PHYSICAL REVIEW E, VOLUME 64, 056134
Non-Gaussian equilibrium in a long-range Hamiltonian system
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We study the dynamics of a systemMdfclassical spins with infinite-range interaction. We show that, if the
thermodynamic limit is taken before the infinite-time limit, the system does not relax to the Boltzmann-Gibbs
equilibrium, but exhibits different equilibrium properties, characterized by stable non-Gaussian velocity dis-
tributions, Lery walks, and dynamical correlation in phase space.
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Though not always clearly stated, standard equilibriumneighbors. Following tradition, the coupling constant in the
thermodynamic§1-3] is valid only for sufficiently short- potential is divided byN. This makedH only formally exten-
range interactions. This is not the case, for example, fosive (V~N whenN— o) [25-2§, since the energy remains
gravitational or unscreened Coulombian fields, or for sysnonadditive, i.e., the system cannot be trivially divided in
tems with long-range microscopic memory and fractal structwo independent subsystems. The canonical analytical solu-
tures in phase space. The increasing experimental evidenggn of the model predicts a second-order phase transition
of dynamics and thermodynamics anomalies in turbulentrom a low-energy ferromagnetic phase with magnetization
plasmaq4] and fluids[5-7], astrophysical systeni8-12), 11 (u is the modulus oM = (L/N)=N_,m;, wherem,
nuclei[13,14] and atomic clustergl5], granular medi§16], = (cos(@,),sin(8,)), to a high-energy one where the spins are

glasseg 17,18, and complex system{d9,2q found in the homogeneously oriented on the unit circle avd-0. The

last years, prqwde further motivation for a generalization Ofcaloric curve i.e., the dependence of the energy density
thermodynamics.

: . . . _~—E/N on the temperaturd, is given byU=T/2+1/2(1
In this paper, we consider a simple model of classical R - o
spins with infinite-range interactiof21-24], and we show d '\rql i)t an_sgc;vg/n mrrFlg. (brll)aizhetcr|t|c?iltipo:ntt Liatrergg_rrgy
that, if the thermodynamic limit is performed before the in- —eosé[yZl]c_TH dco e?“p? b hg 0a (]f HCMaF c p%a. &
finite time limit, the system does not relax to the Boltzmann-. * - /he dynamical behavior o may be Inves-

Gibbs (BG) equilibrium, but exhibits different equilibrium 19at€d in the microcanonical ensemble by starting the sys-

properties characterized by non-Gaussian velocity distribufEem with the so-called water bag initial conditio&/BIC),

tions, Levy walks, dynamical correlation in phase space, and-?-aﬁF%fQVt all I(tM =1 anq v<|a||oct|rt]|es umfgrmly df|str|bt—_

the validity of the zeroth principle of thermodynamics. our Ut€d, and integrating numerically the equations o motion
. . r{_22]. As shown in Fig. 1a), microcanonical simulations are

eralized nonextensive thermodynamics recently proposekﬁ1 general in go_od agreement with _the canonical ensemble,

[25,26]. The Hamiltonian mean-fiel(HMF) model describes except fqr aregion be.lo‘MC' where it has also been fpund

a system ofN planar classical spins interacting through an? dynamics characterized by Wewalks, anomalous diffu-

infinite-range potentia]21]. The Hamiltonian may be writ- sion [23], and a hegative spec'|f'|c heg4]. Ensemble in-
ten as equivalence and negative specific heat have also been found

in self-gravitating system§8], nuclei, and atomic clusters
[13-15, though in the present paper, such anomalies emerge
N 2 N as dynamical featurg£9,30. In order to understand better
H=K+V=E p_‘+_ 2 [1—cog6,—6)], (1) this disagreement, we focus on a particular energy value,
S12 2N R namelyU=0.69, and we follow the time evolution of tem-
perature, magnetization, and velocity distributions.

In Fig. 1(b), we report the time evolution of (K)/N, a
where 6; is theith angle andp; the conjugate variable rep- quantity that, evaluated at equilibrium, is expected to coin-
resenting the angular momentuior the rotational velocity cide with the temperature(() denotes time averagesThe
since unit mass is assumed@he interaction is the same as in system is started with WBIC and rapidly reaches a meta-
the ferromagneticX-Y model[2], though the summation is stable or quasistationary std@SS which does not coincide
extended to all couples of spins and not restricted to firstvith the canonical prediction. In fact, after a short transient

time, 2(K)/N shows a plateau corresponding to a
N-dependent temperaturéos{N) (and Mgss~0) lower

*Email address: vito.latora@ct.infn.it than the canonical temperature. This metastable state needs a
"Email address: andrea.rapisarda@ct.infn.it long time to relax to the canonical equilibrium state with
*Email address: tsallis@cbpf.br temperatureT.,,=0.476 and magnetizatioM.,,=0.307.
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FIG. 1. (a) Caloric curve: microcanonical numerical results fb+ 10 000,100 000 are compared with equilibrium theory in the canonical
ensemble. The dashed vertical line indicates the critical energy. Water bag initial con@itiBhS) are used in the numerical simulations.
Temperature is computed frof=2(K)/N, where(-) denotes time averages after a short transient tymel(? (not reported heje The
time step used was 0[22]. (b) Microcanonical time evolution of @)/N, for the energy density =0.69 and different sizes. Each curve
is an average over typically 1601000 events. The dot-dashed line represents the canonical tempdrgi#®.476. The quantity &)/N,
which starts from an initial value 1.38/&0 andK=UN in WBIC), does not relax immediately to the canonical temperature. The system
lives in a quasistationary statQSS with a plateauemperature s N) smaller than the expected value 0.476. The lifetime of the QSS
increases withN and the value of their temperature convergesNascreases, to the temperatufe =0.38, reported as a dashed line.
Log-log plot of the QSS lifetiméc) andTos{N) — T.. (d) are reported as a function of the sideThe lifetime diverges linearly with, and
TosdN) converges tar,,=0.38 asN ™% (see fit shown as a dashed lindlote that from the caloric curve one g&=T+1—-2U=T
—0.38. Therefore, from the behavior reported in paok| being T..=0.38, one getdl gss= N~%6, Results are similar when we consider
double water bag initial condition®WBIC), i.e., ;=0 for all i and velocities uniformly distributed in|{p,,—p4) and (p1,p,). In the
figure, we report the cage;=0.8, p,=1.51.

The duration of the plateau increases with the size of thenechanics, since it is true even when the system is not at the
system: in particular, we have checked that the lifetime ofusual BG equilibrium. We have checked the robustness of
QSS has a linear dependenceMnsee Fig. {c). Therefore, the above results by changing the level of accuracy of the
the two limitst—o~ andN—c do not commute and if the numerical integration and by adding small perturbations. We
thermodynamic limit is performed before the infinite time also verified that the QSS has a finite basin of attraction, by
limit, the system does not relax to the BG equilibrium. Thisadopting different initial conditions, as for example, double
has been conjectured to be an ubiquitous feature in nonexvater bag initial condition$DWBIC). In Fig. 2, we focus on
tensive system$25], but it has also been found for spin the velocity probability distribution function€?DF’s). The
glasses[17]. When N increasesTosdN) tends to T, initial velocity PDF’s (WBIC or DWBIC), reported in Fig.
=0.380, a value obtained analytically as the metastable pra2(a) , quickly acquire and maintain during the entire duration
longation (at energies below.=0.75) of the high-energy of the metastable staterson-Gaussian shapsee Figs. &)
solution (M =0). We have also found th@l os{N)—T..] and Zc). The velocity PDF of the QSS is wider than a
«N~ andMqsecN~ 6, see Fig. 1d). At the same time, Gaussian for small velocities, but shows a faster decrease for
we have checked that increasing the size, the largegi>1.2. The enhancement for velocities aroynd1l is con-
Lyapunov exponent for the QSS tends to zero. In this senssjstent with the anomalous diffusion and théviewalks
mixing is negligible and one expects anomalies in the relax{with average velocityp~1) observed in the QSS regime
ation proces$31]. The fact thafl gssconverges to a nonzero [23]. The following rapid decrease far>1.2 is due to con-
value of temperature fdl— o means that, whel is mac-  servation of total energy . The stability of the QSS velocity
roscopically large, systems may share the same temperatueRDF may be explained by the fact that, fdr-, Mgss
though this equilibrium is not the familiar one. All this —0 and thus the force on the spins tends to zero \hith
amounts to say that the zeroth principle of thermodynamic®eingF;=—M,sing; + M, coss; . Of course, for finiteN, we

is stronger than what one might think through BG statisticahave always a small random force, which makes the system
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FIG. 2. Time evolution of the velocity probability distribution functiPDF) for U= 0.69 and different sizes of the systefa). At time
t=0 we start with a singléwBIC) or a doubleg DWBIC) water bag velocity PDRb) In the transient regime wherd R)/N shows a plateau
corresponding tdl5sdN) and the system lives in a quasistationary stQ€9, the velocity PDF’s do not change in time and are very
different from the Gaussian canonical equilibrium distributifuil curve). The PDF'’s at time= 1200 forN=1000,10 000,100 000 show a
convergence towards a non-Gaussian distribution that can be fitted by means of a power-law analyti¢dhshad curveconsistent with
the generalized nonextensive thermodynam#& proposed by Tsallis and characterizeddpy 7 andT=0.38, see text. The theoretical
curve has been truncated with a sharp cutoff in order to have total probability equal to one, sé® The. same curves shown {b) at
t=1200 are reported in linear scale) We show the difference), between the numerical results and the theoretical curve, as a function
of N for the four values op indicated by arrows in panét). (e) We show the numerical PDF’s &t 500 000 forN=500 and 1000. We
get an excellent agreement with the Gaussian canonical equilibrium distribution at temp&ratur6.

eventually evolve into the usual Maxwell-Boltzmann distri- cently used to describe successfully turbulent Couette-Taylor
bution after some time. We show this for small systemNs ( flow [5] and non-Gaussian PDF's related to anomalous dif-
=500,1000) at time&:=500 000 in Fig. 28). When this hap- fusion ofHydracells in cellular aggregatd49]. In our case,
pens, Ley walks disappear and anomalous diffusion leaveghe best fit is obtained by a curve with=7, T=0.38 as
place to Brownian diffusiof23]. A possible frame to repro- shown in Figs. ®) and Zc). The agreement between nu-
duce the non-Gaussian PDF in FigbRcould be the nonex- merical results and theoretical curve improves with the size
tensive statistical mechanics recently propog&si 26 with of the system. A finite-size scaling confirming the validity of
the entropic indexg+# 1. This formalism provides, for the the fit is reported in paneld), where A=P,,—P,um. the
canonical ensemble,gdependent power-law distribution in difference between the numerical results and the theoretical
the variablesp;, 6;. This distribution has to be integrated curve forq=7, is shown to go to zero as a powerf(for
over all §; and all but onep; in order to obtain the one- four values ofp). Sinceq> 3, the theoretical curve does not
momentum PDFP (p), to be compared with the numerical have a finite integral, and therefore, it needs to be truncated
one, P um(p), obtained by considering, within the presentwith a sharp cutoff to make the total probability equal to one.
molecular dynamical frame, increasingly larjesized sub- It is however clear that the fitting valug=7 is only an
systems of an increasingly largd system. Within theM effective nonextensive entropic index. Similar non-Gaussian
>N>1 numerical limit, we expect to go from the microca- PDF’s have also been found in turbulence and granular mat-
nonical ensemble to the canonical oftee cutoff is then ter experiment$5,16], though this is the first evidence in a
expected to gradually disappear as indeed occurs in the usudhmiltonian system. In Fig. 3, we verify, through the calcu-
short-range Hamiltonians thus justifying the comparison lation of the fractal dimensioD, [32], that a dynamical
betweenP,(p) and P,,(p). The enormous complexity of correlation emerges in the space before the final arrival to
this procedure made us turn instead to a naive, but tractable, quasiuniform distribution. During intermediate times some
comparison, namely that of our present numerical resultfilamentary structures appear, a similar feature has recently
with the following one-free-particle PDE25] P(p)=[1 been found also in self-gravitating systefit4], which might
—(1/2T)(1—q)p?]¥*~9, which recovers the Maxwell- be closely related to the plateaus observed in Fig). We
Boltzmann distribution foig=1. This formula has been re- learn from the curves in Fig.(® that, since they do not
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FIG. 3. Correlation inu space(a) We show theu space, i.e., the angle and momenta of §hgarticles, forU =0.69 andN =10 000 at
different time scales, starting from WBIC. Although the initial configuration is uniform, structures emerge and persist for a very long time
before dissolving again at equilibrium. A way to measure these correlations is by means of the correlation [B&g@(r)
=(1/N2)2i“,‘j®(r—di,j) whered, ; is the Euclidean distance between two points of ghepace. In generalG(r)=rP2, whereD, is the
correlation fractal dimensiortb) By reporting the logarithm o€(r) vs the logarithm of, a linear behavior over several decades is found.
The fractal dimension thus extracted is reportedcinvs time (an average over 50 events is considgrém the same time scale where we
find the QSS, the correlation dimension is inbetween one and two. The particles are fully spread sptue only at equilibrium. As time
increasespD, grows continuously from one to two.

sensibly depend oN, the possible connection does not con- actions belong to this very rich class. We have verified that
cern the entirew space, but perhaps only the small sticky the usual attributes of thermal equilibriurperoth principle
regions between the “chaotic sea” and the quasiorff3. at finite temperatures, robustness associated with a finite ba-
Metastable states are ubiquitous in nature. Their full unsin of attraction in the space of the initial conditions, stable
derstanding is, however, far from trivial. They basically cor- distribution of velocities are satisfied, but thegystemati-
respond to local, instead of global, minima of the relevantcally differ from whatBG statistical mechanics have made
thermodynamic energy. The two types of minima are sepafamiliar to us for the last 130 years. Our findings indicate
rated by activation barriers that at the thermodynamic limit,some consistency with the predictions of nonextensive statis-
may be low, high, or infinite, all of them presumably occur- tical mechanicg25], though a firm and unambiguous con-
ring in nature. The last case yields of course to quite drastiaection remains a challenge for future studies. In particular,
consequences. Moreover, the local minimum may eithewe believe all these features not to be exclusive of the
make the system to live in a smooth part of thepriori present HMF model. Similar scenarios are expected for sys-
accessible phase space, or it may force it to live in a geotems with, for example, two-body interactions decaying like
metrically more complexe.g., multifractal part of the phase r~* for 0<a=<a., wherea, is equal, for classical systems,
space. The richness of such a situation is what makes the the space dimensidi27,28|.
study of glasses, nuclei, atomic clusters, self-gravitating and
other complex systems interesting. It is natural to expect for
such systems that the infinite size and infinite time limits are We thank M. Antoni, F. Baldovin, M. Baranger, E.P.
not interchangeable. What has emerged quite clearly here Borges, E.G.D. Cohen, X. Campi, H. Krivine, M. ietrd, S.
that thermodynamically large systems with long-range interRuffo, and A. Torcini for stimulating discussions.
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