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XY model in small-world networks
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The phase transition in theéY model on one-dimensional small-world networks is investigated by means of
Monte Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small
values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring prob-
ability. Nature of the phase transition is discussed in comparison with the globally coxigledodel.
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Examples of complex networks are abundant in many disinteractions should not possess long-range order at any non-
ciplines of science and have recently attracted much atterzero temperatures. Nevertheless, in two dimensions, it has
tion [1]. Among interesting phenomena is the so-calledbeen shown that although true long-range order is not pos-
small-world effecthat a randomly chosen pair of nodes maysible, quasi-long-range order appears at finite temperatures
be connected by a remarkably small number of intervening11]. As the XY model includes more and more long-range
nodes. This effect, first noticed by Watts and Strogs¥s)  Interactions, one expects that the system may display true
[2], may be observed in a variety of real network systemdong-range order. In this paper, we study %¥ model on
such as the world-wide web, social networks, and scientifi¢h® WS model of small-world networks and investigate the
collaboration network§3,4]. The WS model is based on a possibility of Iong—rgnge.or_der as the number of shortcuts or
locally highly connected regular network, in which some of ©"g-range interactions is increased.
the links are randomly “rewired,” creating long-range 1€ Hamiltonian for the'y model reads
“shortcuts.” In such a model network, the small-world ef- 1
fect is usually measured by the scaling behavior of the char- H=-— > Z Jij cog o — o)), (1)
acteristic path length’, defined to be the average of the 17

shortest distance between two nodes:logN with the net-\\hereq, is the angular direction of the 2D spin or the phase

work size (i.e., the number of nodgsN. Noteworthily, the  of the superconducting order parameter at nodghe cou-
small-world phenomena in the WS model emerge even ajing matrix J;; is given by

very small values of the rewiring probabilitp~O(N 1),

which implies that the global feature of the network is al- _[J, if iand j are connected,
tered dramatically in the presence of only a tiny fraction of Jij=Jji= 0, otherwise. @)
shortcuts.

From the point of view of statistical physics, the aboveFor example, in the standard 20Y model on a square lat-
small-world effect may imply the emergence of global co-tice, we havel;; =0 except for the four nearest neighbors of
herence in the presence of shortcuts: In the absence of shositei. In the WS model for the small-world netwofR], the
cuts, global coherence is difficult to achieve since the inforregular network withN sites is first constructed by connect-
mation to make each element have the same state shouluy each site to its R nearest neighbors. Each local link is
travel long distance of the order of the network size. As thevisited once, and then with the rewiring probabil®yit is
number of shortcuts is increased, on the other hand, longemoved and reconnected to a randomly chosen site. In this

range connections become available, assisting the system noanner, a small-world network with si2&is constructed for

behave as a whole. The significance of such a shorter globagivenk andP. We then study the phase transition of ¥

length scale has been tested with many statistical physicahodel on this small-world network by measuring the order

cluded are the signal propagation spé2l synchronizabil-

ity [2], dynamics of Hodgkin-Huxley neurori§], epidemi- (my= E S e

ology [6,7], percolation[7—-9], and—most relevant to the N 4

parameter has been demonstrated in the presence of a vamhere(---) denotes the thermal average and the average

ishingly small fraction of shortcutisl0]. over different network realizations, denoted[by - ], is also
The XY model, describing two-dimensiond2D) spin  to be taken. WherP=0, the system behaves as the one-

ids, is one of the most well-known systems in statisticalat finite temperatures. Fé+#0, the system has many long-

physics. In one and two spatial dimensions, the Mermintange interactions in the thermodynamic limit and the

Wagner theorem predicts that tey model with only local Mermin-Wagner theorem cannot disprove the existence of

problems studied on a small-world network topology. In-parameter

>, (€)
present paper—the Ising model, where a nonvanishing order
(i.e., planar rotor systems or superconductors and superfludimensional1D) XY model, displaying no long-range order
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long-range order. In particular, f&?=1, it is on a random T.. In fact, it is known that the small-world network has an
network with the number of randomly connected links beingadditional length scale, the typical distance between the ends
KN. of shortcuts, given by =(kP) ! [8]. Accordingly, in the

We perform extensive Monte CarliMC) simulations  presence of the three competing scalis&(¢), the standard
with the standard Metropolis local update algorithm, to meainjte-size scaling function should take the fogti/N, £/N)
sure various thermodynamic quantities and moments of thgg 15]. Here, we focus on sufficiently large systems with
order parameter. For a thorough analysis of the MC resultsy, ,cn larger tharZ, where x(&/N,Z/N) may be approxi-
we det_ect tf)e phase transition in three different methods;,ateq asy(¢/N,0). This leads to the above-mentioned
First, Binder's fourth-order cumulaifi.2], finite-size scaling forms without [Egs. (5), (8), and (9)],

[(m*] which become more precise as the system size grows. This is
Uy(T)=1- e (4) manifested below when the MC results are presented.
3[(m7)] The small-world network, on which th&Y model is de-

fined, is characterized by the rewiring probabilRyand the
local interaction rang&. We focus only on the cade=3;
however, we believe that qualitatively, the same conclusion
should hold for other values d(>1) [16]. From the MC
i simulations, we have confirmed that the network wih
1=37/N (5 =0 does not exhibit long-range order at finite temperatures,
¢ in accordance with the Mermin-Wagner theorem. In the op-
or posite case witiP=1, where allkN(=3N) connections are
-~ long-ranged shortcuts, the system is found to undergo a well-
AUN=U(T) = Up(Tp) N, (6) defined finite-temperature transition. We first present our
MC results forP=0.2 in Fig. 1. The finite-size scaling of
with T, andT,(>T;) picked nearT.. From the above ex- Binder's cumulant, the order parameter, and the specific heat

pression, the critical exponemt describing the divergence all reveals unanimously.~2.235 in units ofl/kg, confirm-

for different sizesN should have a unique crossing point at
the transition temperaturg;. Expanding the cumulant near
T., we write

UN(T)%U*‘FU]_

of the correlation volumé, at T, [13,14 ing the presence of a finite-temperature phase transition in
B the XY model on the small-world network. In particular, the
E~|T-T 77, (7)  obtained critical exponentg=1/2, v=2, anda=0 estab-

lish the mean-field nature of the transition. Also confirmed is
may be determined. Our second method is based on th@e validity of our finite-size scaling forms, with the addi-
finite-size scaling of the order parameter, which exhibits thaional length scale; reflected in the drift of the crossing
critical behavior[(m)]~(T.—T)# in the thermodynamic points at small sizes. As the si¢is increased, the finite-
limit. In a finite-sized system, we expect the behavior tosize effects associated withreduce and the finite-size scal-
[(m)]=(T.—T)#f(T,N) with a functionf of at most two  ing forms based on the assumption of only two scAlend
arguments” andN. We then use the standard finite-size scal-¢,, prevail, leading to well-defined crossing points at larger
ing idea that the ratio of the correlation volume to the systensizes.
size gives the argument of the scaling function, and obtain For comparison, we also study the globally coupkd

the finite-size scaling form model, wherel;;=J=0O(1/N) for all i andj and T is mea-
- i sured in units ofNJ/kg. We use the saddle-point method
[(M)]=N"A"g((T-T-N"), (8)  accompanied by the Hubbard-Stratonovich transformation

. ) ) . . [17], and obtain various thermodynamic quantities such as
which leads to a unique crossing point®t in the plot of  the specific heat and the order parameter in(8g.We also
[<m>]Nﬁ/V versusT. As discussed later in the present paper,perform the MC simulation and compare the results in Fig. 2,
the phase transition on the small-world network is of thewhich exhibits excellent correspondence between the two.
mean-field nature, which provides us the third method ofAs expected, the globally-coupledY model indeed pos-
locating the transition temperature: With the mean-fieldsesses the mean-field transition, which is the same as that in
value of the critical exponent=0, the specific heat neither the XY model on the small-world network. It should be
diverges nor vanishes, remaining finite possibly with jumpnoted that the number of connected lirks., the number of
discontinuity. Accordingly, it is plausible to write the finite- nonzero elements in the interaction matfx) in the glo-

size scaling form of the specific heat as bally coupledXY model is given byN(N—1)/2, which is in
_ sharp contrast with the numb@&(N) in the small-world net-
C,=h((T-TyN™), (9 works. This indicates that thé¢Y model can be made to have

global phase coherencee., true long-range ordeat finite
which again crosses at. In the same way as in E(), the  temperatures by rewirin@(N) connections, with the total
expansion ofC, nearT. may be used to determine number of interactions still kegD(N) instead ofO(N?) as
All the above finite-size scaling forms are based on thdn the globally coupledXY model.
assumption that we have only two spatial scales in the sys- What is the minimum value oP to have such long-rage
tem: the sizeN and the correlation volumé, diverging at  order at finite temperatures? To answer this question, we
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FIG. 2. Specific heat, (in units ofkg) and the order parameter
4.0 NCT00 (m) of the globally coupledXY model. Compared ar€, and{m)
g (b) 200 from analytic calculation(full and dotted lines, respectivghand
O, P i from Monte Carlo simulations for the system si¥e= 6400 (empty
30f. "°x.m 1600 . squares and filled circlgsThe phase transition is of the mean-field
- TrL e gﬁgg e type characterized bym)~ (T,— T)# with 8=1/2 and the jump in
= L ™ s"-\,“ 12800 ~-s-- C, at the transition T,=1/2 in units of IN/kg).
13
- specific heat than in the order parameter, we estifatmnly
from the crossing point in the plot {m)]N*versusT. For
P=0.03, we have confirmed that as the system size grows,
all three methods to determife give the same value. As an

example, we show in Fig. 3 the determinationTof for P
T =0.05.

Finally, Fig. 4 summarizes the results and presents the
phase diagram for th&Y model on small-world networks
with k=3. We observe that the phase boundary is very well
described by the logarithmic fornT..(P)~0.41InP+2.89,
as shown in the inset of Fig. 4, without an obvious reason. A
naive extrapolation of this form predicts a very small value
of the critical rewiring probabilityP.~0.001. It is, however,
likely that there takes place deviation from the logarithmic
dependence at smdH and any nonzero rewiring probability
(P>0) presumably supports long-range order at sufficiently
low but finite temperatures, resulting iR;=0. One may
provide a simple argument in favor of this expectation. Since
X , , the spins separated within the correlation length are corre-
22 225 23 235 24 lated with each other, the presence of shortcuts in such a way
T that the typical distancé between the ends of shortcuts is
smaller than the correlation lengéh(of the 1D systemdoes
not affect the system substantially, leaving the 1D nature
intact. When¢ grows beyond the correlation length, on the
other hand, the long-range interactions via shortcuts come
into play, giving rise to the mean-field character. Accord-
ingly, the crossover between the 1D behavior and the mean-
field one is given by the conditiof~ ¢, which also describes
the so-called small-world transition between the two geo-
metrical regimes, the large-world regime, and the small-
world one[18]. Recognizing the low-temperature behavior
have also performed MC simulations at various valueB.of of the correlation lengtiE~T~* [19] in one dimension P
As the rewiring probabilityP is reduced, the finite-size ef- =0) and the typical distancé~P !, we thus expect the
fects due to the length scalegrow and become no more behavior of the transition temperatufg~ P in the limit of
negligible, making it necessary to perform simulations onsmallP [20]. Here, it is of interest to note the difference from
larger systems. Since it is observed that the finite-size effectdie Ising model on small-world networks. The latter exhibits
are much more discernible in Binder's cumulant and in thethe behavioiT .~ — (In P)~* [10], which originates from the

2 205 21 215

0.4

2 205 21 215

FIG. 1. TheXY model on the small-world network witi
=0.2 andk=3 displays a mean-field phase transition at the finite
temperaturel . : (a) Binder's cumulantUy has a unique crossing
point at T.~2.235(in units of J/kg) and the critical exponent
~2.0 is obtained from E(6) (see the insgt (b) Finite-size scaling
of the order parametdrsee Eq.(8)] again yieldsB~0.5 andv
~2.0 with T,~2.235.(c) Specific heaC, (in units ofkg) also has
a crossing point aT.~2.235, as implied by Eq9).
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14 N FIG. 4. The phase diagram of th&y model on the small-world
(b) om® network withk=3, drawn on the plane of the rewiring probability
13t J __ """ - P and the temperatur€ (in units of J/kg). The data points have
ﬂ,;;'."’ been obtained from the finite-size scaling form of the order param-
o U o eter in Eq.(8) and the error bars are smaller than the size of the
Y- a e symbol. The solid line, which is only a guide to eyes, gives the

boundary separating the disordered high-temperature ptiase
from the low-temperature phase with the nonvanishing order pa-
rameter Q). Inset: The phase boundary is well described by the
form T~0.41InP+2.89 except for the poinP=1.
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shown to be described by the mean-field critical exponents,

B=1/2, v=2, anda=0, irrespective of the value ¢. The
existence of the additional length scale corresponding to the

FIG. 3. XY model on the small-world network foP=0.05. typical distance between the ends of shortcuts is manifested
From the crossing points in the scaling forms(a¥ the order pa- by the drift of crossing points at smaller sizes. The question
rameter[(m)] and (b) the specific heaC, (in units of kg), T,  as to the value oP., below that long-range order does not
~1.66(in units of J/kg) is obtained. The drift of the crossing point emerge at any finite temperature, still remains to be an-
at small sizes is larger in the specific héb} than in the order swered. The phase diagram in Fig. 4 provides a very small
parametexa). upper boundP.<0(10 %), which is likely to suggesP,

=0. In this regard, it is revealing that the small-world tran-

exponential temperature dependence in the 1D Ising modedition, where the characteristic path lengthundergoes a
¢~e¥T with the constanta proportional to the coupling change of behavior, occurs ®=0 in the thermodynamic
strength. limit [18]. We thus suspect that the small-world transition

In conclusion, we have studied th€Y model on small- and the order-disorder transition are intimately related, de-
world networks through the use of the standard Monte Carlaailed investigation of which is left for further study.
simulation method. At all nonzero values of the rewiring
probability P considered in this paper, the finite-temperature  This work was supported in part by the Swedish Natural
transitions have been detected by Binder's cumulant, the sp&esearch Council through Contract No. F 5102-659/2001
cific heat, and the order parameter, together with appropriatéB.J.K., P.H., and P.M.and by the Ministry of Education of
finite-size scaling forms. The phase transition has beeiforea through the BK21 Prografi.H. and M.Y.C).
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