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XY model in small-world networks
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The phase transition in theXY model on one-dimensional small-world networks is investigated by means of
Monte Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small
values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring prob-
ability. Nature of the phase transition is discussed in comparison with the globally coupledXY model.
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Examples of complex networks are abundant in many
ciplines of science and have recently attracted much at
tion @1#. Among interesting phenomena is the so-cal
small-world effectthat a randomly chosen pair of nodes m
be connected by a remarkably small number of interven
nodes. This effect, first noticed by Watts and Strogatz~WS!
@2#, may be observed in a variety of real network syste
such as the world-wide web, social networks, and scien
collaboration networks@3,4#. The WS model is based on
locally highly connected regular network, in which some
the links are randomly ‘‘rewired,’’ creating long-rang
‘‘shortcuts.’’ In such a model network, the small-world e
fect is usually measured by the scaling behavior of the ch
acteristic path lengthl , defined to be the average of th
shortest distance between two nodes:l ; logN with the net-
work size ~i.e., the number of nodes! N. Noteworthily, the
small-world phenomena in the WS model emerge even
very small values of the rewiring probabilityP;O(N21),
which implies that the global feature of the network is
tered dramatically in the presence of only a tiny fraction
shortcuts.

From the point of view of statistical physics, the abo
small-world effect may imply the emergence of global c
herence in the presence of shortcuts: In the absence of s
cuts, global coherence is difficult to achieve since the inf
mation to make each element have the same state sh
travel long distance of the order of the network size. As
number of shortcuts is increased, on the other hand, lo
range connections become available, assisting the syste
behave as a whole. The significance of such a shorter gl
length scale has been tested with many statistical phys
problems studied on a small-world network topology. I
cluded are the signal propagation speed@2#, synchronizabil-
ity @2#, dynamics of Hodgkin-Huxley neurons@5#, epidemi-
ology @6,7#, percolation@7–9#, and—most relevant to the
present paper—the Ising model, where a nonvanishing o
parameter has been demonstrated in the presence of a
ishingly small fraction of shortcuts@10#.

The XY model, describing two-dimensional~2D! spin
~i.e., planar rotor! systems or superconductors and super
ids, is one of the most well-known systems in statisti
physics. In one and two spatial dimensions, the Merm
Wagner theorem predicts that theXY model with only local
1063-651X/2001/64~5!/056135~5!/$20.00 64 0561
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interactions should not possess long-range order at any
zero temperatures. Nevertheless, in two dimensions, it
been shown that although true long-range order is not p
sible, quasi-long-range order appears at finite temperat
@11#. As theXY model includes more and more long-ran
interactions, one expects that the system may display
long-range order. In this paper, we study theXY model on
the WS model of small-world networks and investigate t
possibility of long-range order as the number of shortcuts
long-range interactions is increased.

The Hamiltonian for theXY model reads

H52
1

2 (
iÞ j

Ji j cos~f i2f j !, ~1!

wheref i is the angular direction of the 2D spin or the pha
of the superconducting order parameter at nodei. The cou-
pling matrix Ji j is given by

Ji j 5Jji [H J, if i and j are connected,

0, otherwise.
~2!

For example, in the standard 2DXY model on a square lat
tice, we haveJi j 50 except for the four nearest neighbors
site i. In the WS model for the small-world network@2#, the
regular network withN sites is first constructed by connec
ing each site to its 2k nearest neighbors. Each local link
visited once, and then with the rewiring probabilityP it is
removed and reconnected to a randomly chosen site. In
manner, a small-world network with sizeN is constructed for
givenk andP. We then study the phase transition of theXY
model on this small-world network by measuring the ord
parameter

^m&[K U1

N (
j

eif jU L , ~3!

where ^•••& denotes the thermal average and the aver
over different network realizations, denoted by@•••#, is also
to be taken. WhenP50, the system behaves as the on
dimensional~1D! XY model, displaying no long-range orde
at finite temperatures. ForPÞ0, the system has many long
range interactions in the thermodynamic limit and t
Mermin-Wagner theorem cannot disprove the existence
©2001 The American Physical Society35-1
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long-range order. In particular, forP51, it is on a random
network with the number of randomly connected links be
kN.

We perform extensive Monte Carlo~MC! simulations
with the standard Metropolis local update algorithm, to m
sure various thermodynamic quantities and moments of
order parameter. For a thorough analysis of the MC resu
we detect the phase transition in three different metho
First, Binder’s fourth-order cumulant@12#,

UN~T![12
@^m4&#

3@^m2&#2
~4!

for different sizesN should have a unique crossing point
the transition temperatureTc . Expanding the cumulant nea
Tc , we write

UN~T!'U* 1U1S 12
T

Tc
DN1/n̄ ~5!

or

DUN[UN~T1!2UN~T2!}N1/n̄, ~6!

with T1 andT2(.T1) picked nearTc . From the above ex-
pression, the critical exponentn̄, describing the divergenc
of the correlation volumejV at Tc @13,14#

jV;uT2Tcu2 n̄, ~7!

may be determined. Our second method is based on
finite-size scaling of the order parameter, which exhibits
critical behavior @^m&#;(Tc2T)b in the thermodynamic
limit. In a finite-sized system, we expect the behavior
@^m&#5(Tc2T)b f (T,N) with a function f of at most two
argumentsT andN. We then use the standard finite-size sc
ing idea that the ratio of the correlation volume to the syst
size gives the argument of the scaling function, and ob
the finite-size scaling form

@^m&#5N2b/ n̄g„~T2Tc!N
1/n̄
…, ~8!

which leads to a unique crossing point atTc in the plot of

@^m&#Nb/ n̄ versusT. As discussed later in the present pap
the phase transition on the small-world network is of t
mean-field nature, which provides us the third method
locating the transition temperature: With the mean-fi
value of the critical exponenta50, the specific heat neithe
diverges nor vanishes, remaining finite possibly with jum
discontinuity. Accordingly, it is plausible to write the finite
size scaling form of the specific heat as

Cv5h„~T2Tc!N
1/n̄
…, ~9!

which again crosses atTc . In the same way as in Eq.~5!, the
expansion ofCv nearTc may be used to determinen̄.

All the above finite-size scaling forms are based on
assumption that we have only two spatial scales in the
tem: the sizeN and the correlation volumejV diverging at
05613
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Tc . In fact, it is known that the small-world network has a
additional length scale, the typical distance between the e
of shortcuts, given byz5(kP)21 @8#. Accordingly, in the
presence of the three competing scales (N,j,z), the standard
finite-size scaling function should take the formx(j/N,z/N)
@8,15#. Here, we focus on sufficiently large systems withN
much larger thanz, where x(j/N,z/N) may be approxi-
mated asx(j/N,0). This leads to the above-mentione
finite-size scaling forms withoutz @Eqs. ~5!, ~8!, and ~9!#,
which become more precise as the system size grows. Th
manifested below when the MC results are presented.

The small-world network, on which theXY model is de-
fined, is characterized by the rewiring probabilityP and the
local interaction rangek. We focus only on the casek53;
however, we believe that qualitatively, the same conclus
should hold for other values ofk(.1) @16#. From the MC
simulations, we have confirmed that the network withP
50 does not exhibit long-range order at finite temperatur
in accordance with the Mermin-Wagner theorem. In the o
posite case withP51, where allkN(53N) connections are
long-ranged shortcuts, the system is found to undergo a w
defined finite-temperature transition. We first present
MC results forP50.2 in Fig. 1. The finite-size scaling o
Binder’s cumulant, the order parameter, and the specific h
all reveals unanimouslyTc'2.235 in units ofJ/kB , confirm-
ing the presence of a finite-temperature phase transitio
the XY model on the small-world network. In particular, th
obtained critical exponentsb51/2, n̄52, anda50 estab-
lish the mean-field nature of the transition. Also confirmed
the validity of our finite-size scaling forms, with the add
tional length scalez reflected in the drift of the crossing
points at small sizes. As the sizeN is increased, the finite-
size effects associated withz reduce and the finite-size sca
ing forms based on the assumption of only two scalesN and
jV prevail, leading to well-defined crossing points at larg
sizes.

For comparison, we also study the globally coupledXY
model, whereJi j 5J5O(1/N) for all i and j andT is mea-
sured in units ofNJ/kB . We use the saddle-point metho
accompanied by the Hubbard-Stratonovich transforma
@17#, and obtain various thermodynamic quantities such
the specific heat and the order parameter in Eq.~3!. We also
perform the MC simulation and compare the results in Fig
which exhibits excellent correspondence between the t
As expected, the globally-coupledXY model indeed pos-
sesses the mean-field transition, which is the same as th
the XY model on the small-world network. It should b
noted that the number of connected links~i.e., the number of
nonzero elements in the interaction matrixJi j ) in the glo-
bally coupledXY model is given byN(N21)/2, which is in
sharp contrast with the numberO(N) in the small-world net-
works. This indicates that theXY model can be made to hav
global phase coherence~i.e., true long-range order! at finite
temperatures by rewiringO(N) connections, with the tota
number of interactions still keptO(N) instead ofO(N2) as
in the globally coupledXY model.

What is the minimum value ofP to have such long-rage
order at finite temperatures? To answer this question,
5-2
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XY MODEL IN SMALL-WORLD NETWORKS PHYSICAL REVIEW E 64 056135
have also performed MC simulations at various values oP.
As the rewiring probabilityP is reduced, the finite-size ef
fects due to the length scalez grow and become no mor
negligible, making it necessary to perform simulations
larger systems. Since it is observed that the finite-size eff
are much more discernible in Binder’s cumulant and in

FIG. 1. The XY model on the small-world network withP
50.2 andk53 displays a mean-field phase transition at the fin
temperatureTc : ~a! Binder’s cumulantUN has a unique crossing

point at Tc'2.235 ~in units of J/kB) and the critical exponentn̄
'2.0 is obtained from Eq.~6! ~see the inset!. ~b! Finite-size scaling

of the order parameter@see Eq.~8!# again yieldsb'0.5 and n̄
'2.0 with Tc'2.235.~c! Specific heatCv ~in units ofkB) also has
a crossing point atTc'2.235, as implied by Eq.~9!.
05613
n
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specific heat than in the order parameter, we estimateTc only
from the crossing point in the plot of@^m&#N1/4 versusT. For
P>0.03, we have confirmed that as the system size gro
all three methods to determineTc give the same value. As a
example, we show in Fig. 3 the determination ofTc for P
50.05.

Finally, Fig. 4 summarizes the results and presents
phase diagram for theXY model on small-world networks
with k53. We observe that the phase boundary is very w
described by the logarithmic form:Tc(P)'0.41 lnP12.89,
as shown in the inset of Fig. 4, without an obvious reason
naive extrapolation of this form predicts a very small val
of the critical rewiring probability:Pc'0.001. It is, however,
likely that there takes place deviation from the logarithm
dependence at smallP and any nonzero rewiring probabilit
(P.0) presumably supports long-range order at sufficien
low but finite temperatures, resulting inPc50. One may
provide a simple argument in favor of this expectation. Sin
the spins separated within the correlation length are co
lated with each other, the presence of shortcuts in such a
that the typical distancez between the ends of shortcuts
smaller than the correlation lengthj ~of the 1D system! does
not affect the system substantially, leaving the 1D nat
intact. Whenz grows beyond the correlation length, on th
other hand, the long-range interactions via shortcuts co
into play, giving rise to the mean-field character. Accor
ingly, the crossover between the 1D behavior and the me
field one is given by the conditionj'z, which also describes
the so-called small-world transition between the two ge
metrical regimes, the large-world regime, and the sm
world one @18#. Recognizing the low-temperature behavi
of the correlation lengthj;T21 @19# in one dimension (P
50) and the typical distancez;P21, we thus expect the
behavior of the transition temperatureTc;P in the limit of
smallP @20#. Here, it is of interest to note the difference fro
the Ising model on small-world networks. The latter exhib
the behaviorTc;2(ln P)21 @10#, which originates from the

FIG. 2. Specific heatCv ~in units ofkB) and the order paramete
^m& of the globally coupledXY model. Compared areCv and^m&
from analytic calculation~full and dotted lines, respectively! and
from Monte Carlo simulations for the system sizeN56400~empty
squares and filled circles!. The phase transition is of the mean-fie
type characterized bŷm&;(Tc2T)b with b51/2 and the jump in
Cv at the transition (Tc51/2 in units ofJN/kB).
5-3
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BEOM JUN KIM et al. PHYSICAL REVIEW E 64 056135
exponential temperature dependence in the 1D Ising mo
j;ea/T with the constanta proportional to the coupling
strength.

In conclusion, we have studied theXY model on small-
world networks through the use of the standard Monte Ca
simulation method. At all nonzero values of the rewirin
probability P considered in this paper, the finite-temperatu
transitions have been detected by Binder’s cumulant, the
cific heat, and the order parameter, together with appropr
finite-size scaling forms. The phase transition has b

FIG. 3. XY model on the small-world network forP50.05.
From the crossing points in the scaling forms of~a! the order pa-
rameter@^m&# and ~b! the specific heatCv ~in units of kB), Tc

'1.66~in units ofJ/kB) is obtained. The drift of the crossing poin
at small sizes is larger in the specific heat~b! than in the order
parameter~a!.
nd
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shown to be described by the mean-field critical expone
b51/2, n̄52, anda50, irrespective of the value ofP. The
existence of the additional length scale corresponding to
typical distance between the ends of shortcuts is manife
by the drift of crossing points at smaller sizes. The quest
as to the value ofPc , below that long-range order does n
emerge at any finite temperature, still remains to be
swered. The phase diagram in Fig. 4 provides a very sm
upper bound,Pc&O(1023), which is likely to suggestPc
50. In this regard, it is revealing that the small-world tra
sition, where the characteristic path lengthl undergoes a
change of behavior, occurs atP50 in the thermodynamic
limit @18#. We thus suspect that the small-world transiti
and the order-disorder transition are intimately related,
tailed investigation of which is left for further study.
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FIG. 4. The phase diagram of theXY model on the small-world
network withk53, drawn on the plane of the rewiring probabilit
P and the temperatureT ~in units of J/kB). The data points have
been obtained from the finite-size scaling form of the order para
eter in Eq.~8! and the error bars are smaller than the size of
symbol. The solid line, which is only a guide to eyes, gives t
boundary separating the disordered high-temperature phase~D!
from the low-temperature phase with the nonvanishing order
rameter (O). Inset: The phase boundary is well described by
form T'0.41 lnP12.89 except for the pointP51.
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