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Kinetics of phase separation in ternary mixtures
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We present detailed results from Monte Carlo simulations of the kinetics of phase separation in ternary
mixtures. We focus on the case ABV mixtures(whereV denotes a vacangynd investigate segregation
kinetics resulting fromV-mediated dynamics. We provide heuristic arguments for the existence of different
morphologies in various parameter regimes. Furthermore, we present comprehensive numerical results for
various characteristic features of the domain growth process, e.g., real-space correlation functions, domain-size
distribution functions, and growth laws.
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I. INTRODUCTION (MC) study of phase-separation kinetics in three-component
or ternary ABC) mixtures. To date, there has been only
Much recent interest has focused on the kinetics of phaskmited investigation of these systems, which are of great
separation of homogeneous multicomponent mixtures, whickxperimental significance. In particular, we will focus on the
have been rendered thermodynamically unstable by a rapignge of possible morphologies of the segregating mixture,
change of parameters, e.g., temperafare3]. Studies in this  and the corresponding dynamical behaviors, as characterized
area have primarily focused on two-component or binaryby various standard tools.
(AB) mixtures. In that case, the evolving system segregates In a more general context, our study is relevant for sys-
into A- andB-rich domains with a characteristic length scaletems with two coupled order parameters, e3e-*He mix-
L(t), wheret is the time after the quench. These domainstures, binary alloys with one ferromagnetic component, etc.
coarsen with time because it is energetically favorable tdClearly, the underlying phase diagrams and domain mor-
eliminate domain boundaries. The coarsening mechanisnhologies in these systems are considerably more complex
can be either diffusivée.g., binary alloysor hydrodynamic  than for systems with a single-order parameter. It is of obvi-
(e.g., binary fluidg and the domain growth law depends on ous interest to study domain coarsening in different regimes
the relevant coarsening mechani§gj. If growth is driven  of the phase diagram. An interesting feature is the existence
by diffusion, we havel (t)~t"? for dimensionalityd=2,  of two types of domain morphologies in the regime of three-
which is referred to as the Lifshitz-Slyoz¢kS) growth law  phase coexistence. We show that the existence of these mor-
[4]. If the primary growth mechanism is hydrodynamic, we phologies can be understood using simple energetic argu-
haveL(t)~t*, wherex takes a range of different values— ments.
depending on the time regime and the dimensionfitg]. This paper is organized as follows. In Sec. Il, we provide
There have been many experiments and numerical sim@&n overview of earlier studies of phase separation in ternary
lations of phase separation in binary mixtures, and thes@lixtures. This overview will provide the context for our
have greatly enhanced our understanding of this problem. Apresent study. In Sec. Ill, we provide a brief discussion of the
the analytical level, we have a good understanding of variouphase diagrams and domain morphologies that are relevant
mechanisms for domain growth and the resultant growttor our dynamical studies. In Sec. IV, we present detailed
laws [3]. However, more quantitative attempts to characterfesults for characteristic properties of phase-separating ter-
ize the morphology using the real-space correlation functiomary mixtures. Finally, Sec. V concludes this paper with a
(or its Fourier transform, the momentum-space structure facsummary and discussion of our results.
tor) have met with limited analytical success—except in the
limit where one of the components is present in a vanish- II. OVERVIEW OF EARLIER STUDIES
ingly small fraction[4]. . _ . o
Apart from domain growth laws and morphology, it is As a prelucje to our discussion of garhgr studies, it is
also relevant to examine the autocorrelation function in th&onvenient to introduce the model Hamiltonian for a ternary
far-from-equilibrium evolution of the phase-separating sys-Tixture. We consider a ternarABC) mixture on a discrete
tem. There are very few studies of this experimentally rel-/attice (having cubic symmetpyywith N sites, and assume
evant quantity6,7]. Marko and BarkeméVIB) [6] have pre- that there are only near_est—nelghbor interactions with
sented numerical results for the autocorrelation functiorstrength ., between speciesr and B. (We take €,z

®(to,t) in the phase separation of binary mixtures, wigh = €so-) The appropriate Hamiltonian is

being an initial reference time. MB argue that their numeri-

cal data is consistent with a power-law decdy(tg,t) H= € nenf— ne 1
~(to/1)?, where the value of depends on whether or nigt azﬁ “B<i21> t ; 'u"zi o @

is in the scaling regime. Fdy in the scaling regime, MB
report thatd=1.0 ford=2 and#=0.5 ford=3. wheren{*{0,1 refers to the occupation number for species
In this paper, we undertake a comprehensive Monte Carla at sitei, the variablesa and B8 take three values, corre-
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sponding to elemental speciés B, C, andX;;, refers to a Most earlier dynamical studies of this Hamiltonian have
sum over nearest-neighbor pairs. We also include chemicddeen in the context of th&BV model, whereC=V (or
potential terms, withw, denoting the chemical potential of vacancy and there are no pairwise interaction terms involv-
speciesa, as this gives us the flexibility to choose the besting vacancies. Our present study also falls into this category.
ensemble to obtain relevant phase diagrams. As usual, wEehis model is of great relevance in the context of vacancy-
have the constraim{*+nf+nf=1. mediated phase separation in alloys, where it is known that
It is convenient to map this Hamiltonian into that for a the relevant physical processes that enables segregation are
spin-1 model[8-10. We introduce the spin variabls A<V and B~V interchanges rather thaA—B inter-
e{—1,0,1}, and define changeg14,15. We should stress that, in the context of the
) equilibrium phase diagram, th&aBV model already gives
A SiTS rise to the most general spin-1 Hamiltonian in E8).
i~ Some early MC studies of th#=2 ABV model are due
to Yaldram and Binde(YB) [16], who investigated the evo-
-5 lution morphologies arising for three sets of parameter val-
ny|= 5 ues. In each case, there was segregatioA-irand B-rich
domains. The different morphologies are characterized by
2 2 the distribution ofV’s as follows:
b (i) J=€/2, K=—€/2, M=0 wheree is an energy scale.
In terms of the spin variables, the Hamiltonian assumes th! this case, the vacancies were uniformly and randomly dis-
form tributed throughout the system.
(i) J=€/2, K=¢€/2, M=0. In this case, the vacancies
5 ) were expelled from bulkA- and B-domains and tended to
2 (Sisjtsis; aggregate inAB interfacial regions. However, all possible
interfaces AV, BV, andAB) were present in the evolution
5 morphology.
—2 (hs+As)). () (i) J=€/2, K=€/2, M=€. In this case, the vacancies
were completely expelled from-rich regions and macro-
The interaction parameters in E@) are identified a$10] scopicV-rich domains were observed.
YB also made some preliminary studies of the quantita-
2€pg— €Eapn— €BB tive features of domain morphologies, but these did not
J= - 1 probe the intermediate or late-stage behavior. Subsequently,
we will present heuristic arguments to systematize the YB
observation of different morphologies.
Another important MC study of this problem is due to
Fratzl and Penros@P) [17], who considered segregation in
an AB mixture mediated by a single vacancy. FP found that

n

K 4(epct €gc—€cc) —2€ps— €an— €BB
4 1

_ 2(eac—€pc) —€anT €gB

M= , domain growth mediated by a single vacancy is more rapid
2 than domain growth via the usual Kawasaki exchange

mechanism A« B). Furthermore, the asymptotic domain

h= d(epc— €ac)+ Ha— kB growth law in their study is consistent with the LS growth

2 ’ law, L(t)~tY3, However, we should stress that the FP study

differs from the YB study(and also our present study that

_ 2d(€cc—€ac—€c) T Hat 1~ 2uc a single vacancy is irrelevant in the thermodynamic limit.

A= 2 ' 4) Thus, the appropriate equilibrium phase diagram for the FP

study is the usual one for a binary mixture.

where q is the number of nearest neighbdisoordination In more recent work, Puri and SharrtRS [18,19 have
numbej of a lattice site. Equatiori3) is the most general formulated mean-fieldMF) dynamical models for vacancy-
form of the Blume-Emery-Griffiths Hamiltoniaf8], first mediated phase separation. These models consider the
proposed to study phase separation and superfluid orderirgpupled dynamics of two conserved order parameters
in 3He-*He mixtures. There have been many subsequentiz., (s;) and (s?)), and classify as “ModelD” in
studies of the phase diagram of this Hamiltonjaf-13. critical-dynamics terminology{20-22. PS studied these

We are interested in the dynamical properties of thismodels both numerically and analytically, and reported
Hamiltonian in conjunction with an appropriate microscopiccomprehensive  numerical  results for the case
conserved kinetics. There have already been a few numerical= M =0—corresponding to the case of a spin-1 Ising
studies of phase-separation kinetics for this Hamiltonian withmodel. They found that the vacancies aggregated afBe
fixed numbers of each species, and we would like to brieflyinterfaces, thereby reducing the surface tension. However,
summarize representative results here. In the context of fixedomain growth is still consistent with the LS law, and the
composition, the terms involving;s; and=;s? in the Hamil-  vacancy layer at the interfaces does not impede phase sepa-
tonian of Eq.(3) are constant and need not be considered. ration. Plapp and Gouy¢3,13 have also formulated simi-
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lar MF dynamical models for th&BV model, and have used (T,m,p) ensemble, wheré& is the temperature; and the order
them to investigate surface instabilities for droplets of theparameters arm=(s;) andp=(s-2). The corresponding free
unstable mixture immersed in a stable vapor of the mixtureenergy in the MF approximatio;m is

In the above works, th¥ concentration is usually small
as this is appropriate in the physical context of vacancy- F(T,m,p) qd , aK ,

. LR ptm [p+m
mediated phase separation in binary alloys. A complemen- ————— m p T ——In| ——
: . N 2 2 2 2
tary set of works has focused on segregation dynamics in
n-state Potts models, where the different components of the p—m [p—m
mixture are treated on equal footing. The three-state Potts +——In[——]+(@=p)n(l=p)|, O

model can be formulated as the spin-1 Hamiltonian in(8p.
with parametersJ=e€/2, K=3¢/2, M=0. Jeppesen and
Mouritsen(JM) [24] performed a MC study of the three-state

.POttS model with Kawasaki spin-exghar(genserve)jkine_t-_ obtain qualitative features of the phase diagram and has been
ics. These authors considered “critical quench” Cond't'onsextensively investigatefB,10—13.

with all components beilng present in equal proport@ons. In A simple method of obtaining the MF phase diagram pro-
the JM study, the evolving morphology is characterized by.eeqs by first considering the relevant phase diagram in the
distinct domains rich in either of the components with a”fixed-(T h=0,A) ensemble. This is obtained by solving the

types of interfaces present. We will later refer to this as the}ollo ina coupled transcendental equations fioand o [8
“blob” morphology. JM find that the asymptotic domain wing cop quat p L8]

where the third term on the right-hand side is the entropy per
spin (kg=1). The free energy in Eq5) can be used to

growth law is the LS law, correcting an earlier result of Grest 2 sin{gBJIm)

and Sahni25], who found effectively lower growth expo- m= ,

nents due to transient effects. The numerical results of JM exi —B(aKp+A)]+2 costigBIm)

have been confirmed in a recent exchange MC study by

Okabe[26]. _ 2 costigBIm) ®
Finally, we would like to briefly discuss an important set P exgd —B(qKp+A)]+2 cosliqBIm)

of studies examining the effect of surfactaff§son segrega-
tion dynamics of binary mixturesAB). This system also An obvious root of Eq(6) is (my=0,p0), wherep, solves
constitutes a ternary mixtureA@S with the third compo- the transcendental equation
nent(i.e., surfactantbeing present in a small fraction—as in
the case of vacancies in thBV model. Typically, the com- _ 2
ponentS aggregates @B interfaces and lowers th&B sur- po_exp:—ﬁ(quoJr A)]+2°
face tension, so that the evolving system freezes into a mi-
crostructure. A number of reviews and studigg—29 have In general, Eq(6) is solved numerically to obtain the fol-
discussed the kinetics of phase separatioABS mixtures  lowing features(a) A line of second-order transitions, which
and we refer the interested reader to these. is characterized by the emergence of three rootggj0,
(£mg,ps) continuously from the single root (&). The
equation of this line in theT,A) plane isA=—T In[2(gBJ
—1)]-TK/J [8]. (b) A line of first-order transitions, which
In this section, we briefly review the thermodynamics ofis characterized by the emergence of five rootspd),
the system and present MF phase diagrams in the parametet My,p1), (=my,p,) with the free energy associated with
ranges relevant to our dynamical studies. We will considef=m,,p,) (m,>m;) becoming lower than that associated
temperature quenches that are far from phase boundariesvith (0,00). The relevant free energy is the Legendre trans-
hence, MF phase diagrams suffice to describe the differeriorm of F(T,m,p) in Eq. (5), i.e., G(T,h,A)=F(T,m,p)
phases observed. All results reported in this paper are for the hm—Ap. The line of first-order transitions starts from
Hamiltonian in Eq.(3) with M=0. We fix the number of [T=0,A=—q(J+K)/2] and meets the second-order line in
speciesA andB to be equal, i.e Na=Ng. Under these con- the tricritical point (T;,A;). An approximate equation for
ditions, symmetry requires that all phase transitions occur ahis first-order line can be obtained in the framework of Lan-
h=0. Physically, the interactiod drives phase separation dau theory.
betweenA andB, while the interactiorK (if positive) drives It is straightforward to map the phase diagram in the
phase separation betwedhand A, B. To understand the (T,h=0,A)-plane into phase diagrams with fixed composi-
above situation, it is useful to invoke the magnetic alloytion by computing the values of composition variables either
analogy, where thé andB species are interpreted as “up” side of the first-order transition line. The appropriate phase
and “down” spins of a ferromagnetic element; aidis a  diagrams in the T,h=0,p) plane are shown in Figs.(d-
nonmagnetic component. Thehdrives the paramagnetic to 1(c) for d=2 (q=4) and K=1.5,0.5;-0.5. (All energy
ferromagnetic transition, whil& (if positive) drives phase scales are subsequently measured in units, éfe., J=1.)
separation between the magnetic and nonmagnetic compdhese phase diagrams are appropriate in the context of a
nents. binary alloy where one of the components is ferromagnetic
Since we are using conserved kinetics, the appropriatg8]. They will also serve as a useful reference point for the
ensemble for studying the phase diagram is the fixeddynamical simulations described subsequently.

)

Ill. MEAN-FIELD PHASE DIAGRAMS
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4

(si=—1), andV (s;=0). We further put a constraint on the
kinetics that permits only-mediated dynamics, i.eA«V

and B« V interchanges are permitted but ndt-B inter-
changes. However, in contrast to most earlier works, we have
studied physical situations with appreciaMeoncentrations

S0 as to investigate domain coarsening in both regions of the
phase diagram, namely regions with two-phase and three-
phase coexistence. The quenches we consider in our simula-
tions are marked aX¥’s in the phase diagrams of Fig. 1—we
always consider the symmetric case Wih=Ng or m=0.

IV. NUMERICAL RESULTS

Our MC simulations were performed o\ lattices(i.e.,
dimensionalityd=2) with periodic boundary conditions in
both directions. The results presented here use a sequential
updating procedure but similar results are obtained with ran-
dom updates. The initial condition for each run consisted of
a randomly distributed mixture of 0’st: 1's, mimicking the
homogeneous initial state at high temperatures. The system
is then evolved at a quenched temperature in the multiphase

4 . . . . region, so that it is in a far-from-equilibrium state. For the
© results presented in this paper, the concentrationg, d3,
3l i andV werec,=cg=0.45,c,=0.1. As mentioned earlier, all

P energy scales are measured in units.diVe fix the tempera-

ture T=0.5, and vary the paramet&. We stress that the

-2} 1 - ;

F results presented here are genéup to prefactors and time
scaleg for a wide range of compositions and temperatures.
Tr A We will show numerical results for various evolution

2 Phase \X r_no_rphologies and their time-dependent properties. The sta-
00 012 04 016 018 y tistical features we focus on are as followa) correlation

functions of the two order parameters, i.s.,and siz; (b)
domain-size distribution functions; arid) characteristic do-

FIG. 1. Mean-field(MF) phase diagrams in theT(h=0,) main length scales. We will provide precise definitions of
plane for the Hamiltonian in Eq3) with M=0. The label andF  these quantities subsequently. All statistical quantities are
refer to the paramagnetic and ferromagnetic phases, respectivelgalculated as an average over ten independent runs for sys-
All parameters are measured in units hfi.e., J=1. We show tem sizesN=512.
phase diagrams fdia) K= 1.5, (b) K=0.5, and(c) K= —0.5. The

parameter values for our dynamical simulations are markes'ss . .
in (a)—(c) A. Domain morphologies

p

Let us start by showing typical evolution morphologies

In Fig. 1, forp=1, there is a second-order transition from from a random initial condition. Figureg&—2(c) show evo-
the paramagnetic to ferromagnetic phase at the temperatulgtion pictures forKk =1.5, 0.5, and—0.5, respectively. No-
T.(1)=q. To begin with, asp is decreased the transition tice that Figs. 2a) and 2Zb) correspond to quenches into the
temperaturd .(p) also decreases, i.€:(p)=qp. In the fer-  three-phase regiofsee Figs. (a) and Xb)], whereas Fig.
romagnetic phase that results, we have a two-phase regi@(c) corresponds to a quench into the two-phase refsee
with up (A-rich) and down B-rich) domains withV atoms  Fig. 1(c)]. In Fig. 2a), one sees a clear evolution of three
distributed uniformly. This continues with decreasingtill kinds of domains, namely, B, andV rich. We term this as
one reaches the tricritical poinf{,p;), where the second- the “blob” (B) morphology. Here, all three kinds of inter-
order transition becomes first-order transition, as there is faces AV, BV, andAB) are present. The evolution in Fig.
phase separation between ferromagnetiB{ich) and non- 2(b) also corresponds to the three-phase region, but the pa-
magnetic ¥/-rich) components. The ferromagnetic compo- rameter values are closer to the phase boundary with the
nent retains the magnetic order, thus here we have a threewo-phase region. Here, we see tiatand B-rich domains
phase coexistence. As seen in Fig. 1, larger valuésmaise  are separated by a thin layer bfs. We term this as the
the tricritical point as phase separation is favored, while‘coated” (C) morphology. The thickness of the coating
lower values ofK have the reverse effect. layer of V's does not grow in time. The exce$8s form

We study the dynamics of thABV system using Ka- blobs, as we have confirmed from simulations at higher con-
wasaki spin-exchange kineti¢with Metropolis acceptance centrations ofV. The distinct feature of this regime is the
rateg, which individually conserves numbersAf(s;j=1), B absence oAB interfaces.
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FIG. 2. Evolution pictures for the spin-1 model with vacancy-
mediated spin-exchange kinetics. Our Monte C4MC) simula- FIG. 3. Typical examples of =0 morphologies for three-phase
tions were performed oN? lattices (N=512) with periodic bound- ~ coexistence ind=2. (a) Blob (B), where all possible interfaces
ary conditions in both directions. The initial condition for each run (AV, BV, andAB) are presentb) Coated C), where onlyAV and
consisted of a random mixture & B, V with ca,=cg=0.45 and BV interfaces are present.
cy=0.1. In the evolution pictures\’s are marked in grayB’s are
unmarked; and/’s are marked aX’s. The shapshots are labeled by understood from the following simple considerationsTat
the appropriate evolution time subsequent to the quench in Monte= 0. Consider a typical domain geometry on a square lattice
Carlo stepgMCS). (For clarity, we only show a 1Z&orner of the  of linear sizeL with periodic boundary conditiongFig. 3).
evolving system. The parameter value@neasured in units of) We focus on the case wittNao=Ng=yL and Ny=(1
wereT=0.5, and(@) K=1.5; (b) K=0.5; and(c) K=—-0.5. Phase  —2y)L. In the ground state, we can have two possible con-
diagrams for these parameter values are shown in Fig. 1. figurations of domains as shown in FiggaB(blob) and 3b)

(coa). The configuration in Fig. @) is the lowest-energy

Finally, Fig. 2c) shows the evolution of only two kinds of configuration of theB morphology as all possible interfaces
domains that areA rich and B rich with V’s interspersed occur only once. In the configuration of Fig(b}, we have
uniformly—as dictated by thermodynamics. This is similar distributedV’s to eliminate theAB interface at the cost of
to phase separation in two-component systems. This moforming an extraAV andBV interface. In this geometry, it is
phology will be referred to as the “dispersedD) morphol-  straightforward to calculate the energy of the two configura-
ogy. A microscopic layer o¥/’s does coat théB interfaces tions as
in this regime as well. This is expected on simple energetic

grounds, as shifting a vacancy from the interior of/or Eg=—-2Ly(J+K)+(3J+K)L,
B)-rich domain to theAB interface gains an energy of 2 J.
Note that this argument applies only to the two-phase re- Ec=—-2Ly(J+K)+(2J+2K)L. (8)

gime, andV's do not form a macroscopic phase as in Ge

morphology. We should stress that the early-time frame irA comparison of the two energies shows that Bh@orphol-

Fig. 2(c) (t=10" MCS where MCS is Monte Carlo steps ogy is favored wherd <K, while the C morphology is pre-

actually appears to exhibit@type morphology. This is be- ferred whenJ>K. Though the geometrical configuration for

cause the length scales at initial times are so small that evemhich the above argument has been presented is rather

one layer is significant. At later times, when the length scalesimple, it demonstrates that &V plus BV interface is pre-

are larger and local equilibrium is established, the phase diderred over arAB interface wherd>K, and vice versa when

gram of Fig. 1 is relevant. J<K. Thus, for the same region of three-phase coexistence,
We next consider the reason why two distinct domaindifferent morphologies can arise depending on the ratio of

morphologies occur in the three-phase region. This can b#e two interactions. However, we note that the coat forma-
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tion of V's in excess of a couple of layers has no additional
energetic advantage in the context of reduck surface

tension. Therefore, the coat thickness is expected to saturate
out to an equilibrium value, as we have confirmed numeri-

cally. Subsequent to this saturation, additionds form
blobs as this is entropically favorable. Thus, in the
asymptotic time regime, there should be no difference be
tween two-point correlation functions f&andC morpholo-
gies, as the fixed length scale of the vacancy “wetting layer”

PHYSICAL REVIEW E 64 056139

° 10*mcs
o 105 mcs
° 106 mcs

C(r1/CO,1)

at AB interfaces is irrelevant compared to the divergent

length scales of thé, B, andV domains. In practice, espe-
cially for small V concentrations, the crossover time to this
asymptotic regime may be excessively delayed.

The above arguments, and simple extensions thereof,

clarify the observation of different morphologies in earlier
simulations, which were reviewed in Sec. Il.

B. Correlation functions and domain-size distributions

We will now consider various statistical properties of the
evolution depicted in Figs.(3)—2(c). We shall first present a
detailed discussion for the blob morphology in Figa)2

Since the discussion for other morphologies is similar, we

will present briefer discussions of these, mainly highlighting
differences from the blob morphology. The simplest charac
terization of the morphology is by two-point correlation
functions and the domain-size distribution functions. Here
we have two kinds of correlation functions of spin variables.
The first one is defined as follows:

C(r,H)=(s(R)s(R+r,t))—(s(R,t)}(S(R+T,1)), (9)

wheres(R,t) is the spin variable at a discrete sReat time

c
T T T
1..(.") ° 10*mes
08k o 105 mcs
= 06k ® ° 10° mes
g e
= 04 o -
a L oo 4
0.2 on
0 B 5 o0 0 STTOITT]
_02 1 1 1 1
0 2 4 6 8 10
r/L,

FIG. 4. Scaling plot of correlation functions for the evolution
depicted in Fig. 2a). We calculateC(r,t) andD(r,t) (correlation
functions for thes field ands? field, respectively as an average
over ten independent runs on lattices of skte512. (a) Plot of
C(r,t)/C(0t) vs r/L; for three different times—denoted by the
symbols indicated. The length scdle is defined as the distance
over which the correlation function decays to half its maximum
value. The solid line denotes the scaled correlation functadrt
=10° MCS) obtained from MC simulations of the spin-1/2 Ising

t; and the angular brackets refer to an averaging over indanodel with Kawasaki spin-exchange kineticgb) Plot of

pendent runs and noise realizations. This correlation functio
refers to theA-, B-domain morphology. The second correla-

tion function ofs(R,t)2 [or 1—s(R,t)?] is also defined in a
similar fashion as follows:

D(r,t)=(s(R,t)?s(R+r,t)%) — (s(R,1)?)(s(R+Tr,1)?),
(10

and refers to th&-domain morphology.
The domain-size distributio®(l,t), wherel e[0,], is

D(r,t)/D(0}t) vsr/Lp for the same times as i@).

Because of the small concentration ¢,=0.1), the correla-

tion function for the blob morphology does not differ appre-
ciably from that for the spin-1/2 Ising model. More substan-
tial differences are seen when the components are present in
approximately equal proportions, as in the MC simulations
of the three-state Potts model by Jeppesen and Mouritsen
[24]. Figure 4b) is the corresponding scaling plot of
D(r,t)/D(0}) vsr/Lp. The good data collapse in Figgas

obtained by examining the zero crossings of order-parametemnd 4b) confirms the dynamical scaling of the correlation
profiles along horizontal and vertical cross sections of thgunctions.

lattice[30]. We separately consider distributions for theB
domains, and th& domains. The distributio®(l,t) is nor-
malized asf;dIP(l,t)=1.

Figure 2a) suggests that the evolving morphology is self-
similar in time, and we expect the correlation functions to
exhibit a dynamical-scaling fornC(r,t)=g(r/L);D(r,t)
=h(r/L), where the master functiong(x) and h(x) are
independent of tim¢31]. Figure 4a) superposes data from
different times forC(r,t)/C(0t) vsr/Lc, wherelc is de-

The corresponding dynamical-scaling property for the
domain-size distribution i®(l,t)=L"f(I/L). In this paper,
we focus on the distribution foA, B domains as that is
physically more relevant. Figure 5 superposes data from dif-
ferent times forP(l,t)Lp vs I/Lp, where the characteristic
length scald_; is defined from the domain distribution func-
tion asLp=(I). (In the scaling regime, we expett, Ly,
and Lp to be equivalent upto prefactorsigain, the data
collapse is seen to be excellent in Fi@5 which is a direct

fined as the distance over which the correlation function deplot of the data. The solid line in Fig.(& is the scaled

cays to half its maximum value. The solid line in Figay

domain-size distribution for the spin-1/2 Ising modalso

refers to the scaled correlation function for the spin-1/2 Isingobtained numerically and is in good agreement with our

model with Kawasaki kineticgalso obtained numerically

numerical data for thé& BV model. Figure &) is a linear-
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L L L FIG. 6. Time dependence of characteristic length scales for the

0 1 2 3 4 evolution depicted in Fig.(@). We plotL(t) vst for three measures
L of the length scale, i.el,c andL refer to theA-, B-domain scale
obtained fromC(r,t) andP(l,t), respectively; andl , refers to the

FIG. 5. Scaling plot of domain-size distributions &f B do-  V-domain scale obtained from(r,t). The solid line superposed on
mains for the evolution depicted in Fig(82. We plotP(l,t)Lp vs each data set denotes the best fit to the functional fo(=a
I/Lp for three different times—denoted by the symbols indicated.* bt*, and the best-fit exponentis specified on the figure. The
The length scalé.,=(l), i.e., the first moment of the probability €rror estimates for the exponents ar@.01.
distribution. The averaging statistics is the same as that for Fig. 4.

The solid line denotes the scaled probability distribution for thequantify the differences in the two-domain morphologies. In
spin-1/2 Ising model at=10° MCS. We present the numerical practice, especially for small concentrations, the crossover
data on(a) a direct plot andb) a linear-log plot. time to this asymptotic regime may be excessively delayed.
The final frame (=10° mc9 in Fig. 2b) shows incipient
log plot of the data in Fig. ®). The tail of the scaling func- cluster formation by domains. We have confirmed numeri-
tion f(y) exhibits a characteristic exponential decay. Wecally that the onset of clustering &f's is faster at higher
have first observed this in the context of nonconserved dovalues of theV concentration.
main growth[30] and expect it to be a universal feature of  Figure 2c) shows evolution pictures forT=0.5,
phase-ordering systems. In our earlier study of nonconserved= — 0.5, which corresponds to two-phase coexistence with
domain growth with barriers, the exponential tail ©fy) AV-rich andBV-rich domaingsee Fig. Ic)]. There is also a
resulted in an asymptotically stretched-exponential behaviomicroscopic layer ol at the AB interfaces, as this lowers
for the spin autocorrelation functidi30]. the system energy. However, therich layer is thermody-

Figure 6 plotsL(t) vst for length scales obtained from namically irrelevant. For these parameter values, e
the two correlation functiongsee Fig. 4 and the domain- play no significant role in determining the asymptotic mor-
size distribution functior(see Fig. 5. The time dependence phology, though, of course, they do mediate the dynamics. In
of all the data sets is consistent with the LS growth law,this regime, we expect the system evolution to be asymptoti-
L(t)~tY3, cally equivalent to that for the spin-1/2 Ising model.

We now turn to a quantitative discussion for the other two  The correlation function data for tHeé and D morpholo-
morphologies. Recall that Fig(l® showed the evolution for gies also exhibits dynamical scaling. For brevity, we do not
parameter values= 0.5, K= 0.5, which also corresponds to present this data here. Figurgay superposes data for
three-phase coexisten¢see Fig. 1b)], but with a coating C(r,t)/C(0t) vsr/L¢ from theB, C, andD morphologies at
morphology. The correlation function§(r,t) and D(r,t) t=10° MCS. For reference, we also include the correlation
for the C morphology are expected to be similar to those forfunction for the spin-1/2 Ising model—denoted as a solid line.
the B morphology, particularly at late times. The reason isWe see that the data sets ®rand C are numerically com-
that, as far as the two-point correlation functions are conparable; and differ from the scaled correlation function for
cerned, the distribution df’s in both C andB morphologies the D morphology. For even larger values@f, theB andC
becomes statistically identical in the asymptotic time regimemorphologies should still be comparable at sufficiently late
The finite thickness of the coating layer AB interfaces is  times, but would differ substantially from the D and lIsing
irrelevant as other length scales in the system diverganorphologies. Figure (B) superposes data for
Clearly, higher-order correlation functions are required toD(r,t)/D(0t) vs r/Lp from the B and C morphologies at
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FIG. 7. (a) Superposition of numerical data fG(r,t)/C(0t) vs FIG. 8. (a) Superposition of data fdP(l,t)Lp vsr/Lp for theB,

r/L¢ for the B, C, andD morphologies. The solid line refers to the C, andD morphologies. The solid line refers to the corresponding
corresponding data for the spin-1/2 Ising model. All data sets arelata for the spin-1/2 Ising model. All data sets are computed at
computed at t=10° MCS. (b) Superposition of data for =10° MCS. (b) Data from(a), replotted on a linear-log scale.
D(r,t)/D(0}t) vsr/Lp for the B and C morphologies. Both data

sets are computed &=10° MCS. V. SUMMARY AND DISCUSSION

Let us conclude this paper with a brief summary and dis-

t=10° MCS (this correlation function is not meaningful in cussion of the results presented here. We have undertaken a
the context of théD morphology. detailed MC study of phase-separation kinetics in ternary

Figure 8a) is a direct plot of data foP(l,t)L vsl/Lp for ~ (ABC) mixtures. Without loss of generality, we focus on the
theB, C, andD morphologies. As before, the solid line refers ABV model, where one of the componefiacancy oV) is
to the corresponding data for the spin-1/2 Ising model. Fopassive, i.e., pairwise interactions involviMjs are identi-
the D morphology, the domain-size distributiét(l,t) is ob-  cally zero. Furthermore, we consider constrained Kawasaki
tained by binarizing the evolution pictures in FigcRi.e.,a  Spin-exchange dynamics, where omy—V, B—V inter-
0 is mapped to+ 1 or —1 depending on the majority of its changes are allowed blA!_t<—>B interchanges are forbidden.
neighbors. Fig. &) is a linear-log plot of the data in Fig. However, we ;hould clarlfy'that we ha\{e also performed MC
8(a), and again exhibits the characteristic exponential deca?'mm""t'Ons with unconstrained dynamics, where all types of
of the scaling function for the domain-size probability distri- nterchang_es_ are permitted. The numerical results_ therefrom
bution. In this case, the numerical data for the three mor&'€ Very similar to those presented here upto a slight renor-

phologies appears to be numerically comparable to that fo ahzapon of time scales. Th!s IS bepause _the b.arrler to
the spin-1/2 Ising case. < B interchanges at domain interfacé®., Eg=12J in d

. . ; . . =2) are considerably higher than those for-V andB«—V

Finally, Fig. 9 is a plot of characteristic domain scales forinterchangeii e..Eg=6J in d=2). Thus, especially at low
; . . . .C., B— - . i

theIC [Fig. 9(6:21 aréd IEZ) [F'ﬁ'@ 9b)] rr?ﬂrphologleshand' IS temperatures, the segregation dynamics is primarily driven

analogous to Fig. 6. For th€ morphology, we show(i)  y,\;is_ reqardiess of whether or nét—B interchanges are

length scaled.c and Lp for the A, B domains—obtained jowed.

from the correlation function and the probability distribution, | this paper, we focus on mixtures with composition
respectively; andii) the length scalé., for theV domains  _¢_—0 45 andc, = 0.1. Nevertheless, our results are typical
obtained from the appropriate correlation function. Noticefor a wide range of compositions. Our results demonstrate
that the maximum length scale for thedomains in Fig. )  that there are three distinct evolution morphologies arising
is approximately 2 units, so the impression of growth isfrom a disordered initial condition—two-phasaY-rich and
somewhat illusory. For théd morphology, we show the BV-rich) coexistence; three-phase coexistence with coating
length scaled - andLp. In both cases, the length scales (only AV and BV interface$;, and three-phase coexistence
(apart fromLp) are consistent with a LS growth law. with blobs (all possible interfacgsWe provide heuristic ar-
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30 L i - - - - @ We provide comprehensive numerical results for time-
o L. (x=0.35) A ;
2 L (x=033) dependent behavior in all the three cases discussed above.
. L There is a strong degree of universality in various dynamical
20 P i . properties, which we would like to highlight here. First, we

L)

10F oA

expect the correlation functions to be asymptotically equiva-
lent for the blob(B) and coat(C) morphologies; and for the
dispersedD) and Ising morphologies. Our numerical results
for the correlation functions appear to point in this direction.
Second, our numerical results suggest thatthd3-domain-
size distributions have similar scaling forms for all the mor-

O 1 1 Il Il Il N A A .
phologies considered. An important feature of the domain-

60 . . . . size distribution is the exponential decay of the tail
o L(x=034) ® region—an observation we have also made earlier in the con-

L, (x=0.33)

LT a |

20

0 0.2 0.4 0.6 0.8 0.1 1.2

t (10° MCS)

text of nonconserved domain growjtB0]. We expect this to
be a universal feature of phase-ordering systems with impor-
tant implications for various properties, including the auto-
correlation function. Third, the asymptotic domain growth
law is always consistent with the LS law(t)~t*3, though
the time scales of growth are substantially different in the
three cases considered in this paper. This is because of the
geometric constraints imposed by the availability\&§ to
facilitate diffusion.

Before concluding this paper, we should mention that we
have also obtained numerical results for the autocorrelation

FIG. 9. (8) Characteristic length scales for the evolution de-function in our MC simulations. In earlier work on spin-1

picted in Fig. Zb). We plotL(t) vstfor L., Lp, andLp—denoted

models with local kinetic barrierg30], we have modeled

by the specified symbols. The nonlinear fits are obtained as in FigsPin dynamics using dichotomic Markov processes. We used
6, and the corresponding best-fit exponemsare specified on the this simple model to obtain an analytic expression for the
figure. (b) Analogous to(a), but for the evolution depicted in Fig. autocorrelation function, which was in good agreement with
2(c). our numerical results. At present, we are generalizing this
approach to the context of vacancy-mediated phase separa-
guments to understand the emergence of these morphologiggn. n theABV modgl. Details of t'h|s approach and com-
at zero temperature, where entropic effects are not relevarff@sons with numerical results will be reported at a later
These arguments also clarify the nature of patterns observeti29el32-
in earlier simulations of ternary mixtures, in the context of
ABV models and three-state Potts models. For nonzero tem-
peratures, we expect the coating morphology to be asymp- S.P. is grateful to K. Binder, P. Fratzl, J.-F. Gouyet, M.
totically equivalent to the blob morphology for reasons wePlapp, and R. Weinkamer for many useful discussions re-
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