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Interplays between Harper and Mathieu equations
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This paper deals with the application of relationships between Harper and Mathieu equations to the deriva-
tion of energy formulas. Establishing suitable matching conditions, one proceeds by inserting a concrete
solution to the Mathieu equation into the Harper equation. For this purpose, one resorts to the nonlinear
oscillations characterizing the Mathieu equation. This leads to the derivation of two kinds of energy formulas
working in terms of cubic and quadratic algebraic equations, respectively. Combining such results yields
quadratic equations to the energy description of the Harper equation, incorporating all parameters needed.
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I. INTRODUCTION

Nonlinear oscillations described by the celebra
Mathieu equation@1#

d2x

dt2
1v0

2x5 f ~x,nt !5lx cos~nt1d!, ~1!

wherev0 stands for eigenfrequency and where the other
rameters and variables are self-consistently understood
received much interest. First, there are connections with
eral recent developments, such as the trapping of cha
and neutral particles@2,3#, or the continuum limit of the
Harper equation@4#. Furthermore, the radial Schro¨dinger
equation with an 1/r 4 interaction can be converted into
Mathieu equation@5#, and the same concerns the wave eq
tion in elliptical coordinates@6#. Concerning Eq.~1!, some
recent studies, like resonances in the dynamics of kinks
turbed by ac forces@7# or interplays between nonlinearit
and instability in nonautonomous oscillators@8# are worthy
of being mentioned. There are reasons to say that Mat
and Harper equations are still important in various areas
physics, but the interest on the Harper equation is even
creasing nowadays. Indeed, we are able to mention s
remarkable advances, such as statistics of resonances
delay times@9#, the role of the fractal energy spectrum in th
description of the generalized Hall conductance@10,11#, or
the duality between the Harper equation and the tw
dimensional~2D! d-wave superconductivity with a magnet
field @12#. Moreover, proofs have been given@13# that the
spectral determinant of the Harper equation generates
logarithm of the partition function of the 2D Ising model, a
well as the asymptotic bandwidth formula@14,15#. Such
spectacular issues do not mean, of course, that the Mat
equation is less fundamental. Indeed, proofs have been g
quite recently that the stability properties ofD branes can be
formulated successfully by invoking, once again, t
Mathieu equation@16#. So, both equations exhibit unex
pected capabilities of dealing with many problems, but th
are several aspects that are still subject to a more adeq
theoretical understanding. We shall then use this opportu
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to perform a certain step along this direction, now by an
lyzing in some more detail mutual relationships between
Harper and Mathieu equations. Although Eq.~1! is well un-
derstood from a general mathematical point of view@1,6#, we
would like to discuss the concrete form of its solutions
terms of the asymptotic description of nonlinear oscillatio
@17#. The next step is to establish the conditions under wh
such concrete solutions proceeding to second order,
x(t)5x2(t), are able to be implemented into the Harp
equation

w~n11!1w~n21!12D cos~n\* 1d!w~n!5Ew~n!.
~2!

To this aim, a generalized version of Eq.~2! will be analyzed
in some more detail. Here,n denotes an integer,w(n) is the
wave function,D stands for a gap parameter, whereasb
5\* /2p has the meaning of a commensurability parame
@18#. We have also assumed, for convenience, that both
teraction terms in Eqs.~1! and ~2! are characterized by th
same phase-parameterd. The implementation of thex2(t)
;w(n) solution referred to above, proceeds of course,
using a suitable discretization of the time parameter. T
produces different kinds of explicit energy formulas, whi
are useful, even if in a somewhat alternative manner, fo
deeper understanding of large\* -scale behaviors and fo
further applications.

This paper is organized as follows. In Sec. II, one de
with preliminaries and basic ideas. The nonlinear oscillatio
relying on the Mathieu equation are derived in Sec. III. T
first kind of energy solutions is derived by virtue of matchin
conditions in Sec. IV. In Sec. V, one deals with the imp
mentation of nonlinear oscillations into the Harper equati
Proceeding in this manner yields further energy formulas
shown in Sec. VI. Extra compatibility conditions concernin
such energies are discussed in Sec. VII. The algebraic e
tions to the derivation of the energy are also able themse
to be combined together. Quadratic algebraic equation
the energy description of the Harper equation encompas
all parameters may then be easily written down. Conclusi
are presented in Sec. VIII. Some basic formulas to
asymptotic description of nonlinear oscillations are presen
in the Appendix.
©2001 The American Physical Society03-1
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II. PRELIMINARIES AND BASIC IDEAS

Starting from Eq.~2! and assuming thatn@1 produces
the continuous approximation

d2w~n!

dn2 1~22E!w~n!522D cos~n\* 1d!w~n!, ~3!

which relies on Eq.~1! by virtue of a differential transforma
tion rule between the corresponding independent varia
such as

dn5 f sdt, ~4!

in which f s5 f s(E,D,d) has the role of a rescaling param
eter. This yields matching conditions such asv0

25 f s
2(2

2E) and l522 f s
2D. The conversion ofnt1d into n\*

1d, and conversely remains to be done by invoking a r
evant nondifferential discrete realization of the relations
betweenn and t. For this purpose, we have to recall that t
leading contribution to the nonlinear oscillations characte
ing Eq. ~1! exhibits the typical formxt(t)5a cosc, where
the amplitude is denoted by ‘‘a’’ and where the phasec is
given by

c5c~ t !5vefft1c0 . ~5!

The pertinent effective frequencyveff5veff(n,v0,l) can be
easily calculated using, e.g., available formulas proceed
to second« order @17#.

In this context, we have to realize that an almost natu
time-discretization condition reads

vefft1c052np1a, ~6!

which serves as a transmutation condition, i.e., as a c
straint to the realization of the mapping of Eq.~1! into Eq.
~2!. Accordingly, one has

f s5
dn

dt
5

veff

2p
. ~7!

Moreover, one finds

nt1d52pn
n

veff
1

n

veff
~a2c0!1d, ~8!

which generates in turn then\* 1d-contribution one looks
for as soon as

n5hi* f s5
\*

2p
veff , ~9!

anda5c0 .
On the other hand, resorting to the Bloch factorization

w~n!5eiu1 nz~n!, ~10!

yields the modified Harper equation~see also Ref.@19#!
05620
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eiu1z~n11!1e2 iu1z~n21!12D cos~n\* 1d!z~n!

5Ez~n!, ~11!

which reproduces Eq.~2!, as soon asu150. We have to say
that Eq.~11! serves specifically to the description of Bloc
electrons on a two-dimensional lattice threaded by a tra
versal and homogeneous magnetic field. The correspon
wave vectors and lattice spacings are denoted byki and ai
( i 51,2), respectively, whereasu15k1a1 but u25d5k2a2 .
Then,b5f/f0 is the number of magnetic flux quanta p
unit cell (f05h/e). Resorting to the discretization done b
Eq. ~6! and considering Taylor-series expansions rely
again onn@1, one finds modified matching conditions su
as

v0
25 f s

2S 22
E

cosu1
D , ~12!

and

l52
2 f s

2D

cosu1
, ~13!

provided that

sinu1

d

dn
z~n!50. ~14!

This corresponds to selected stationaryx2(t) solutions if
sinu1Þ0, so that we then have to account for the equival
dx2 /dt50 condition. It is understood that dealing with E
~11!, the former implementationx2(t)→w(n) has to be re-
placed byx2(t)→z(n).

Focusing our attention on Eqs.~1! and~11! we shall then
proceed as follows. First, using the effective frequencyveff
we shall derive an energy solution, i.e.,E5E1(\* ,u1 ,D),
by applying solely Eqs.~9!, ~12!, and ~13!. Next, we shall
insert the concretex2(t) solution to Eq.~1! into Eq.~11!, but
now in the context of arbitrary finiten values. This insertion
works in terms of Eq.~6!, but residual imaginary terms hav
to be ruled out, as this time, one works without invokin
Taylor-series expansions corresponding to then@1 choice.

Proceeding in conjunction with Eq.~14! and assuming
that sinu1Þ0, yields a second energy-solutionE
5E2(u1 ,u2 ,\* ), but under extra relationships such asD
5D(\* ,u1 ,u2). This matter concerns Eqs.~35!, ~44!, and
~51!. Putting togetherE1(\* ,u1 ,D) and E2(\* ,u1 ,u2) re-
sults in energy candidates incorporating all parameters b
ing on Eq. ~11!, as shown by Eq.~55!. We have also to
remark that Eq.~11! produces the intermediary energy re
resentation

E52 cosu112D cos~n\* 1d!, ~15!

if again n@1, where the last term remains to be specifi
later @see Eq.~38!#. So far, Eq.~15! serves to the identifica
tion of the energy range as
3-2
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EP@2 cosu122D,2 cosu112D##@2222D,212D#,
~16!

so thatEP@24,4# if D51. On the other hand, it is wel
known that the exact energy solutions to the Harper equa
are real ones. Being aware that the present results are
proximations, we shall then look for the real parts of energ
mentioned above, by checking both role and magnitude
imaginary parts. It is also well known that the spectrum
Eq. ~2! exhibits rich and interesting structures@20,21#, as
displayed by the famous Hofstadter butterfly~see Fig. 1 in
Ref. @20#!.

III. ASYMPTOTIC APPROACH TO NONLINEAR
OSCILLATIONS

Applying general approximation formulas established
fore ~see the Appendix! we have to say that nonlinear osc
lations characterizing Eq.~1! within the nonresonance re
gime are given by

x~ t !5x2~ t !5a cosc1«U1~a,c,nt !, ~17!

to second« order, where

da

dt
5«A1~a!1«2A2~a!, ~18!

and

dc

dt
5v01«B1~a!1«2B2~a!. ~19!

The small« parameter serves to the introduction of pertine
power-series expansions, which also means that we hav
put «51 at the end of calculations. Resorting to the dou
Fourier-series expansions

f 0~a,c,nt !5 f ~a cosc,nt !

5(
n,m

f n,m
~0! ~a!expi ~nnt1mc!, ~20!

one readily finds that the only nonzero coefficients are

f 1,1
~0!5 f 1,21

~0! 5 f 21,1
~0!* 5 f 21,21

~0!* 5
la

4
exp~ id!, ~21!

where the star denotes complex conjugation. These solut
are subject to the nonresonance conditionv0

2Þ(nn
1mv0)2. Accordingly,

U1~a,c,nt !5
la

n~4v0
22n2!

@n cosc cos~nt1d!

12v0 sinc sin~nt1d!#. ~22!

In addition,A1(a)5A2(a)5B1(a)50, but

dc

dt
5v02

«2l2

16p2v0~4v0
22n2!

. ~23!
05620
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This enables us to introduce the effective frequency as

dc

dt
5veff~n,v0 ,l!5v0F11

l2«2

8p2v0
2~4v0

22n2!G
21/2

,

~24!

so that

c5c2~ t !5veff~n,v0 ,l!t1c~0!. ~25!

Under such conditions, the nonlinear oscillations charac
izing Eq. ~1! are given by

x~ t !5x2~ t !5a0 cosc2~ t !1U1„a0 ,c2~ t !,nt…, ~26!

where a(t)5a(0)5a0 , which proceeds both to second«
order and within the nonresonance regime mentioned ab

Next, it can be verified thatx2(t) is stationary if

l

4v0
22n2 F2v02veff1

2v0

n2 ~2v0veff2n2!G
5veffS 11

4v0
2

n2 tan2 a D 1/2

. ~27!

One realizes immediately that Eq.~27! has the root

tana5
1

2nv0
~l22n4!1/2, ~28!

which can be rewritten equivalently as

tana5
n

2v0
S 4D2

\* 4 cos2 u1
21D 1/2

, ~29!

in accord with Eqs.~9! and ~13!.

IV. THE FIRST TYPE OF ENERGY RESULTS

Using Eqs.~9!, ~12!, and ~13! yields the cubic algebraic
equation

2 cos2 u1S 22
E

cosu1
D S 22

E

cosu1
2

\* 2

4 D
3S 22

E

cosu1
24p2D2D2

50, ~30!

for which explicit energy solutions such asE
5E1(\* ,u1 ,D) can be easily established. Such cubic eq
tions exhibit, of course, either three real roots or tw
complex-conjugated roots supplemented by a real one.
also clear that such concrete root realizations are sens
with respect to the values of underlying parameters. Us
hereafter the notationsx5\* , y5E, z5D, andu15cosu1
and assuming, e.g., thatz51 andu151, yields the roots

y1~x!5
1

12
s1

1/3212s2s1
21/32

4

3
p22

x2

12
12, ~31!
3-3
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and

y3~x!52
1

12
s1

1/3«1112s2s1
21/3«22

4

3
p22

x2

12
12,

~32!

where«65(16 i))/2. One has

s1524321384p4x2124p2x424096p62x6112~384p6x6

23072p8x4212p4x8112962144p2x422304p4x2

16x6125576p6!1/2, ~33!

and

s25
1

9
x2p22

16

9
p42

x4

144
. ~34!

There is also a third root that is real, i.e.y2(x), which comes
from y3(x) by replacingi by 2 i . This latter root varies quite
slowly with x as y2(x)>237.48 for xP@25,5#. So, it is
located far away from the typical energy-domainyP
@24,4# characterizing the Harper equation. Thex depen-
dence ofy1(x) and y3(x) is displayed in Fig. 1. Thex de-
pendence of the imaginary parts of these roots is represe
by the closed patched curve located on thex axis. So, the
imaginary parts are nonzero only forxPI , where I >
@20.95,0.95#. Accordingly, there is Rey15Rey3 for xPI ,
but y1.y3 if x¹I . In particular, y1(0)>2.000 16
10.112 54i , which shows that the amplitude of imagina
parts is rather small. Moreover, the width of theI interval
decreases withz, and the same concerns the amplitude
imaginary parts. Of course, the above energies change
sign if one insertsu1521 instead ofu151. It should be
remarked thatu1561 energies discussed above would
invoked exclusively in so far asdx2 /dtÞ0, but we shall see
later that reasonable solutions todx2 /dt50 may also be
proposed.

FIG. 1. Thex dependence ofy5y1 ~solid curve! and y5y3

~dashed curve! for u151 andz51. The closed-dotted curve on th
x axis indicates theI interval within which the above roots ar
complex. So,yi ( i 51,3) stands for Reyi if xPI , too. The dashed
curve crosses thex axis atx>62.833. Theu1521 counterparts of
these energies are displayed by dot-dashed curves.
05620
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V. IMPLEMENTING NONLINEAR OSCILLATIONS
INTO THE HARPER EQUATION

Inserting Eq.~26! into Eq. ~11! and accounting for the
mutual interconnection betweenn61 andt62p/veff yields
the algebraic equation

x2u1
2S 22

y

u1
2

x2

4 D Fx21sS 22
y

u1
D G

2z2S 2 cosx2
y

u1
1sx2D50, ~35!

by virtue of the identificationz(n);x2(t), provided that

tan~nx1d![tan~nt1d!5
2v0

n
tana.0. ~36!

This latter condition is responsible for the cancelling
imaginary contributions that are implied by the substituti
just mentioned above. For this purpose, matching conditi
done by Eqs.~9!, ~12!, and~13! have been used in conjunc
tion with Eq. ~6!.

Using Eqs.~29! and ~36! leads to the relationship

tan~nx1d!5V~x,z,u1!5S 4z2

x4u1
221D 1/2

, ~37!

which plays the role of a consistency condition, whereu2
5cosu25cosd. Correspondingly, there is

cos~nx1d!5s
u1x2

2z
, ~38!

which is responsible for thes561 parameter mentioned
above. In order to handle Eq.~37!, we shall start from the
assumption

x5
p

2
nr , ~39!

where unr u51,2,3, . . . , Onewould then obtainQ54P/nr
for rational values of the commensurability parameter su
asb5P/Q. It is obvious that Eq.~39! works safely at least
for unr u51, 2, and 4, i.e., forQ564P, Q562P, and Q
56P. It is also clear that we have to consider thatunr u<4 if
uxu<2p, as assumed usually. Inserting Eq.~39! into Eq.~37!
gives

tanu25V~x,z,u1!, ~40!

and

2cotu25V~x,z,u1!, ~41!

for even and odd values of thennr product, respectively. We
may remark that Eqs.~40!–~41! could be viewed as som
generalized versions of the well-known matching conditio
for the symmetric square-well potential. Accordingly,

z5z1~nr ,u1 ,u2!5
p2

nr
2Uu1U, ~42!
8 u2

3-4
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and

z5z2~nr ,u1 ,u2!5
p2

8
nr

2 uu1u

A12u2
2

, ~43!

where u25cosu25cosd. For convenience, we have re
stricted ourselves to positivez values. Under such circum
stances, Eqs.~42!–~43! have to be understood as a quantiz
version of thez solution to Eq.~37!. Conversely, we have to
realize that the continuous counterpart of thez solution just
presented above may be obtained by invoking once again
~39!. This yields

z5z3~x,u1 ,u2!5
x2

2 Uu1

u2
U, ~44!

and

z5z4~x,u1 ,u2!5
x2

2

uu1u

A12u2
2

, ~45!

respectively. Of course, Eqs.~43! and ~45! are valid if uu2u
Þ1. It should be remarked that starting withs5sgn(u1 /u2),
Eqs. ~38! and ~44! produce rational values of the comme
surability parameter such as

b5
x

2p
5

n8

n
, ~46!

and even more specifically, as

b5
x

2p
5

2n811

2n
, ~47!

if z5z3 , such that sgn(u2)51 and sgn(u2)521, respectively.
Here,n andn8 are arbitrary integers. In particular, Eq.~47! is
able to be used in the description of typicalb5P/Q values
for which P is odd andQ is even. Accordingly, we can sa
that Eq.~44! has to be favored, but for the sake of general
Eqs. ~42!, ~43!, and ~45! deserve also to be studied und
appropriate conditions. We also have to remark that E
~42!–~45! are invariant under the substitutionsz→1/z, u1
→u1 /z2, and u2→u2 , which have the meaning of certai
scaling-duality transformations Then, Eqs.~30! and ~35!
would be invariant themselves under such transformation
y→y/z2. This differs, however, from the well-known Aubr
duality, for whichy→y/z @22,23#. Then,z51 is a self-dual
point that corresponds to a metal-insulator transition@22#.

Under such circumstances, Eq.~37! becomes itself trac-
table, but the tradeoff is a mutual interconnection betwe
the parametersz, x, u1 , andu2 . In general, this may procee
in the presence of the quantum numbernr introduced above
or not. Such interconnections and/or parameter fixings
not at all an absolute novelty. Indeed, similar relationsh
have been used in the case of conditionally exactly solva
potentials@24#, for several exactly solvable systems@25# or
for eigenvalue problems, which can be solved with the h
of a supersymmetric description@26,27#. The general under
standing is that under such interconnections, the systems
05620
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deals with become solvable, which amounts to the onse
dynamical symmetries@28–30#.

VI. CONCRETE DERIVATIONS OF ENERGY FORMULAS

Looking for typical behaviors, let us present the ener
solutions, i.e.,y5ys

6(u1 , z, x), implied solely by Eq.~35!.
Inserting, e.g.,z51, one obtains the solutions

ys
65

1

8u1x2 ~ f 16Ag1!, ~48!

where

f 15~4s21!u1
2x4116u1

2x224s, ~49!

and

g15~1718s!u1
4x81~3218s!u1

2x4

2128su1
2x2~12cosx!116. ~50!

An appealing illustration of the capabilities of Eq.~48! is
presented in Fig. 2. We can say that theu1-section view
displayed byy21

2 exhibits nearly apparent fingerprints of th
Hofstadter butterfly. However, this time one has positiv
and negative-energy gaps involved symmetrically by sm
or near-to-zero values of thex parameter.

Coming back to Eq.~37!, one gets faced with substitu
tions like z5zj , as indicated by Eqs.~42!–~45!. Ruling out
the z parameter from Eq.~35! results in four quadratic alge
braic equations to the evaluation of the energy

4u2
2S 22

y

u1
2

x2

4 D Fx21sS 22
y

u1
D G2

4u2
2zj

2

u1
2x2

3S 2 cosx2
y

u1
1sx2D

50, ~51!

where j 51, 2, 3, and 4. They5yj ,s
6 (x,u1 ,u2) solutions can

then be written down quite automatically. Choosingj 53
andu251, one finds the energies

FIG. 2. Theu1 section view of the three-dimensional plot cha
acterizing the y5y21

2 solution for z51, xP@22,2#, and u1

P@21,1#.
3-5
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y3,s
6 5

1

8s
$x2~32s!116s

6u1†x
4~26110s132sx2@cos~x!21#1/2

‡%. ~52!

The x dependence of corresponding energies is displaye
Fig. 3 foru150.8 andu251. The waved curve in Fig. 3, i.e
thex dependence ofy3,21

2 , may be viewed as being reminis
cent to oscillating structures characterizing actual Harper
ergies, but this time one deals with a distorted symme
center that is moved upwards atx50 andy51.6. Note that
the remaining solutions done by Eq.~52! are located again
beyond theyP@24,4# domain of interest. Theu1-section
view produced by the three-dimensional plot ofy3,1

2 (u1 ,x) is
presented in Fig. 4. Comparing Figs. 2 and 4, one sees
the energy gaps involved in the former case have been
moved by virtue of the regular behavior of present solutio
at x50. The other cases can be treated in a similar man

VII. COMBINATIONS AND FURTHER PERSPECTIVES

Next, we have to say, strictly speaking, that second t
of energy solutions presented above have to fulfil Eq.~30!.
This results in certain compatibility relationships concern
underlying parameters. Such relationships are numeric
involved ones, so that we shall consider here just a fi
degree realization of Eq.~51!, namely, the one correspondin
to j 53 andu250. One would then obtain the energy

FIG. 3. Thex dependence ofy3,1
1 ~solid curve!, y3,21

2 ~waved-
dashed curve!, y3,1

2 ~dotted curve!, andy3,21
1 ~dashed-dotted curve!

for u251 and u150.8. All curves meet together aty51.6 asx
50. The curvesy5y3,1

2 (x) and y5y3,21
1 (x) cross thex axis atx

>62.278 and61.30, respectively.

FIG. 4. Theu1 section view of the three-dimensional plot co
cerning thex andu1 dependence ofy5y3,1

2 for u251.
05620
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y5ys5u1~2 cosx1sx2!, ~53!

which can be viewed as an updated version in Eqs.~15! and
~38!. Inserting Eq.~53! into Eq. ~30!, we then have to estab
lish the conditions under which reasonableu1-roots become
realized. One finds the roots

u1,656z@2F1~F124p2!~F12x2/4!#21/2, ~54!

where F1522ys /u1 . The x dependence of Reu1,1 and
Im u1,1 is presented in Fig. 5 forz5s51. One sees that ther
is a clean nonzerou1 solution within the ‘‘window’’ x
PI SC>@1.142,1.306# only, where the subscript SC stand
for ‘‘strong compatibility.’’ Correspondingly,21&u1,1
&20.608, whereas Imu1,150 if xPI SC. However,
Im u1,1Þ0 if x¹I SC, but Imu1,1&0.01 if x*3.4. This
means that Imu1,1 may be neglected for sufficiently largex
values, in which caseu1,1>0 represents a reasonable a
proximation. On the other hand, one has Imu150 if x
*2p, but now fors521. This yields again a safeu1 solu-
tion, but underlyingx values are excessively large. So far, w
then have to say that similar investigations could also
done in other cases, but a noticeable fulfillment of SC re
tionships remains questionable.

Now, let us remember that matching conditions under
ing Eq. ~30! have also been used in the derivation of t
second type of energy formula discussed above. Acco
ingly, extra compatibility requirements expressed in terms
the simultaneous fulfillment of Eqs.~30! and ~51! can be
interpreted as being too hard. Looking for reasonably tr
table formulations, we shall then resort to certain algebr
combinations between Eqs.~30! and~51!. The easiest way to
deal with this is to rewrite equivalently these equations, su
that, e.g., both factors (22y/u1) and (22y/u12x2/4) get
located within the same side. Performing the quotient of c
responding expressions then gives the four quadratic e
tions

S 22
y

u1
24p2D Fzj

2S 2 cosx2
y

u1
1sx2D

2u1
2x4S 22

y

u1
2

x2

4 D G2
2

s
x2z250, ~55!

FIG. 5. Thex dependence ofu5Reu1,1 ~solid curve! and u
5Im uI,1 ~dotted curve! for xP@0,2p#.
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where j 51, 2, 3, and 4, which can be again easily solve
This time the roots look likey5yj ,s,6(u1 ,u2 ,z,x), so that
all parameters are accounted for. Choosing once againj 53
andu251, one obtains the energies

y3,s,65 f 36
1

6
Ag3, ~56!

where

f 352
s11

6
u1x22

u1

3
cosx1

7

3
u122u1p2, ~57!

and

g354u1
2~cosx21!@x2~11s!212p2#2

24s

x2 z21144p4u1
2

14u1
2~cosx21!212u1

2x2~11s!~x2212p2!. ~58!

The undesirable feature is that thez2/x2 term produces a
singularity at x50. The x dependence ofy3,21,1 and of
Rey3,1,1 is displayed in Fig. 6 foru150.5 andu25z51.
Note thaty3,1,1 becomes complex foruxu,0.083. The inter-
esting point is thats521 solutionsy3,21

2 andy3,21,1 are, up
to the singularity atx50, quite similar, as shown by th
waved curves in Figs. 3 and 6. Conversely, this similarity
able to favor Eq.~51!.

After having arrived at this stage, we are in a position
propose an approximate but ‘‘nonlinear’’ alternative to t
secular-equation method for the study of the Harper equa
@31,32#. Indeed, using Eq.~55!, we can establish an expre
sion for cosx in terms of a rational function, i.e.,R21(y), as
follows

cosx[R21~y!5
y

2u1
2s

x2

2
12u2

2S 22
y

u1
2

x2

4 D
1

su2
2z2

u1
2x2 S 22

y

u1
24p2D 21

. ~59!

FIG. 6. Thex dependence ofy5y3,21,1 ~solid-waved curve!
and y5Rey3,1,1 ~dot-dashed curve! for u150.5 and z5u251.
Both curves diverge asx→0.
05620
.

s

n

Next, resorting to rational values of the commensurabi
parameter such asb5P/Q, where nowP andQ are mutu-
ally prime integers, one has

cos~Qx!5PQ~cosx!5PQ„R21~y!…51, ~60!

wherePQ(cosx) denotes the usualQ-degree polynomial rep-
resentation of cos(Qx) with respect to cosx. What then re-
mains is to solve Eq.~60! for fixed values of theQ param-
eter. So, one finds, e.g., solutions proceeding via sele
cosx inputs such as6&/2, (0,6)/2), and6(1/26&/4)
for Q52, 3, and 4, respectively. In general, the plots p
duced by Eq.~60! are similar to the ones presented in Fig.
but other details remain open for further investigation
Equation~35!, as it stands, may also be treated in a simi
manner.

VIII. CONCLUSIONS

In this paper, sensible manifestations of interplays
tween Mathieu and Harper equations have been establi
and discussed. Resorting to the nonlinear oscillations cha
terizing the Mathieu equation, we found a cubic equation
the energy, such as that in Eq.~30! and quadratic equations
as shown in Eqs.~35! and ~51!. In order to derive Eq.~35!,
the x2(t) solution to the Mathieu equation has been imp
mented into the Harper equation by virtue of the transmu
tion condition in Eq.~6!, but matching conditions expresse
by Eqs. ~9!, ~12!, and ~13! have also been invoked. Thi
differs from the cubic equation mentioned above, for whi
only matching conditions have been used. Energy candid
incorporating all parameters may also be proposed. To
aim, a first-version synthesis of the two kinds of energy f
mulas has also been written down, as shown in Eq.~55!.
Extra compatibility relationships between Eqs.~30! and~51!
could be able to provide interesting information, but for th
purpose, complicated numerical studies have to be done.
cordingly, second kind type of energy solutions based
Eqs.~35! and~36! should also be invoked irrespective of E
~30!. Combining Eqs.~59! and ~60! leads again to quadrati
equations to the derivation of energy formulas incorporati
besidesQ, all parameters needed. It is also clear that
present wave-functionz(n);x2(t) exhibits the periodic
boundary-conditionz(n1Q)5z(n) in accord with Eq.~26!,
provided thatb5P/Q. A Q-band free energy may also b
easily established, thus establishing a useful starting poin
further applications. Such results would then be able to p
vide a better understanding of present energy results, to

Also worthy of being referred to is the so-called energ
reflection ~ER! symmetry@33#. This means that besidesE,
there is also a solution with the opposite sign. This symme
has been discussed in an explicit manner with respect
selected middle-band description, such as that used in
derivation of a symmetrized version of the Harper-equat
@34#. The ER symmetry is not valid automatically in mo
general cases, even if certain conversions of the orig
Harper equation into the symmetrized one have been
posed@35#. Concrete realizations of such symmetrized e
ergy solutions have also been established@36#. Concerning
3-7
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the present results, we have to realize that there are sele
parameter domains where the symmetry referred to abov
exhibited in an effective manner, as shown by the plots p
sented in Figs. 1, 2, and 4. It should also be noted tha
algebraic energy equations discussed in this paper, i.e.,
~30!, ~35!, ~51!, and~55!, are invariant under scaling-dualit
transformations presented in Sec. V.

We have to recognize that quickly tractable energies
cussed above have, rather, the meaning of leading app
mations, so that they are able to reflect certain large-s
manifestations of the Hofstadter butterfly@20#. However, this
does not prevent us from establishing nontrivial energy p
files, which are able to provide a better understanding
several details and interconnections. In this context, we h
to realize that bifurcations that are seen in the Harper sp
trum are able to be understood in terms of present param
dependent transitions from complex to real roots~see Fig. 1!.
Moreover, such bifurcations, closed loops included, serve
basic elements to the formation of complex patterns. Fur
improvements could be done by resorting to a more refi
description of the nonlinear oscillations characterizing
Mathieu equation. We also have to remark that all algeb
equations can be solved in terms of the shifted energy v
able F522E/u1 instead ofy5E. Squaring Eq.~12!, we
then have to come back to the usual energy viaE5(2
7F)u1 , which yields, of course, a doubling of solutions.

It is understood that the energy candidates produced
Eqs. ~30!, ~35!, ~51!, ~53!, and ~55! are not at all highly
accurate generic solutions to the Harper equation, suc
studied before by several authors~see, e.g., Refs.@37–40#!.
They represent, in fact, selected energy profiles along wh
the Harper wave functions are transmutation by-product
nonlinear oscillations described by Eq.~26!. Nevertheless,
the interesting point is that such energy curves may be
tablished in a well-defined manner, both foru1

251 andu1
2

Þ1. Of course, in the first case both Eqs.~30! and~35! work
as they stand. It should also be noted that Eq.~1! exhibits a
n5v0 resonance to second« order, which can be treated
under some more specific assumptions, in a similar way

Summarizing, we may then say that our main emphasi
this paper was on the investigation of mutual relationsh
between the Mathieu and Harper equations. Though less
curate, the present energy-profile studies are able to serv
a better understanding of large-scale behaviors character
the Harper equation, now by using explicit energy formul
We believe that such alternative studies have their own
terest from a general theoretical point of view. In this co
text, we also learned how to combine Eq.~4!, i.e., a
differential-geometric relationship, with a discrete transm
tation condition such as seen in Eq.~6!.
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APPENDIX

The asymptotic description of nonlinear oscillations
based on Eqs.~17!–~19!, such as produced, e.g., by Eq
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~13.30!–~13.37! in Ref. @17#. Replacingf (x,nt) by « f (x,nt)
and inserting Eqs.~17!–~19! into Eq. ~1!, we then have to
proceed order by order. There isx5a cosc to first « order,
such that

A1~a!52
1

4p2v0
E

0

2p

du8E
0

2p

dc f ~a cosc,u8!sinc,

~A1!

and

B1~a!52
1

4p2v0a E0

2p

du8E
0

2p

dc f ~a cosc,u8!cosc,

~A2!

whereu8 stands fornt. These equations reflect the so-call
harmonic balance. Next,x is given by Eq.~17! to second«
order, such that

A2~a!52
1

2v0
FaA1

dB1

da
12A1B1G

2
1

4p2v0
E

0

2p

du8E
0

2p

dc f 1~a,c,u8!sinc,

~A3!

and

B2~a!5
1

2av0
FA1

dA1

da
1aB1

2G
2

1

4p2v0a E0

2p

du8E
0

2p

dc f 1~a,c,u8!cosc.

~A4!

One has

f 1~a,c,nt !5U1~a,c,nt !
]

]x
f ~x,nt !U

x5a cosc

, ~A5!

where

U1~a,c,nt !5(
n,m

f n,m
~0! ~a!

v0
22~nn1mv0!2 expi ~nnt1mc!,

~A6!

works in accord with Eq.~20!. The fact that now the right-
hand side of Eq.~1! is independent ofdx/dt has also been
accounted for. This approach has been referred to in the
erature as the Krylov-Bogoliubov-Mitropolsky method~see,
e.g., Chap. 14 in Ref.@41#!. An updated version of this
method has also been formulated by incorporating algeb
symmetries@42#.
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