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Interplays between Harper and Mathieu equations
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This paper deals with the application of relationships between Harper and Mathieu equations to the deriva-
tion of energy formulas. Establishing suitable matching conditions, one proceeds by inserting a concrete
solution to the Mathieu equation into the Harper equation. For this purpose, one resorts to the nonlinear
oscillations characterizing the Mathieu equation. This leads to the derivation of two kinds of energy formulas
working in terms of cubic and quadratic algebraic equations, respectively. Combining such results yields
quadratic equations to the energy description of the Harper equation, incorporating all parameters needed.
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[. INTRODUCTION to perform a certain step along this direction, now by ana-
lyzing in some more detail mutual relationships between the
Nonlinear oscillations described by the celebratedHarper and Mathieu equations. Although E#) is well un-

Mathieu equation1] derstood from a general mathematical point of viaw], we
would like to discuss the concrete form of its solutions in
d?x 2 terms of the asymptotic description of nonlinear oscillations
gz T eox=f(x,»t)=Axcodvt+9), (1) [17]. The next step is to establish the conditions under which

such concrete solutions proceeding to second order, i.e.,

wherew, stands for eigenfrequency and where the other pax(t)=Xx(t), are able to be implemented into the Harper
rameters and variables are self-consistently understood ha@guation
received much interest. First, there are connections with sev-
eral recent developments, such as the trapping of charged _ * _
and neutral particle$2,3], or the continuum limit of the e(n+1)+e(n—1)+24 cosn +5)(P(n)_E(P(n)'(2)
Harper equation4]. Furthermore, the radial Schitimger
equation with an 1/ interaction can be converted into a
Mathieu equatio5], and the same concerns the wave equa-To this aim, a generalized version of E&) will be analyzed
tion in elliptical coordinate§6]. Concerning Eq(1), some in some more detail. Her@ denotes an integeg(n) is the
recent studies, like resonances in the dynamics of kinks pewave function,A stands for a gap parameter, whergas
turbed by ac force$7] or interplays between nonlinearity =#*/27 has the meaning of a commensurability parameter
and instability in nonautonomous oscillatd&] are worthy  [18]. We have also assumed, for convenience, that both in-
of being mentioned. There are reasons to say that Mathieteraction terms in Eq91) and (2) are characterized by the
and Harper equations are still important in various areas ofame phase-parametér The implementation of the,(t)
physics, but the interest on the Harper equation is even in—¢(n) solution referred to above, proceeds of course, by
creasing nowadays. Indeed, we are able to mention somesing a suitable discretization of the time parameter. This
remarkable advances, such as statistics of resonances ameduces different kinds of explicit energy formulas, which
delay timeq 9], the role of the fractal energy spectrum in the are useful, even if in a somewhat alternative manner, for a
description of the generalized Hall conductaf&®,11, or  deeper understanding of large -scale behaviors and for
the duality between the Harper equation and the twofurther applications.
dimensional2D) d-wave superconductivity with a magnetic ~ This paper is organized as follows. In Sec. Il, one deals
field [12]. Moreover, proofs have been givgh3] that the  with preliminaries and basic ideas. The nonlinear oscillations
spectral determinant of the Harper equation generates thelying on the Mathieu equation are derived in Sec. Ill. The
logarithm of the partition function of the 2D Ising model, as first kind of energy solutions is derived by virtue of matching
well as the asymptotic bandwidth formu[d4,15. Such conditions in Sec. IV. In Sec. V, one deals with the imple-
spectacular issues do not mean, of course, that the Mathienentation of nonlinear oscillations into the Harper equation.
equation is less fundamental. Indeed, proofs have been givéProceeding in this manner yields further energy formulas, as
quite recently that the stability propertiesDfbranes can be shown in Sec. VI. Extra compatibility conditions concerning
formulated successfully by invoking, once again, thesuch energies are discussed in Sec. VII. The algebraic equa-
Mathieu equation[16]. So, both equations exhibit unex- tions to the derivation of the energy are also able themselves
pected capabilities of dealing with many problems, but theréo be combined together. Quadratic algebraic equations to
are several aspects that are still subject to a more adequétee energy description of the Harper equation encompassing
theoretical understanding. We shall then use this opportunitgll parameters may then be easily written down. Conclusions
are presented in Sec. VIIl. Some basic formulas to the
asymptotic description of nonlinear oscillations are presented

*Electronic address: epapp@arad.ro in the Appendix.
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Il. PRELIMINARIES AND BASIC IDEAS e'’1(n+1)+e "%(n—1)+2A cogni* + 8){(n)

Starting from Eq.(2) and assuming that>1 produces —E¢(n), (12)
the continuous approximation

a2 (n) which reproduces Ed2), as soon ag,=0. We have to say
¢ — +(2—E)@(n)=—2A cognk* + 8)(n), (3) that Eq.(11) serves s.pemflqally to the description of Bloch
dn electrons on a two-dimensional lattice threaded by a trans-
versal and homogeneous magnetic field. The corresponding
which relies on Eq(l) by virtue of a differential transforma- wave vectors and lattice Spacings are denoted{imnd a,
tion rule between the corresponding independent variableg =1 2), respectively, wheread = k,a; but 6,= 5=k»a,.

such as Then, 8= ¢/ ¢, is the number of magnetic flux quanta per

unit cell (¢o=h/e). Resorting to the discretization done by

dn=f.dt, (4) Eq. (6) and considering Taylor-series expansions relying

i ) ) again onn>1, one finds modified matching conditions such
in which fs=f(E,A,5) has the role of a rescaling param- ¢

eter. This yields matching conditions such a§=f2(2
—E) and\=—2f2A. The conversion ofvt+ & into nk*
+ 8, and conversely remains to be done by invoking a rel- wg=f§(2—
evant nondifferential discrete realization of the relationship

betweenn andt. For this purpose, we have to recall that the

. - . S ._and

leading contribution to the nonlinear oscillations characteriz-

ing Eq. (1) exhibits the typical formx,(t)=a cosy, where

the amplitude is denoted bya” and where the phasé is —

T

cosf,

21f2A

—_—, 13
given by cosf; 13

P=(t) = wert + g (5)  provided that

The pertinent effective frequenyes= wer(v,w9,\) can be
easily calculated using, e.g., available formulas proceeding
to seconde order[17].

_ In this context, we have to realize that an almost naturairyis corresponds to selected stationagyt) solutions if
time-discretization condition reads sin#,#0, so that we then have to account for the equivalent
dx,/dt=0 condition. It is understood that dealing with Eq.
(11), the former implementatio®,(t) — ¢(n) has to be re-
aced byx,(t)—Z(n).

Focusing our attention on Eg&l) and(11) we shall then
proceed as follows. First, using the effective frequency

we shall derive an energy solution, i.&=E (#*,6,,A),

by applying solely Eqgs(9), (12), and (13). Next, we shall

d
sin 0l%g(n)=o. (14

weit + Yo=2n7T+ a, (6)

. . . . I
which serves as a transmutation condition, i.e., as a corf3
straint to the realization of the mapping of E@) into Eqg.
(2). Accordingly, one has

fszﬂz ﬁf_ 7) insert the concretg,(t) solution to Eq.(1) into Eq.(11), but
dt 2w now in the context of arbitrary finita values. This insertion
) works in terms of Eq(6), but residual imaginary terms have
Moreover, one finds to be ruled out, as this time, one works without invoking
Taylor-series expansions corresponding torikel choice.
_ v Proceeding in conjunction with Eq14) and assuming
v+ o=2mn weﬁ+ weﬁ(a o)+ 0, ® that sing;#0, vyields a second energy-solutiorE

=E,(6,,0,,i*), but under extra relationships such As
which generates in turn the#* + 5-contribution one looks =A(%*,6,,6,). This matter concerns Eq¢35), (44), and
for as soon as (51). Putting togethelE,(A*,0,,A) and E,(A*,60,,0,) re-
sults in energy candidates incorporating all parameters bear-
ing on Eqg.(11), as shown by Eq(55). We have also to

*

V:hi*fszﬁ“’eﬁ’ ©  remark that Eq(11) produces the intermediary energy rep-
resentation
and a= .
On the other hand, resorting to the Bloch factorization E=2 cosf; +2A cognhi* +9), (15
e(n)=e’1"¢(n), (10 if again n>1, where the last term remains to be specified
later[see Eq(38)]. So far, Eq.(15) serves to the identifica-
yields the modified Harper equatideee also Ref.19]) tion of the energy range as
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Ee[2cosd,—2A,2cosh;+2A|C[—2—2A,2+2A], This enables us to introduce the effective frequency as
(16) dlﬂ )\282 -1/2
so thatEe[—4,4] if A=1. On the other hand, it is well Gt~ @er( 00, N) = 0o 1+ o r s ;
- _ t 8 wy(4wy—v7)
known that the exact energy solutions to the Harper equation (24)

are real ones. Being aware that the present results are ap-

proximations, we shall then look for the real parts of energieso that

mentioned above, by checking both role and magnitude of

imaginary parts. It is also well known that the spectrum of = ho(t) = wer( v, w0, M)t + 4(0). (25)
Eq. (2) exhibits rich and interesting structur¢0,21], as

displayed by the famous Hofstadter butterfyee Fig. 1 in Under such conditions, the nonlinear oscillations character-
Ref. [20]). ' izing Eqg. (1) are given by

X(t)=X,(t)=agcosy,(t)+U,(ag, t),vt), 26
Ill. ASYMPTOTIC APPROACH TO NONLINEAR (D=%(t) =89 Cosyo(t) + Ua (@0, 4o(1),21),  (26)

OSCILLATIONS where a(t)=a(0)=ay, which proceeds both to second

. N . order and within the nonresonance regime mentioned above.
Applying general approximation formulas established be Next, it can be verified that,(t) is stationary if

fore (see the Appendixwe have to say that nonlinear oscil-
lations characterizing Eq1) within the nonresonance re- A
gime are given by

2(,00 2
200~ weftT 2 (2wowes—v7)

X(t)=x,(t)=acosy+eU(a,y,vt), 17 4o 12
0
to seconde order, where = Wef| 1+ 7ta”2 a (27)
da One realizes immediately that E has the root
Gt = oA +e?As(a), (18) Y that Eg7)
_ 2_ MR
and tana szo ()\ 14 ) s (28)
d . . :
d—ltpzwo+8|31(a)+82|32(a)- (19) which can be rewritten equivalently as
” AA2 12
The smalle parameter serves to the introduction of pertinent tana = Z_wo(m_ 1) , (29

power-series expansions, which also means that we have to
pute=1 at the end of calculations. Resorting to the doublein accord with Eqs(9) and (13).
Fourier-series expansions

IV. THE FIRST TYPE OF ENERGY RESULTS
fo(a,y,vt)=f(acosy,vt)

Using Egs.(9), (12), and(13) yields the cubic algebraic
=2 0 (a)expi(nvt+my), (20 equation
n,m

E h*Z

one readily finds that the only nonzero coefficients are 2 cos 91( 2— C0501)<2— cosal_ 4 )
O_£(0) _¢@x_c@x _N .
f1,1:f1,—1:f—1,1:f—1,—1:TeXFi|5)a (21) x| 2- —47? | —A?
€0s6,

where the star denotes complex conjugation. These solutions =0, (30)
are subject to the nonresonance conditiasf# (nv
+mawg)?. Accordingly, for which explicit energy solutions such asE

=E4(%*,0,,A) can be easily established. Such cubic equa-
tions exhibit, of course, either three real roots or two

Aa

Ua(a,g,vt)= W[VCOS‘/’ cogrt+d) complex-conjugated roots supplemented by a real one. It is
also clear that such concrete root realizations are sensitive
+2wq sing sin(vt+ 8)]. (220 with respect to the values of underlying parameters. Using

N hereafter the notations=#*, y=E, z=A, andu;=cosé;

In addition, A;(a) =A,(a)=B(a) =0, but and assuming, e.g., that 1 andu;=1, yields the roots
dy g2\? 1 4 2
At 207 WrPeg(del— D) 23 V(0= 581°- 12,8 - o= 542, (3D
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FIG. 1. Thex dependence of=y, (solid curvg andy=y,
(dashed curvefor u;=1 andz=1. The closed-dotted curve on the
X axis indicates thd interval within which the above roots are
complex. Soy; (i=1,3) stands for Rg if xel, too. The dashed
curve crosses theaxis atx=*+2.833. Theu;= — 1 counterparts of
these energies are displayed by dot-dashed curves.

and

1 4 X2
— st +125,5] s — cmP— —+2,

ys(0="15 37 12
(32

wheree .. =(1*iv3)/2. One has

Sy = — 432+ 384m*x% + 247?x*— 409675 — x8+ 12(384m5x®
—3072r8x*— 127r*x8+ 1296 144m%x* — 2304m*x?

+6x5+2557675)12, (33
and
1 16 x4
2 2_ " _4_
S, 9X7T o™ " 1aa (34

There is also a third root that is real, iye(x), which comes
from y;(x) by replacing by —i. This latter root varies quite
slowly with x asy,(x)=-—37.48 forxe[—5,5]. So, it is

located far away from the typical energy-domajne

[ —4,4] characterizing the Harper equation. TRedepen-

dence ofy,(x) andy;(x) is displayed in Fig. 1. The de-

pendence of the imaginary parts of these roots is represent

by the closed patched curve located on ¥haxis. So, the
imaginary parts are nonzero only forel, where |I=
[—0.95,0.99. Accordingly, there is Rg;=Rey; for xel,
but y,;>ys; if xe&l. In particular, y;(0)=2.00016

+0.112 54, which shows that the amplitude of imaginary

parts is rather small. Moreover, the width of thénterval
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V. IMPLEMENTING NONLINEAR OSCILLATIONS
INTO THE HARPER EQUATION

Inserting EQ.(26) into Eq. (11) and accounting for the
mutual interconnection betweent 1 andt* 27/ wq yields
the algebraic equation

=l
up

=0,

2

y X
xzui(z— = —

2
X“+s
u, 4

(39

—22(2 COSX— l+sx2
Uz

by virtue of the identificatior?(n) ~X,(t), provided that

2w
tannx+ d)=tanvt+5)= Totana>0. (36)

This latter condition is responsible for the cancelling of
imaginary contributions that are implied by the substitution
just mentioned above. For this purpose, matching conditions
done by Egs(9), (12), and(13) have been used in conjunc-
tion with Eq. (6).

Using Eqgs.(29) and (36) leads to the relationship

1/2

2
tar(nx+5)=Q(x,z,u1):(—2—1 , (37)
1

x*u

which plays the role of a consistency condition, wheke
=cos#,=cosd. Correspondingly, there is
u,x?

cognx+4d)=s 57

(39

which is responsible for the=*1 parameter mentioned
above. In order to handle E¢37), we shall start from the
assumption

a
X= Enr! (39)
where |n,|=1,2,3 ..., Onewould then obtainQ=4P/n,

for rational values of the commensurability parameter such
asB=P/Q. It is obvious that Eq(39) works safely at least
for [n,|]=1, 2, and 4, i.e., foQ=*4P, Q=*2P, andQ
+P. Itis also clear that we have to consider tha{<4 if

g&/szm as assumed usually. Inserting E8P) into Eq.(37)

es
tanfd,=Q(x,z,uq), (40)
and

—cotf,=Q(x,z,uy), (42

decreases witlz, and the same concerns the amplitude of

imaginary parts. Of course, the above energies change th

sign if one insertau;=—1 instead ofu;=1. It should be

remarked thau;=*1 energies discussed above would be

invoked exclusively in so far adx,/dt#0, but we shall see
later that reasonable solutions tbx,/dt=0 may also be
proposed.

efﬁ)r even and odd values of then, product, respectively. We

may remark that Eq940)—(41) could be viewed as some
generalized versions of the well-known matching conditions
for the symmetric square-well potential. Accordingly,

Uz
Uy

T
—n?

5 42

z=2z;(N; ,Uy,Up) =

056203-4
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and

|uy|
1-u5’

T 2
Z=25(N; ,Ug,Up) = ?nr

(43
where u,=cos#,=cosé. For convenience, we have re-
stricted ourselves to positive values. Under such circum-
stances, Eqg42)—(43) have to be understood as a quantized
version of thez solution to Eq.(37). Conversely, we have to

realize that the continuous counterpart of theolution just FIG. 2. Theu, section view of the three-dimensional plot char-
presented above may be obtained by invoking once again Egcterizing they=y~, solution for z=1, xe[—2,2], and u,
(39). This yields e[—1,1].

x2|u,

(44) deals with become solvable, which amounts to the onset of

2 |u dynamical symmetrieg28—30.
and
VI. CONCRETE DERIVATIONS OF ENERGY FORMULAS
_ _ X% uy Looking for typical behaviors, let us present the energy
Z=274(X,Uq,Up) = —= , (45 . i - -
2 ~/1—u22 solutions, i.e.y=y; (u, z,x), implied solely by Eq.(35).

Inserting, e.g.z=1, one obtains the solutions
respectively. Of course, Eqé43) and (45) are valid if |u,|
# 1. It should be remarked that starting wih- sgn{; /u,), . 1
Egs. (38) and (44) produce rational values of the commen- ys_zgu—xz(fli Vou), (48)
surability parameter such as .

x n where
B=5_-=1 (46) » g
f1=(4s—1)uix”+16uix“—4s, (49)
and even more specifically, as
and
X 2n'+1
“ 27 2n (47) s ) s
" g1= (17+ 85)ulx®+ (32+ 8s) u2x
if z=z5, such that sgng)=1 and sgn,)=—1, respectively. — 1285(8x2(1— cosx) + 16. (50

Here,nandn’ are arbitrary integers. In particular, E4.7) is
able to be used in the description of typigad= P/Q values

for which P is odd andQ is even. Accordingly, we can say g ; ;
2 presented in Fig. 2. We can say that thesection view
that Eq.(44) has to be favored, but for the sake of generallty,diSIOIayed by~ , exhibits nearly apparent fingerprints of the

Egs. (42), (43), and (45) deserve also to be studied under A -
appropriate conditions. We also have to remark that EquOfStadter. butterfly. Howev_er, this time one has positive
. . _— and negative-energy gaps involved symmetrically by small
(42)—(45) are invariant under the substitutiozs-1/z, u,
5 . . . or near-to-zero values of theparameter.
—uy/z%, andu,—u,, which have the meaning of certain : . .

; ) : Coming back to Eq(37), one gets faced with substitu-
scaling-duality transformations Then, Eq®0) and (35) jons like z=z. . as indicated by Eqg42)—(45). Ruling out
would be invariant themselves under such transformations i? N y Eg3¢ ' '9

2 o the z parameter from Eq(35) results in four quadratic alge-
y—Yyl/z*. This differs, however, from the well-known Aubry braic equations to the evaluation of the ener
duality, for whichy—y/z [22,23. Then,z=1 is a self-dual q 9y

point that corresponds to a metal-insulator transifi@a).

An appealing illustration of the capabilities of E(8) is

. . 2 2.2

Under such circumstances, E@7) becomes itself trac- a2l 2— y X 2+sl o Yl 4u3z,
table, but the tradeoff is a mutual interconnection between 2 u, 4 u; usx?
the parameters x, u;, andu,. In general, this may proceed
in the presence of the quantum numberintroduced above y

; ; e X| 2 cosx— — +s¥?

or not. Such interconnections and/or parameter fixings are u;
not at all an absolute novelty. Indeed, similar relationships —0 51)

have been used in the case of conditionally exactly solvable
potentials[24], for several exactly solvable systeff#5]| or

for eigenvalue problems, which can be solved with the helpvherej=1, 2, 3, and 4. Thq=yfs(x,u1,u2) solutions can
of a supersymmetric descripti¢6,27]. The general under- then be written down quite automatically. Choosijyg 3
standing is that under such interconnections, the systems orm@du,=1, one finds the energies
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4 1
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)] 06
0.4 j
13 021 _
v 071 uo ==
RE -0.21
, 0.4
- ; : 061
-3 ;o L 08 ﬂ
4% 4 2 0o 2 a4 6 o "1 T2 3 a4 5 6
X X
FIG. 3. Thex dependence of3, (solid curve, y; ; (waved- FIG. 5. Thex dependence ofi=Reu, ;. (solid curve andu

dashed curve ys, (dotted curvg andy; , (dashed-dotted curye =Imu, . (dotted curvgfor xe[0,27].

for u,=1 andu;=0.8. All curves meet together at=1.6 asx

=0. The curvesy=y;4(x) and y=y§,1(x) cross thex axis atx Y=Ys=U;(2 COSX+SX2), (53
=+2.278 and+1.30, respectively.

which can be viewed as an updated version in EgS). and
(38). Inserting Eq(53) into Eq.(30), we then have to estab-
lish the conditions under which reasonablgroots become
realized. One finds the roots

.1,
ygszg{x (3—s)+16s

+uy[x*(26+ 10s+ 325X cogx) — 11Y2]}.  (52)
Uy .=+ 7Z[2F(Fy—47%)(F,—x%4)]" Y2 (54)
The x dependence of corresponding energies is displayed in
Fig. 3 foru; =0.8 andu,=1. The waved curve in Fig. 3, i.e., where F;=2—y./u;. The x dependence of Rg , and
thex dependence of; _,, may be viewed as being reminis- Imuj . is presented in Fig. 5 far=s= 1. One sees that there
cent to oscillating structures characterizing actual Harper enis a clean nonzerai; solution within the “window” x
ergies, but this time one deals with a distorted symmetrye | ;=[1.142,1.30% only, where the subscript SC stands
center that is moved upwards>at-0 andy=1.6. Note that for “strong compatibility.” Correspondingly, —1=<uj .
the remaining solutions done by EG?2) are located again <-0.608, whereas Im; . =0 if xelgc. However,
beyond they e[ —4,4] domain of interest. Thel;-section  Imu;, #0 if x¢lgc, but'Imu1,+SO.01 if x=3.4. This
view produced by the three-dimensional plotygfy(u;,X) is ~ means that Inw; . may be neglected for sufficiently large
presented in Fig. 4. Comparing Figs. 2 and 4, one sees thahlues, in which case; . =0 represents a reasonable ap-
the energy gaps involved in the former case have been rgroximation. On the other hand, one has ups0 if x
moved by virtue of the regular behavior of present solutions=27, but now fors=— 1. This yields again a safe, solu-
atx=0. The other cases can be treated in a similar mannetion, but underlying values are excessively large. So far, we
then have to say that similar investigations could also be
VII. COMBINATIONS AND FURTHER PERSPECTIVES done in other cases, but a noticeable fulfillment of SC rela-
tionships remains questionable.

Next, we have to say, strictly speaking, that second type Now, let us remember that matching conditions underly-
of energy solutions presented above have to fulfil 8).  ing Eq. (30) have also been used in the derivation of the
This results in certain Compatlblllty relationShipS Concerningsecond type of energy formula discussed above. Accord-
underlying parameters. Such relationships are numericalligly, extra compatibility requirements expressed in terms of
involved ones, so that we shall consider here just a firstthe simultaneous fulfillment of Eq<$30) and (51) can be
degree realization of E¢51), namely, the one corresponding interpreted as being too hard. Looking for reasonably trac-
to j=3 andu,=0. One would then obtain the energy table formulations, we shall then resort to certain algebraic
combinations between Eg&80) and(51). The easiest way to
deal with this is to rewrite equivalently these equations, such
that, e.g., both factors (2y/u;) and (2—y/u;—x?/4) get
located within the same side. Performing the quotient of cor-
responding expressions then gives the four quadratic equa-

tions
y 21| 2
2— ——47?||Z}| 2 cosx— — +5X°
Uy Uy
2
FIG. 4. Theu, section view of the three-dimensional plot con- —u3x4 2— l_ X_) Exzzzzo (55)
cerning thex andu, dependence of =y;, for u,=1. L u; 4 '
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Next, resorting to rational values of the commensurability
parameter such g8=P/Q, where nowP andQ are mutu-
ally prime integers, one has

TN cog Qx)=Pg(cosx) =Pq(Rx(y))=1, (60)

RE ,-" i! wherePg(cosx) denotes the usu@-degree polynomial rep-
7 | N resentation of co§fX) with respect to cos. What then re-
4 ! ‘. mains is to solve Eq(60) for fixed values of theQ param-
' il eter. So, one finds, e.g., solutions proceeding via selected
gt . : cosx inputs such astv2/2, (0,+v3/2), and = (1/2+v2/4)

6 4 2 0 2 4 8 for Q=2, 3, and 4, respectively. In general, the plots pro-
duced by Eq(60) are similar to the ones presented in Fig. 6,
FIG. 6. Thex dependence of=ys_, . (solid-waved curve  but other details remain open for further investigations.

and y=Reys; . (dot-dashed curyefor u;=0.5 andz=u,=1.  Equation(35), as it stands, may also be treated in a similar
Both curves diverge as—0. manner.

wherej=1, 2, 3, and 4, which can be again easily solved.
This time the roots look likg/=y; s +(Uy,U,,2,X), so that
all parameters are accounted for. Choosing once gga In this paper, sensible manifestations of interplays be-
andu,=1, one obtains the energies tween Mathieu and Harper equations have been established
and discussed. Resorting to the nonlinear oscillations charac-
terizing the Mathieu equation, we found a cubic equation for
\/9—7 56 the energy, such as that in E®0) and quadratic equations,
as shown in Eqs(35) and(51). In order to derive Eq(35),
the x,(t) solution to the Mathieu equation has been imple-
mented into the Harper equation by virtue of the transmuta-
st1 u 7 tion condition in Eq.(6), but matching conditions expressed
fa= — ——UX2— —COSX+ =U,—2u 2,  (57) by Egs.(9), (12), and (13) have also been invoked. This
6 3 3 differs from the cubic equation mentioned above, for which
only matching conditions have been used. Energy candidates
and incorporating all parameters may also be proposed. To this
aim, a first-version synthesis of the two kinds of energy for-
s ) . 28s 42 mulas has also been written down, as shown in ).
gz=4uj(cosx—1)[x*(1+s)—127°] - 2+ 144mtuy Extra compatibility relationships between E¢30) and(51)
could be able to provide interesting information, but for this
+4u?(cosx—1)%2+2ux?(1+s)(x>—12w%).  (58)  purpose, complicated numerical studies have to be done. Ac-
cordingly, second kind type of energy solutions based on
The undesirable feature is that tz&/x? term produces a Eds.(35) and(36) should also be invoked irrespective of Eq.
singularity atx=0. The x dependence of/;_,. and of (30. Combining Eqs(59) and(60) leads again to quadratic
Reys, . is displayed in Fig. 6 fou,=0.5 andu,=z=1.  €quations to the derivation of energy formulas incorporating,
Note thatys, . becomes complex fdx|<0.083. The inter- besidesQ, all parameters needed. It is also clear that the
esting point' is thag= — 1 solutionsy; _, andys_; . are, up present Wave—ft_mctlor[(n)~x2(t)_ exhibits the periodic
to the singularity atx=0, quite similar, as shown by the Poundary-conditiof(n+Q)=¢(n) in accord with Eq(26),
waved curves in Figs. 3 and 6. Conversely, this similarity isProvided thatd=P/Q. A Q-band free energy may also be
able to favor Eq(51). easily estab_llsh_ed, thus establishing a useful starting point for
After having arrived at this stage, we are in a position tofL_thher applications. Such results would then be able to pro-
propose an approximate but “nonlinear” alternative to theVide & better understanding of present energy results, too.
secular-equation method for the study of the Harper equation AlSO worthy of being referred to is the so-called energy-
[31,32. Indeed, using Eq(55), we can establish an expres- reercgon(ER) symr'netry'[33]_ This means that besidés
sion for cosc in terms of a rational function, i.eR,y(y), as there is also a solution with the opposite sign. This symmetry

VIIl. CONCLUSIONS

Y35+ =T3*

o -

where

has been discussed in an explicit manner with respect to a

follows
selected middle-band description, such as that used in the
X2 2 derivation of a symmetrized version of the Harper-equation
cosx=Ry(y)= L—s—+2u§ 2— y_ _> [34]. The ER symmetry is not valid automatically in more
2u; 2 u 4 general cases, even if certain conversions of the original

S22 1 Harper equation into the symmetrized one have been pro-
422 (2_ y_ 4772) . (59)  posed[35]. Concrete realizations of such symmetrized en-
ergy solutions have also been establishgé]. Concerning
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the present results, we have to realize that there are selectétBB.30—(13.37 in Ref.[17]. Replacingf (x, vt) by ef(x, vt)
parameter domains where the symmetry referred to above &nd inserting Eqs(17)—(19) into Eq. (1), we then have to
exhibited in an effective manner, as shown by the plots preproceed order by order. Theres=a cosy to first ¢ order,
sented in Figs. 1, 2, and 4. It should also be noted that akuch that
algebraic energy equations discussed in this paper, i.e., Egs.
(30), (35), (51), and(55), are invariant under scaling-duality 1 o o
transformations presented in Sec. V. A(a)=— e f d0’f dyf(acosy, ' )sing,
We have to recognize that quickly tractable energies dis- T @Wo Jo 0

cussed above have, rather, the meaning of leading approxi- (A1)
mations, so that they are able to reflect certain large-scale
manifestations of the Hofstadter buttefB0]. However, this ~and
does not prevent us from establishing nontrivial energy pro-
files, which are able to provide a better understanding of 1 27 27
several details and interconnections. In this context, we have Bi(a)=—7—— af dﬁ'f dyf(acosy,6")cosy,
to realize that bifurcations that are seen in the Harper spec- 0% /0 0

: (A2)
trum are able to be understood in terms of present parameter-

dependent transitions from complex to real rdsee Fig. 1 . .
Moreover, such bifurcations, closed loops included, serve adhered’ stands forvt. These equations reflect the so-called

basic elements to the formation of complex patterns. Furthgp@rmonic balance. Nexk is given by Eq.(17) to seconde

improvements could be done by resorting to a more refine@rder, such that
description of the nonlinear oscillations characterizing the
Mathieu equation. We also have to remark that all algebraic 1
equations can be solved in terms of the shifted energy vari- Ax(a)=— 2_(1)0
able F=2—E/u, instead ofy=E. Squaring Eq.(12), we
then have to come back to the usual energy Kia (2 1 em 27 -
*F)uy, which yields, of course, a doubling of solutions. B 47w, fo do fo dyfa(a,y,0")siny,
It is understood that the energy candidates produced by

Egs. (30), (35), (51), (53), and (55) are not at all highly (A3)
accurate generic solutions to the Harper equation, such as
studied before by several authdsee, e.g., Ref437-4(). and
They represent, in fact, selected energy profiles along which
the Harper wave functions are transmutation by-products of
nonlinear oscillations described by E®6). Nevertheless, By(a)=—

. . . . Zawo
the interesting point is that such energy curves may be es-
tablished in a well-defined manner, both faf=1 andu? 1
# 1. Of course, in the first case both E¢30) and(35) work - 4772w0af
as they stand. It should also be noted that Eg.exhibits a
v=w, resonance to second order, which can be treated, (A4)
under some more specific assumptions, in a similar way.

Summarizing, we may then say that our main emphasis iDne has

this paper was on the investigation of mutual relationships
between the Mathieu and Harper equations. Though less ac- P
curate, the present energy-profile studies are able to serve for fi(a,,vt)=U (a,y,vt) — f(x,vt)
a better understanding of large-scale behaviors characterizing 2
the Harper equation, now by using explicit energy formulas.
We believe that such alternative studies have their own inyhere
terest from a general theoretical point of view. In this con-
text, we also learned how to combine E@), i.e., a £O) (a)
differential-geometric relationship, with a discrete transmu- (g, y, st)= >, —— expi(nvt+my),
tation condition such as seen in E). am wg—(Nv+ Mwg)?

dB,
aAla + 2AlBl

dA
Ald—al+aB§

2 2
de’ dyfi(a,i,0")cosiy.
0 0

., (A5)

X=a cosy

(A6)
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