially the phase is still
bounded while it oscillates. The attracting periodic or
originating fromH may undergo further bifurcations, for ex
ample, period doubling along the black parts of the cur
denotedP1. Note that the repelling periodic orbit create
along the gray part ofH doubles its period when the lowes
subcritical period doubling bubbleP1 is crossed.

The superscript ofP1 denotes that we are dealing with
period doubling of a ‘‘basic’’ periodic orbit, which can the
undergo further period doublings as part of an infinite c
cade of period doublings leading to chaos. Secondary per
doubling curvesPn, wheren52,4, . . . , accumulate at the
rate of Feigenbaum’s universal constant@17,20#. In the sim-
plest case, one would expect secondary period-doub
bubbles to accumulate inside theP1 bubbles. An example o
this is shown in Fig. 2 where all closed curves of peri
doublings are indeed nicely nested insideP1. The region of
chaotic dynamics inside this bifurcation structure can be
tered or exited only via a cascade of successive period d
blings.

However, curves of successive period doublings need
be nested, and this is shown in Fig. 3~a! which shows the

FIG. 3. Unnested islands of period doublings~a!, and the com-
plicated web of bifurcations involved~b!.
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other smallP1 bubble from Fig. 1. Notice that there are tw
closed curves of secondary period doublingP2: one lies
strictly inside P1, but the other leaves the confines ofP1.
This is possible only if there are intricate interactions w
other bifurcations, and this is shown in Fig. 3~b!. Most im-
portantly, there are torus~or Neimark-Sacker! and saddle-
node bifurcations of periodic orbits (T andT2, SLandSL2).
They form an intricate web of bifurcation curves, which i
volves several codimension-2 bifurcations. First, there i
Bogdanov-Takens bifurcation for maps, also called a
resonance, denoted byBT in Fig. 3~b!. At BT the saddle node
of the curveSL2 of periodic orbits changes from super-
subcritical and a torus curveT2 emanates.

Furthermore, a torus bifurcation curve can end at
period-doubling curve at the codimension-2 point called
1:2 resonance, which also changes the period doubling f
super- to subcritical. There are two cases~see, e.g.,@17#!
depending on a normal form coefficient. The case in F
3~b! is also called torus doubling because a period-doub
torus emerges. This gives the possibility for a cascade of
resonance points with short pieces of torus bifurcation cur
connecting successive period doublings. Such a cascade
pears at the point denoted by 1:2’s in Fig. 3~b!, but here the
1:2 resonance points are extremely close together. This
nomenon is discussed in more detail in the Appendix.

Indeed it is the presence of these extra bifurcations
allows the curves of secondary period doublings to go o
side P1. The parts ofP2 from Fig. 3 that go outsideP1

correspond to bifurcations of either an orbit that became
stable via a torus bifurcation or of one of the two extra orb
created in the saddle node of a periodic orbit bifurcation.
the next section we describe different transitions, while f
ther discussion of the bifurcation diagram in Fig. 3~b! is the
topic of Sec. V.

IV. TRANSITIONS TO CHAOS

The existence of an unnested period-doubling struct
reveals an interesting question. Let us suppose that
change parameters and enter theP1 bubble in Fig. 3 by
crossing an infinite number of curvesPn, so that we end up
with chaotic laser output. Then, since the period-doubl
islands are unnested, we can choose to leave the ch
region in Fig. 3 in such a way that no period-doubling curv
are crossed. What is then the transition from the chaotic
tractor to the periodic orbit known to exist outsideP1?
Clearly the nature of the transition depends on the route c
sen in parameter space. We illustrate this below by plott
the corresponding attractors of the Poincare´ map defined by
the plane$n50%. Furthermore, we show time series and a
propriate stable and unstable manifolds of saddle points
the Poincare´ section. All phase portraits presented here w
computed withDSTOOL @34#, and the manifolds with the
method of@35,36#. Throughout the paper, unstable manifol
Wu are in black and stable manifoldsWs are in gray.

A. Intermittent transition

In Fig. 4 we fix the injection strength toK50.26 and
increase the detuningv; see Fig. 3. The starting point is th
4-3
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WIECZOREK, KRAUSKOPF, AND LENSTRA PHYSICAL REVIEW E64 056204
attracting periodic orbit@Fig. 4~a!# that exists for parameter
below theP1 bubble. Whenv is increased the curveP1 is
encountered and the periodic orbit period doubles@Fig. 4~b!#.
On increasingv further, secondary period doublings are e
countered@Figs. 4~c!, 4~d!, and 4~e!#, resulting in the cre-
ation of a chaotic attractor@Figs. 4~f! and 4~g!#. From Fig.
3~b! we observe that increasingv further will not result in
inverse period doublings. In fact, the next bifurcation is t
saddle node of periodic orbitsSL2 in which two period-2
orbits, one attracting and one a saddle, are created. AsSL2 is
approached the chaotic attractor starts to anticipate the
attracting orbit that is about to appear@Fig. 4~h!#. As soon as
SL2 is crossed an attracting period-2 orbit appears and
chaotic attractor is suddenly gone@Fig. 4~i!#.

In other words, we encountered a sudden transition fr
chaos to periodic oscillations. Note that there is no bistabi
or hysteresis present, so that there is a sudden appearan
chaos at the saddle-node bifurcation whenv is decreased
Due to the character of the time series just before the cha
attractor is destroyed, shown in Fig. 5, this is often called
intermittent transition: the time series shows windows of
riodic behavior interrupted by occasional chaotic burs
Closer to the saddle-node bifurcation the bursts are less
less frequent and they disappear entirely after the perio
orbit is created. The sudden disappearance of chaos
saddle-node bifurcation of periodic orbits is due to t

FIG. 4. Period-doubling route to chaos and sudden disapp
ance of chaos at a saddle-node bifurcation of a periodic orbit~in-
termittent transition!. Shown are attractors in the Poincare´ section
$n50%; K50.26 while from~a! to ~i! v takes the values 0.05, 0.1
0.15, 0.154, 0.16, 0.18, 0.25, 0.3105, and 0.311.

FIG. 5. Intermittent time series of the chaotic attractor fro
Fig. 4~h!.
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saddle-node bifurcation taking place ‘‘on the chaotic attr
tor.’’ This is demonstrated in Fig. 6 by images of the stab
and unstable manifolds of the saddle point very close to
saddle-node bifurcation. Notice that the unstable manif
Wu from Fig. 6~a! resembles the shape of the chaotic attr
tor before the bifurcation and that the stable and unsta
manifolds (Ws andWu) intersect in a homoclinic tangle@Fig.
6~b!#. With decreasingv ~going in the opposite direction!
the two periodic orbits disappear and the complicated bl
manifold ~technically, the center manifold! becomes the cha
otic attractor.

Next we show that a chaotic attractor created in
breakup of a torus can also undergo an intermittent tra
tion. To this end, in Fig. 7 we choose a path close to
point BT in Fig. 3~b!. A torus grows in size@Fig. 7~b!# and
then starts to break up@Figs. 7~c! and 7~d!# leading to a
chaotic attractor@Fig. 7~e!#. This chaotic attractor suddenl
disappears and we are left with an attracting periodic o
@Fig. 7~f!#. As is shown in Fig. 8, the time series again d
plays intermittent chaotic bursts just before the bifurcatio
Indeed, Fig. 9 shows that stable and unstable manifold
the saddle intersect transversely in a homoclinic tangle
after the bifurcation, which is the hallmark of this bifurca
tion.

One may think that the intermittent transition is the on
sudden transition in the unnested period-doubling struct
However, this is not the case as we show now.

r-

FIG. 6. The unstable manifold just after the saddle-node bif
cation forv50.311 andK50.26~a! has the shape of the destroye
chaotic attractor from Fig. 4~h!. Panel~b! shows the homoclinic
tangle in the central region of panel~a!.

FIG. 7. Breakup of a torus and sudden disappearance of cha
a saddle-node bifurcation of periodic orbits~intermittent transition!;
~a! and ~b! v50.43, K50.1139, 0.1145, and from~c! to ~f! v
50.42, K50.12, 0.145, 0.166, 0.167.
4-4
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UNNESTED ISLANDS OF PERIOD DOUBLINGS IN AN . . . PHYSICAL REVIEW E64 056204
B. Boundary crisis

In Fig. 10 we fixv50.46 and increaseK from 0.115, so
that we are close to the pointBT in Fig. 3. We find a bista-
bility between a periodic orbit~gray dots! created onSL2

and a torus@Fig. 10~a!#, which then breaks up, giving rise t
coexistence of a periodic orbit and a chaotic attractor@Fig.
10~b!#. Then, suddenly the chaotic attractor disappears@Fig.
10~b!#. To understand what is going on we plot in Fig. 11 t
time series for parameters just after the chaotic attractor
appeared. It shows a very long chaotic transient, becaus
started the system close to where the chaotic attractor
This behavior is characteristic of what is called a bound
crisis @23#, where a chaotic attractor hits the boundary of
basin of attraction and disappears. To show that this is
deed what happens, Fig. 12 presents the stable and uns
manifolds of a saddle periodic orbit on the chaotic attrac
In Fig. 12~a! one ~the short! branch of the stable manifold
accumulates on the stable periodic orbit~gray dots! while the
other branch accumulates on the chaotic attractor.~It is con-
jectured that a chaotic attractor is always the closure of so
unstable manifold; see, for example,@13#.! The stable mani-
fold forms the basin boundary between the two coexist
attractors, the periodic orbit and the chaotic attractor. T
system will settle down to one of these attractors depend
on which side of the stable manifold the initial conditon
chosen. AsK is increased we observe a homoclinic tangen
@Fig. 12~b!# giving rise to homoclinic tangle@Figs. 12~c! and
12~d!#. Once the stable and unstable manifolds intersect,
chaotic attractor and its basin boundary are destroyed. M
concretely, all trajectories will eventually ‘‘leak’’ to the at
tracting periodic orbit@37#. This explains the disappearanc
of the chaotic attractor as well as the long chaotic transie

Near the accumulation of 1:2 resonances in Fig. 3~b! one
also finds a boundary crisis. This is shown in Fig. 13 wh
again a chaotic attractor~in black! coexists with an attracting

FIG. 9. The unstable manifold just after the saddle-node bi
cation forK50.167 andv50.42~a! has the shape of the destroye
chaotic attractor from Fig. 7~e!. Panel ~b! shows the homoclinc
tangle in the central region of panel~a!.

FIG. 8. Intermittent time series of the chaotic attractor fro
Fig. 7~e!.
05620
s-
we
s.

y

-
ble

r.

e

g
e
g

y

e
re

s.

e

-

FIG. 10. A sudden destruction of the chaotic attractor~created in
the breakup of a torus, and coexisting with the gray attracting p
odic orbit! in a boundary crisis; from~a! to ~c! v50.46 andK takes
the values 0.115, 0.129, and 0.13.

FIG. 11. Long chaotic transient before the trajectory sett
down from near the former chaotic attractor to the attracting p
odic orbit in Fig. 10~c! for K50.13 andv50.46.

FIG. 12. Formation of homoclinic tangle of the black period
orbit ~originally on the chaotic attractor!, demonstrating that Fig. 10
indeed shows a boundary crisis;v50.46 and from~a! to ~d! K
takes the values 0.115, 0.1297, 0.13, and 0.135.

FIG. 13. A sudden destruction of the chaotic attractor~created in
period doublings, and coexisting with the gray attracting perio
orbit! in a boundary crisis; from~a! to ~c! K50.2885 andv takes
the values 0.253, 0.255, and 0.275.
4-5
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WIECZOREK, KRAUSKOPF, AND LENSTRA PHYSICAL REVIEW E64 056204
periodic orbit~gray dots! @Fig. 13~b!#. Notice that the chaotic
attractor now has the typical, almost one-dimensional, sh
of an attractor created in period doublings. Again, sudde
the chaotic attractor disappears@Fig. 13~c!#, which goes
along with long chaotic transients as is shown in Fig. 14. T
manifolds in Fig. 15 show that we are indeed dealing wit
boundary crisis. The homoclinic tangency@Fig. 15~b!# be-
tween the stable and unstable manifolds of the saddle o
leads to the destruction of this attractor. Again, all trajec
ries will eventually go to the attracting periodic orbit~gray
dots!.

V. THE ROLE OF GLOBAL BIFURCATIONS

In the previous section we demonstrated that the cha
region in the period-doubling bubble under consideration
be entered and exited via different transitions. In particu
we found homoclinic tangencies corresponding to bound
crisis. All this information is put together in schematic for
in Fig. 16; compare Fig. 3~b!. Different regions are num
bered for reference. The overall structure is the followin
The saddle node of the periodic orbit curveSL2 has two
cusps. From the pointBT where the torus bifurcation curv
T2 touches and ends atSL2, two curves of homoclinic tan-
gencies emerge~dashed curves!, which bound a region of
homoclinic tangle. It is known from bifurcation theory@17#
that the pointBT gives rise to a wedge with homoclini
tangle, whose boundaries are given by homoclinic tang
cies. We found that the lower of these curves of homocli
tangency connects to the curveSL2 at a pointH. At H the
stable and center manifolds of the saddle node are tang
This defines the left boundary of the left part ofSL2 giving
rise to an intermittent transition.

On the right hand side and starting fromSL2 there are
infinitely many period-doubling curves connected by sh
pieces of torus bifurcation curves via 1:2 resonance point
1:2 resonance point can have two cases of unfolding@17#

FIG. 14. Long chaotic transient before the trajectory set
down from near the former chaotic attractor to the attracting p
odic orbit in Fig. 10~c! for K50.2885 andv50.26.

FIG. 15. Formation of homoclinic tangle of the black period
orbit ~originally on the chaotic attractor!, demonstrating that Fig. 13
indeed shows a boundary crisis;K50.2885 and from~a! to ~c! v
takes the values 0.255, 0.26, and 0.275.
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depending on the sign of a certain normal form coefficie
but in both there is a change in the period doubling fro
super- to subcritical. Apparently, in our case there is a ne
tive normal form coefficient~see@17#, Sec. 9.5!. Although
the unfolding for the two-dimensional vector field norm
form is known, the complete bifurcation picture in a thre
dimensional vector field remains unknown. The accumu
tion of 1:2 resonances that we deal with here makes
situation even more complex, and a detailed study of t
problem is beyond the scope of this paper. However,
present in the Appendix a partial unfolding justifying th
existence of the curves sketched in Fig. 16. In particular,
found that there is a curve of homoclinic tangency emana
from the accumulation point of the 1:2 cascade on the ri
in Fig. 16, which also connects to the curveSL2. This de-
fines the right boundary pointH of the region whereSL2

gives rise to an intermittent transition.
These results were obtained by carefully computing sta

and unstable manifolds in the respective parameter regi
Furthermore, we could identify the intersection pointsH by
their property that the stable and center manifolds of
saddle node are tangent. An extra difficulty is that the Po
carémap is not globally defined, but only locally in certa
regions of the section~for example, close to intersection
with attracting periodic orbits!. This causes problems in
computing branches of stable and unstable manifolds. In
respect the injected laser studied here differs from perio
cally driven systems, where a Poincare´ map is defined glo-
bally as a stroboscopic map; see, e.g.@12#, p. 13.

VI. CONCLUSIONS

Using the example of the injected semiconductor laser
showed that period-doubling bifurcation curves do not
ways accumulate inside each other but often form unne

s
i-

FIG. 16. Sketch of the structure of the unnested period d
blings from Fig. 3~b!. The homoclinic tangency along the left curv
of boundary crisis is shown in Fig. 12~b! and the homoclinic tan-
gency along the right curve of boundary crisis is shown in F
15~b!. See Fig. 17 for sketches of phase portraits in the numbe
regions.
4-6
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UNNESTED ISLANDS OF PERIOD DOUBLINGS IN AN . . . PHYSICAL REVIEW E64 056204
islands. In consequence, the region of chaos inside thes
lands can be reached in several different ways dependin
the chosen route in the parameter plane. We paid partic
attention to transitions where chaotic dynamics suddenly
appear. Concretely, we identified a saddle-node bifurca
of periodic orbits on a chaotic attractor~intermittent transi-
tion! and a boundary crisis.

Furthermore, we showed how these transitions are em
ded in a consistent bifurcation diagram of unnested pe
doublings. The main ingredients are homoclinic tangenc
emerging from codimension-2 bifurcations, namely, from
Bogdanov-Takens bifurcation of maps, and a 1:2 resona
cascade. This latter phenomenon is still not understood
detail, although we presented a partial conjectural unfold

Preliminary explorations show that the sudden change
the output of the laser are accessible experimentally. T
work is in progress and will be reported elsewhere.
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APPENDIX: THE DYNAMICS NEAR A CASCADE
OF 1:2 RESONANCES

We sketch here briefly the dynamics near the cascad
1:2 resonance points that appears on the right of Fig. 16.
image of such a cascade, involving only the period-doubl
and torus bifurcation curves can be found in@17#, Sec. 9.6,
but the general unfolding of this codimension-2 bifurcati
phenomenon is still unknown. It is known, however, that t
individual 1:2 resonance points involved in the cascade
starting points for curves of homoclinic tangencies th
bound regions with homoclinic tangle; see, for examp
@17#.

We have investigated the 1:2 resonance cascade in
laser system at hand, and this resulted in the bifurca
structure shown in Fig. 17. The regions of different pha
portraits are numbered just as in Fig. 16, and sketches o
respective phase portraits of a suitable Poincare´ map are
shown. There are infinitely many period-doubling curv
connected by short pieces of torus bifurcation curves via
resonance points. At each such 1:2 resonance the period
bling changes from super- to subcritical and a curve of to
bifurcation of a doubled torus appears.

To describe this structure we start to the right of the cu
SL2 and explain what happens when the parameters
changed in a loop around the 1:2 resonance cascade. P
portrait 1 shows a single attractor, but note that points h
from left to right and from top to bottom under the Poinca´
map, which has two negative eigenvalues. CrossingSL2 re-
sults in the creation of an attracting and a saddle-t
period-2 orbit in phase portrait 2. In other words, we ha
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bistability where the boundary between the two basins
attraction is formed by the stable manifold of the saddle-ty
period-2 orbit. The period-2 attractor then undergoes suc
sive period doublings, when the supercritical perio
doubling curvesP2 up toP` are crossed, leading finally to
bistability between the original period-1 orbit and a chao
attractor in phase portrait 3. We found that this chaotic
tractor is destroyed in a boundary crisis along the cu
hom1; the numerical evidence of this homoclinic bifurcati

FIG. 17. A conjectural partial unfolding~in two parametersm1

andm2) of a 1:2 resonance cascade; compare Fig. 16. The he
clinic tangency along ‘‘het’’ is shown in Fig. 18~b!.
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was already presented in Fig. 15. The resulting phase por
4 then only has the original period-1 orbit as an attractor,
it also features homoclinic tangle between the stable and
stable manifolds of the period-2 saddle-type orbit.

As we follow the parameter further around the top of t
1:2 resonance cascade, we encounter the heteroclinic b
cation curve het leading to a chaotic repeller in phase por
5. A numerical picture of this heteroclinic bifurcation a
pears in Fig. 18. The chaotic repeller has initially a fract
like boundary, which becomes more regular in the furth
homoclinic tangency hom2~it is then formed by the unstabl

FIG. 18. Numerical evidence for the heteroclinic tangen
sketched in Fig. 17;v50.56 andK takes the values 0.3293, 0.32
and 0.3288 from~a! to ~c!.
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manifold of the period-2 point!. The chaotic repellor then
period-undoubles when the subcritical period-doubli
curvesP` down to P2 are crossed. This finally results i
phase portrait 6 where the original period-1 orbit is still t
only attractor. In the subcritical saddle-node bifurcation
periodic orbits,SL2, the two period-2 orbits disappear. Th
brings the dynamics back to where we started in phase
trait 1.

This loop around the 1:2 resonance cascade is a consi
bifurcation scenario. It is sufficient to explain the existen
of the curve of boundary crisis that appeared in Fig. 16 in
laser system we studied. Our results are backed by a t
ough numerical investigation, during which we computed
furcation curves and many stable and unstable manifo
This led us to conjecture that Fig. 17 constitutes a par
unfolding of a 1:2 resonance cascade in the general situa

On the other hand, as was mentioned earlier, we did
account for all homoclinic bifurcations that are known
exist near the individual 1:2 resonance points. Conseque
the general unfolding will be more complicated tha
sketched here, and finding it remains an interesting topic
future research.
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