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Optimizing traffic lights in a cellular automaton model for city traffic
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We study the impact of global traffic light control strategies in a recently proposed cellular automaton model
for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model
for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square
lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting
from a simple synchronized strategy, we show that the capacity of the network strongly depends on the cycle
times of the traffic lights. Moreover, we point out that the optimal time periods are determined by the
geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchro-
nized traffic lights, the derivation of the optimal cycle times in the network can be reduced to a simpler
problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to
obtain an enhanced throughput in the model, improved global strategies are tested, e.g., green wave and
random switching strategies, which lead to surprising results.
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I. INTRODUCTION further explanation Chowdhury and Schadschneidg®S)
[10,11 combine basic ideas from the Biham-Middleton-
Mobility is nowadays regarded as one of the most signifi-Levine (BML) [12] model of city traffic and the Nagel-
cant ingredients of a modern society. Unfortunately, the caSchreckenbergNaSch [13] model of highway traffic. This
pacity of the existing street networks is often exceeded. Irextension of the BML model will be denoted ChSch model
urban networks, the flow is controlled by traffic lights andin the following.
traffic engineers are often forced to question if the capacity The BML model[12] is a simple two-dimension&square
of the network is exploited by the chosen control strategylatticel CA model. Each cell of the lattice represents an in-
One possible method to answer such questions could be thersection of an east-bound and a north-bound street. The
use of vehicular traffic models in control systems as well aspatial extension of the streets between two intersections is
in the planning and design of transportation networks. Focompletely neglected. The cellstersectionscan either be
almost half a century, there were strong attempts to developmpty or occupied by a vehicle moving to the east or to the
a theoretical framework of traffic science. Up to now, therenorth. In order to enable movement in two different direc-
are two different concepts for modeling vehicular traffcr ~ tions, east-bound vehicles are updated at every odd discrete
an overview, sed1-8]). In the “coarse-grained” fluid- time step whereas north-bound vehicles are updated at every
dynamical description, traffic is viewed as a compressiblesven time step. The velocity update of the cars is realized
fluid formed by vehicles that do not appear explicitly in the following the rules of the asymmetric simple exclusion pro-
theory. In contrast, in the “microscopic” models, traffic is cess(ASEP [14]: a vehicle moves forward by one cell if the
treated as a system of interacting particles where attention iell in front is empty, otherwise, the vehicle stays at its ac-
explicitly focused on individual vehicles and the interactionstual position. The alternating movement of east-bound and
among them. These models are therefore much better suitemrth-bound vehicles corresponds to a traffic light's-cycle of
for the investigation of urban traffic. Most of the “micro- one time step. In this simplest version of the BML model,
scopic” models developed in recent years are usually formutane changes are not possible, and therefore, the number of
lated using the language of cellular autom@@#) [9]. Due  vehicles on each street is conserved. However, in the last few
to the simple nature, CA models may be used very efficientlyears, various modifications and extensigd§—2J have
in various applications with the help of computer simula-been proposed for this modélee alsd8] for a review.
tions, e.g., large traffic network may be simulated in multiple The NaSch mode[13] is a probabilistic CA model for
realtime on a standard PC. one-dimensional highway traffic. It is the simplest known
In this paper, we analyze the impact of global traffic light CA model that can reproduce the basic phenomena encoun-
control strategies, in particular, synchronized traffic lights,tered in real traffic, e.g., the occurrence of phantom jams
traffic lights with random offset, and with a defined offset in (*jams out of the blue’). In order to obtain a description of
a recently proposed CA model for city traffisee Sec. Il for highway traffic on a more detailed level, various modifica-
tions to the NS model have been proposed and many CA
models were suggested in recent ye@se[21-25). The
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which are forbidden explicitly in the model, the driver has to d
brake if the speed exceeds the free space in front. This brak- ™
ing event is implemented by the second update rule. In the

third update rule, a stochastic element is introduced. Thisala| 8 | =] @
randomizing takes into account the different behavioral pat- ]
terns of the individual drivers, especially nondeterministic - - m
acceleration as well as overreaction 'while'slowing down. T T

Note, that the NaSch model with,,=1 is equivalent to the E’
ASEP which, in its deterministic limit, is used for the move-
ment in the BML model.

One of the main differences between the NaSch model] T TTw[ ] B [ = B —
and the BML model is the nature of jamming. In the NaSch
model, traffic jams appear because of the intrinsic stochas-
ticity of the dynamicq26,27. The movement of vehicles in
the BML model is completely deterministic and stochasticity J&] [T [ =Y =Y 4 —
arises only from the random initial conditions. Additionally, it B % 8
the NaSch model describes vehicle movement and interac- I~
tion with sufficiently high detail for most applications, while T T T
the vehicle dynamics on streets is completely neglected in
the BML model (except for the effects of hard-core exclu-  FIG. 1. Snapshot of the underlying lattice of the model. In this
sion). In order to take into account the more detailed dynam-<ase, the number of intersections in the quadratic network is set to
ics, the BML model is extended by inserting finite streetsNXN=16. The length of the streets between two intersections is
between the cells. On the streets, vehicles drive in accorchosen td —1=4. Note that vehicles can only move from west to
dance to the NS rules. Further, to take into account interaceast on the horizontal streets or from south to north on the vertical
tions at the intersections, some of the prescriptions of th€nes. The magnification on the right side shows a segment of a
BML model have to be modified. At this point, we want to west-east street. Obviously, the traffic lights are synchronized and

emphasize that in the considered network, all streets ar@erefore all vehicles moving from south to north have to wait until
equal in respect to the processes at intersection, i.e., rfgey switch to “green light.”

streets or directions are dominant. The average densitiefg single streets between each pair of successive intersec-
traffic light periods, etc., for all streetSntersections are  tions. Moreover, the traffic lights are assumed to flip periodi-
assumed to be equal in the following. _ cally at regular time interval3 instead of alternating every
The paper is organized as follows: In the next section, thgime step T>1). Each vehicle is able to move forward in-
definition of the model is presented. It will be shown that agependently of the traffic light state, as long as it reaches a
simple change of the update rules is sufficient to avoid thejte where the distance to the traffic light ahead is smaller
transition to a completely blocked state that occurs at a finitgn g the velocity. Then it can keep on moving if the light is
density in analogy to the BML mod¢ll8—-20. Note, that  green. Otherwise, it has to stop immediately in front of it.
this blocking is undesirable when testing different traffic ~ A5 one can see from Fig. 1, the network of streets builds
light control strategies and is therefore avoided in our analy Nx N square lattice, i.e., the network consistMforth-
ses. In Sec. Ill, different global traffic light control strategies pq,nd and\ east-bound street segments. The simple square
are presented and their impact on the traffic will be shown|atiice geometry is determined by the fact that the length of
Further it is illustrated that most of the numerical resultsy)| oN2 street segments is equal and the streets segments are
affecting the dependence between the model parameters agds;;med to be parallel to theandy axis. In addition, all
the optimal solutions for the chosen control strategies may bgiersections are assumed to be equitable, i.e., there are no
derived by simple heuristic arguments in good agreementyain roads in the network where the traffic lights have a
with the numerical results. In the summary, we will discus?higher priority. In accordance with the BML model, streets
how the results may be used benefitably for real urban traffig 3 rqjiel to thex axis allow only single-lane east-bound traffic
situations and whether it could be useful to cpnslder IMyhile the ones parallel to theaxis manage the north-bound
proved control systems, e.g., autonomous traffic light conyaffic. The separation between any two successive intersec-
trol. tions on every street consists Bf—1 cells so that the total
number of cells on every street is=ND. Note that forD
Il. DEEINITION OF THE MODEL =1, thg structure of the ngtwork cqrrequnds to the BML
model, i.e., there are only intersections without roads con-
The main aim of the city model proposed [ii0] is to  necting them.
provide a more detailed description of city traffic than that of The traffic lights are chosen to switch simultaneously af-
the original formulation of the BML model. Especially the ter a fixed time periodl. Additionally, all traffic lights are
important interplay of the different time scales set by thesynchronized, i.e., they remain green for the east-bound ve-
vehicle dynamics, distance between intersections and cycleicles and they are red for the north-bound vehicles and vice
times may be studied in the ChSch model. Therefore, eachersa. The length of the time periods for the green lights
bond of the network is decorated with— 1 cells represent- does not depend on the direction and thus the “green light”
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periods are equal to the “red light” periods. At this point, it state of the system\, vehicles are distributed among the
is important to premention that a large part of our investigastreets. Here, we only consider the case where the number of
tions will consider a different traffic light strategy. In the vehicles on east-bound stredlg=N,/2 is equal to the one
following, the strategy described above will be called “syn- on north-bound streetd, =N, /2. The global density then is
chronized strategy.” In addition, we improved the traffic defined byp=N,/N2(2D—1) since in the initial state, the
lights by assigning an offset parameter to every one. ThifN? intersections are left empty.
modification may be used, for example, to shift the switch of Note that we have modified Case 2 of Step 2 in compari-
two successive traffic lights in a way that a “green wave” son to[11]. Due to this modification, a driver will only be
may be established in the complete network. The differentible to occupy an intersection if it is assured that he can
“traffic light strategies” used here are discussed in detail inleave it again. A vehicle is able to leave an intersection if at
Sec. lll. least the first cell behind it will become empty. This is pos-
As in the original BML model, periodic boundary condi- sible for most cases except when the next two cells directly
tions are chosen and the vehicles are not allowed to turn dehind the intersection are occupied. The modification itself
the intersections. Hence, not only the total numbgrof is done to avoid the transition to a completely blocked state
vehicles is conserved, but also the numblgsand N, of  (gridlock) that may occur in the original formulation of the
east-bound and north-bound vehicles, respectively. All thes€hSch model. Further in the original formulatiph0], the
numbers are completely determined by the initial conditionstraffic lights mimick effects of a yellow light phase, i.e., the
In analogy to the NS model, the speeaf the vehicles may intersection is blocked for both directions one second before
take one of thev,t1 integer values in the range  switching. This is done to attenuate the transition to a
=0,1, ... pmax- The dynamics of vehicles on the streets isblocked statggridlock). Since the blocked states are com-
given by the maximum velocity o, @nd the randomization pletely avoided in our modification, we do not consider a
parametemp of the NaSch model that is responsible for theyellow light anymore. The reason for avoiding the gridlock
movement. The state of the network at tirnel may be situation in our considerations is that we focus on the impact
obtained from that at timeby applying the following rules of traffic light control on the network flow, so that a transi-

to all cars at the same tim{parallel dynamick tion to a blocked state would prevent it from exploring
Step l:Acceleration: higher densities. Besides, relatively small densities are more
relevant for applications to real networks. However, taking
Un—MiN(v+ 1,0 may).- into account that situations where cars are not able to enter

an intersection are extremely rare, it is clear that this modi-
fication does not change the overall dynamics of the model.
Moreover, we compared the original formulation of the

ChSch model and the modified one by simulations and found
no differences except for the gridlock situations that appear
in the original formulation due to the stronger interactions

between intersections and roads.

Step 2:Braking due to other vehicles or traffic light state:
Case 1: The traffic light is red in front of theth vehicle:

vy,—min(v,,d,—1s,—1).

Case 2: The traffic light is green in front of thnth ve-

hicle:
If the next two cells directly behind the intersection are
occupied Ill. STRATEGIES
vy—min(v,,d,—1s,— 1), As mentioned before, our main interest is the investiga-
] tion of global traffic light strategies. We want to find meth-
othrewise ods to improve the overall traffic conditions in the consid-

ered model. At this point, it has to be taken into account that
all streets are treated as equivalent in the considered network,
i.e., there are no dominant streets. This makes the optimiza-
tion much more difficult and implies that the green and red
phases for each direction should have the same length. For a
main road intersection with several minor roads, the total
Step 4:Movement: flow usually may be improved easily by optimizing the flow
on the main road.
Xp—Xn+Up. We first study the dependence between traffic light peri-
ods and aggregated dynamical quantities such as flow or
Here, x, denotes the position of thath car andd, mean velocity. It is shown that investigating the simpler
=Xn+1— X, the distance to the next car ahe@ee Fig. L  problem of a single road with one traffic liglite., N=1)
The distance to the next traffic light ahead is givensjy  operating as a defect is sufficient to give appropriate results
The length of a single cell is set to 7.5 m in accordance taoncerning the overall network behavior. The results can be
the NS model. The maximal velocity of the cars is set toused as a guideline to adjust the optimal traffic light periods
Umax=> throughout this paper. Since this should correspondn respect to the model and network parameters. Further, we
to a typical speed limit of 50 km/h in cities, one time step show that a two-dimensional green wave strategy may be
approximately corresponds 2 s inreal time. In the initial  established in the whole network giving much improvement

vp—min(v,,d,—1).
Step 3:Randomization with probability:p

v,—maxv,—1,0).
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in comparison to the synchronized traffic light switching.  0.35 . .
Finally, we demonstrate that switching successive traffic :
lights with a random shift may be very useful to create a

0.3t

more flexible strategy that does not depend much on the
model and network parameters. Throughout the paper, we
will always assume that the duration of green light is equal to
the duration of the red light phase.

A. Synchronized traffic lights

The starting point of our investigations is the smallest
possible network topology of the ChSch model. Obviously,
this is a system consisting of only one east-bound and one
north-bound street, i.eN=1, linked by a single intersection.
As a further simplification, we focus on only one of the two
directions of this “mini” network, i.e., a single street with
periodic boundary conditions and one signalized cell in the
middle. It is obvious that in the case of one single traffic light
the term “synchronized” is a little bit confusing, but the
relevance of this special case to large networks with synchro-
nized traffic lights will be discussed later.

Figure 2 shows the typical dependence between the time
periods of the traffic lights and the mean flow in the system.
For low densities, one finds a strongly oscillating curve with
maxima and minima at regular distances. In the case of ¢
small fluctuation parametep, similar oscillations may be
even found at very high densities. For an understanding of
the underlying dynamics leading to such strong variations in
the mean flow, we take a look into the microscopic structure.

0.18

0.14

0.12
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-+ p =050
- p=070

This will allow us to formulate a simple phenomenological 0.1

approach that shows a very good agreement with numerica

results. Note that we restrict our investigations to low densi-

ties because for free-flow densitiesgehicles are not con- o.os0 % o0 150

stricted by jamming due to the model dynamics, but rather

T

by “red” traffic lights. Hence, the free-flow density range
shows the largest potential for flow optimization. Later on, FIG. 2. The mean flow of the smallest network segmefune
we will point out the origin of the oscillating flow even at single intersectionN=1) is plotted for different global densities as

very high densities, which is completely different to the free-a function of the cycle lengtfi. For the top part of the figure, we
flow case. use a randomization parameterpf 0.1, while in the bottom plot,

To give an impression of the influence of the cycle timeshigher fluctuationg=0.5 are considered. In both cases, the free-

on the vehicle movement a schematic representation of thii?W regime (density p=0.05) shows a similar shape. The high-
observed street is depicted in Fig. 3. This picture covers typigensny regime reflects a stror_lger dependenc_:e on the randomization
cal dynamical patterns occurring in the system due to Veparameter, but also for the highprstrong varlatlons of the mean
hicles that are restricted in their movement by the “red.fIOW may be found. The Ieng_th of the streetis- 100 and the flow
. . . . y . _is aggregated over 100000 time steps.
light.” Based on these scenarios, a simple phenomenologlca?
approach is presented in the following that is able to explain
the dependence between vehicle movement and model pa-
rameters. We assume that during one traffic light cycle, freeof the them and hence fluctuations cannot spread out. In
flowing vehicles form a stable cluster with a width that is addition, the cycle length is of the order of the street length
approximately constant. Further, we assume that a phas# more precisely, the travel time from one intersection to the
separation between free-flowing and jammed vehicles takesext. It makes no sense to consider cycle times that are much
place at high densities. The legitimation for these assumparger than the travel time that is proportional to the length of
tions is given by the fact that the vehicle movement is trig-the street segment. Note that the lifit~ corresponds to
gered by the traffic light, i.e., vehicles are gathered in fronthe case in which one direction of the network is free to
move all the time, while on the other direction it comes to a
complete stop. The resulting flow then is exactly half of the
Here, states are denoted as free-flow states if the mean densityfi@w found in the underlying NaSch model.
smaller than the density corresponding to the maximum flow of the In the following, we focus on five scenariga)—(e). The
underlying NaSch model. caseqa), (b), and(c) describe the derivation of the maxima/
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FIG. 3. Schematic representation of the ve-
hicle movement on the east-bound street for dif-
A A ferent cycle times. Standing cars are represented
by dark gray rectanglesx(axis) while moving
vehicle clusters are bright gray rectangles. The
traffic light is placed in the middle of every figure
(time runs along thg axis). Its state is indicated
by the color of the vertical rectangle. Green light
corresponds to the white colored area of the traf-
fic light, while red light is painted in dark. At this
point, one has to take into account that the con-
sidered street has periodic boundary conditions,
and therefore, vehicles leaving the right end of
every scenarida)—(e) will return after a certain
) d time on the left side.

e

minima of the ¢,T) curve, (d) gives a calculation of the wherev..=vmapP is the free-flow velocity of the underlying
mean velocity between maxima and minima, &adinallya NS model. In Fig. 8), a situation is displayed where ve-
Ca|Cl.J|at|0n of the mgan Ve|OC|ty between the minima an(':hides Organize ina C|u5téﬁght gray rectangtewhich can
maxima. We now discuss these scenarios in more detailygye ahead all the time. This is only possible if the time for
Note that they are quasideterministic and may be slightlyne complete traffic light cycle, i.e., including green and red
modified m_the presence pf fluctL_latlons. _ phase, is equal to the cycle time of a vehidlg,e= Tyreen

(a) The time a free-flowing vehicle requires to move from +T,.4=2T. Obviously, this case corresponds to a maximum
one intersection to the succeeding dpnee full turn on the in frl‘i)w whereby thel traffic light period is given by
periodic street foN=1) is equal to =Tied2. Additionally, there are further maxima whéiee

D =N(Tgreent Tred With (n=0,1,2 ... ). Thus, the traffic light

Tfreez?, 1) period corresponding to a maximal system flow is given by
ree
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Tfree
2n

)

Tmax=

o numerical results
phen. prediction

With similar arguments, the occurrence of minima may be
explained. These minima correspond to situations where the
traffic lights switch exactly to red when a vehicle cluster
reaches a intersection. It is clear that the assumptions abov
are only valid for very short cycle times T&Tgee . In the i
following, we will concentrate on more realistic “larger” >
periods, i.e. I=Tiee.

(b) In Fig. 3(b), a situation is shown where vehicles are
gathered in front of a red light. After the traffic light switches
to green, the vehicles start moving. Then it switches back ta
red exactly at the time when the first car of the moving
vehicle cluster reaches the intersection again. Now the com

plete vehicle cluster comes to rest and has to wait until the 0 50 100
traffic light switches again to green to continue the move- T

ment. Obviously, this case corresponds to a minimum in the ;4 . .

flow. The corresponding cycle time is given by the following o—0p=005NxN=1,D=100
assumptions. For this scenario, it is sufficient to focus on the e—ap=0.70,NxN=1,D=100

+—+ p =0.05, NxN =100, D = 100

first car of the cluster. At the beginning, the first vehicle has b = 0.70, NxN = 100, D = 100

to accelerate to its maximum velocity. This acceleration pro- 0.25 g, g
cess will take on averadk,.—= vma/(1—p) time steps. After a
that, the vehicle has to trespass the rest of the street until i
reaches the intersection again. The mean velocity on that pai
of the road is given bye.. The length of this road segment
is given by the length of the street minus the distance that the
vehicle has covered during its acceleration phase. Therefore
the time Tgs=[D — Tacd Umaxt 1)/2]/vee €lapses until the 0.15
intersection is reached. In summary, if the chosen cycle time

is equal to

0.2

Tmin= Tacct Thirst N Tirees 3 0.1 : :
min acc first free ( ) 0 50 100 150

T

the system flow is minimal. The last termTgee (With n
=0,1,2...) takes into account traffic light periods that are  FIG. 4. Top: The mean velocity ea, for a minimal network
larger than the required time to move from one intersectiorN=1 is plotted against the cycle tinfe The street has a length of
to the succeeding one or to make one turn on a periodit =100 cells and the density is setge-0.05(free-flow casg One
system. That way the vehicle cluster is able to perferm can clearly see that the phenomenological approximation agrees
“turnarounds” before it has to stop immediately in front of very well with the simulation data. Bottom: In order to show how
the “red light.” These minima at regular distances Bfee the small network segment with=1 (considered in the heuristic
time steps may be easily identified in Figs. 2,4. approachcompares to the complete ChSch city network model, we
(¢) In accordance with the occurring minima, one may?Plotted the mean flow against the traffic light peribdThis is done
also find maxima at regular distancege Figs. 2, ¥ These  ©nce for the “mini network” consisting of one sm_gle intersection
maxima correspond to situations where the length of théN'th a street length of. =100 cells and for a relatively large net-

. . _ . . . 2
green time intervals is sufficiently large so that the last veVork consisting ofNXN=100 intersections with 8" street seg-

hicle of a moving cluster is able to pass the intersectiod"e"ts €ach 0D =100 cells in length. We consider two different
before the traffic light switches to red. To derive the cycle(iens't'es’ one of them Cor.reSpond!ng o the free_ﬂ.ow density
times corresponding to this situation, one has to focus on th_o'.OS. and_the other to a high-density state0.7. Obviously, the -
last car. Before the traffic light SWit(,:hes to green there ar Sewatlons in the c_u_rves_between the_ large _network and the “_m|n|
- o . Setwork” are negligible in both density regimes. The randomiza-
Nyt Vehicles standing in front of itdark gray rectangle tion parameter ip=0.1 and the maximum velocity i8,,,=5 in
[see Fig. 8o)]. After the switch to green, the last vehicle of poih giagrams. max
the cluster has to wait on avera@gi= (Nyait— 1) oy time
steps before the vehicle in front started to modg,(is equal time to cover this part of the road is given By,=[D
to the flow out of a jam Then, furtherT ... [see casdb)] + Nyait— TacdVmaxt 1)/2lvgee. Note that in comparison to
time steps are needed for the vehicle to accelerate to itsase(b), the last vehicle has to cover a slightly larger dis-
maximum velocity. From then on, the vehicle has to reachtance than the first one due to its shifted starting position of
the first cell(behind the intersectigrof the succeeding street aboutN,,,;: cells. Therefore, the system is in a state with of
within the remaining “green light” interval. The required maximum flow for the following cycle times
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Tmax= Twait+ Tacet Tiastt N Ttree- (4) completen+1 cycles before they are forced to stop leads to
a simple linear dependence between the mean velocity and
the cycle time in this area.

As in (b), the last term Ty takes into account large cycles |, the left part of Fig. 4 we show how the mean velocity

where the vehicle cluster is able to makéull turns before ¢ v« 1 orth-bound street of the considered “mini network”

the(g))lcwred S'tcl;a}[tizon orcc\:/lijrs. 8-(0) basis for depends on the cycle time and compare these results with the
. € use € previous cased)—{c) as a basis 10 phenomenological predictions made (&—(e). As one can
simple heuristic arguments to derive the cycle times corret

. . - . see, the theoretical curve shows an excellent agreement with
sponding to maximal and minimal mean flow states in the

system. In the remaining cases, we will show that even th(EJhe simulation data. Not only the positions of the maxima

complete dependence of the mean velocity on the cycle timgnd minima are predicted by theory, but also the shape of the

may be obtained from simple phenomenological assum curve between_ the extrema Sh.OWS a very good agreement
. ; LS with the numerical results. At this point, we want to empha-
tions. For this purpose, we focus on a situation where the. ;

. . . . B Size that we checked the mean velocity on the east-bound
vehicle cluster is able to cross the intersection within theStreet as well and found exactly the same results. This is not
“green light,” i.e., the traffic light does not switch when the y '

vehicle cluster occupies the intersection. After the vehiclef#éﬂ:';#?g :I %Tectilr:ss (')ngt%nzz(rj:g?ggg ;hr? ttr?e? g;rr]?éloineof
cluster has passed the intersection at mosimes the ve- gnt cy PR

hicles will come to a rest in front of a “red light.” The the time of “red light” is equal to the “green light” and

- - . when the north-bound direction switches to green then the
remaining waiting time depends now on the chosen CyCIeeast-bound direction switches to red and vice versa. There-
time. If the traffic light switches to red immediately before §

the vehicles reach the intersection, the situation correspon(%gersgﬁelévgoaﬂg%edn; d;rne dcet'r?tnSg:g%;?ﬂg?gsﬁgi? ﬁts ag?tozg
to minimal flow[see(b)], i.e., the vehicles must wait for the P P : ’ gnt p

complete cycle timd. Contrary, if the traffic light switches F '9. 4 shows ”that the results obtained from the observed
mini network” are completely transferable to large net-

directly after the cluster has trespassed, the intersection thﬁorks Thus, we stress that the assumptions mada)ie)
situation corresponds to the case of maximal fleae(c)], ' ' b

i.e., the vehicle cluster may perform a complete turn within anay be used to adjust the optimal cycle times in large net-

“red light” phase and therefore the remaining waiting time works, i.e., in the ChSch model with synchronized traffic

gets minimal. The more general case is given by a SituatioI|ghts. The excellent agreement between the small and the

. 2 ; g Parge network situation may be ascribed to the synchronized
between maximal and minimal flow, i.e., the vehicle cluster . . .
. . . ..~ strategy. In fact, there is no difference for a vehicle ap-
is able to pass the intersection and then after a certain time

the traffic light switches to “red light.” To obtain the mean proaching an intersection that is a part of a large network or
velocity of the vehicles within a corﬁ lete cvcle. .. — 2T approaching the only existing intersection due to the periodic
neithery one has to take into accour?t the )\:V&%Zmla timés OPoundary conditions. The state of the traffic lights will be the

vehicles in the starting phase nor the acceleration process me in both cases because of the synchronized strategy.

. . ; S oreover, it is very interesting that although the vehicle
the vehicles until the maximum velocity is reached. In fact, X ; X
; . . movement is stochastitNS mode)] and the mean density on
only the driven distance that is equal moturnarounds for

: . . . the streets in the network fluctuates, there is no local concen-
every vehicle must be considered in order to obtain the meaj) . . . .
ration of vehicles in the network leading to remarkable de-

velocity. Note that each vehicle starts its movement out of a._ . in the fl . . he idealized “mini
certain position in a waiting queue in front of the traffic light V|at|ons”|n the flow in comparison to the idealized “mini
and will occupy exactly the same position when it comes tongtvv_ork where the densny_o_n the streets Is fixed. Note that
a rest again. The mean velocity is given by this is in contrast to the orlg_mal formulatlpn of the ChSch

model where a blockage of intersections is allowed. There-
fore, fluctuations may lead to a complete breakdown of flow

U_max—mir{Tan): nD/2T. (5) at high densities where standing vehicl_es are ga_thered in_ one

part of the network. It seems that the signalized intersections

of the model interact with the density fluctuations in a way
With Eg. (5), it is possible to plot the mean velocity of the that the vehicles are equally distributed in the network. The
system against the traffic light periods only between edbh extreme fluctuations in the distribution do not play an impor-
maximum andnth minimum of the curve. The shape of the tant role in progress of time because the blockage of an in-
curve between theth minimum and the if+1)-th maxi- tersection due to such fluctuations is excluded lisee Sec.
mum will be discussed ife). One should keep in mind that 1l) and so the density on the roads fluctuates around a mean
the scenariogb)—(e) assumer = Tyee. value.

(e) In Fig. 3(e), a situation is pictured where the traffic ~ The results obtained by the phenomenological approach
light switches to ‘“red light” within the time interval at confirm that the dynamics in the network is driven by the
which the vehicle “cluster” crosses the intersection. As atraffic lights and are mainly determined by the distance be-
consequence, the fraction of vehicles in front of the traffictween them and the density of cars. It seems that the influ-
light will come to a stop while the rest of the vehicles behindence of the model chosen for the vehicle movement plays a
it is able to move on until they reach the traffic light again secondary role. We only assume the mean velocity of free-
(periodic boundary conditionsThe fact that only a fraction flowing vehicles and the outflow out of a jam as parameters
of vehicles is able to complete cycles whereas others can for the movement from the underlying NaSch model. To
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verify this, we investigate a comparable network scenarianvestigate because the jamming in the NaSch model is
where the vehicle movement is realized by the VDR modebtrongly determined by the fluctuation parameter. For higher
[21]. A major difference to the NaSch model is the occur-p, spontaneous jams may occur even in the outflow region of
rence of large-phase separated jams and metastable stateijfg@m and therefore jams are not compact anymore. At high
the absence of intersections. However, we found qualitadensities, one may see a relatively strong influencep,of
tively the same results for both models assuming the outflowvhile in the free-flow case, the value of the randomization
of a jam and the mean velocity as parameters. One reason férametep does not play an important role.

that the metastable states of the VDR model are destroyed by

disturbances caused by the traffic lights. B. Green wave strategy

So far we have only observed the free-flow case of the | the previous section, we discussed the dependence be-
ChSch quel in our scenarios. But also for high densltlestween traffic light periods and throughput in the ChSch
one may find a strong dependence of the mean flow in theyodel for synchronized traffic lights. It was shown that the
system on the chosen cycle timisge Fig. 2 Obviously, for yhole problem may be reduced to an analysis of a single
high densities, this dependence is not caused by free-flowmgegmen(i_e_, N=1) of the network. This indicates that syn-
vehicle clusters passing or an intersection, but rather, is dughronizing the traffic lights is an ineffective strategy that is
to the movement of large jams gathered in front of the trafficyot capable of bringing an additional gain out of the network
lights. These jams move oppositely to the driving direction.topology. Further, it was shown that particularly at free-flow
For densities slightly above the free-flow densisee p  gensities there are strong oscillations in the throughput of the
=0.21n Fig. 2 there are no characteristic maxima or minimanetwork depending on the chosen traffic light periods. An-
in the mean flow. Here, the remaining jams in the system argther disadvantage is that, as one can see in Fig. 2, the first
small compared to the cycle times, i.e., the time a jam Willjaxima are located at unrealistic short cycle times for the
block an intersection is negligibly small. Furthermore, for chosen street length.
decreasing traffic light cycles, large jams are divided into |y the following, we will introduce a simple “green
smaller ones by the short-cycle times. Thus, the mean flowgye” strategy in order to improve the overall network
increases slightly with higher-cycle times in this density areanroughput. Therefore, the ChSch model is enhanced by traf-
because the number of standing cars decreases. At intermg Jights that are not enforced to switch simultaneously. The
diate densitiegseep=0.5 in Fig. 2 one may find a similar jntersections are denoted with indicesj where i
behavior. As forp=0.2, the number of jams decreases with—g 1 == N-1 represents the rows arje=0,1, ... N—1
increasing cycle times and the flow grows slightly until it the columns of the quadratic network. In addition, an indi-
breaks down at a certain value. This breakdown may be exjigual offset parameteA T, ; is introduced and assigned to
plained as follows: At high cycle times, only one jam re- every intersection. This offset parameter is used to imple-
mains between two intersections because the “red lighent a certain time delaff 4oy between the traffic light
phase” is large enough so that all vehicles are gathered ighases of two successive intersections. The offset parameter
front of the traffic lights. The breakdown finally occurs when jise|f may take the valuedT,=0,...,2r. Note that a
the “red light phase” is even larger than the time needed WQarger AT, ; has no effect becgluseT2corresp0nds to one
conglomerate all vehicles in front of it. As a consequencecomplete k]:ycle of a traffic light. The main intention when
the vehicles have to wait considerably longer than they arggiaplishing a “green wave” on an intersected street is to
able to move when further increasing the cycle time. NOt§eep a cluster of vehicles in motion. It is obvious that the
that the motion at “green light” is hindered because of the ostimal strategy is to adjust the time delay between two suc-
fact that for the considered densities the jam is relativelyzessive intersections, such that the first vehicle of a moving
large. Therefore, an intersection is blocked when it isciyster trespassing an intersection will arrive at the next traf-
reached by the backward moving jam for a long part of thesic jight exactly at the time when it switches to “green.”
“green light phase.” It is interesting that for high densities g delay is just the time a free-flowing vehicle needs to

(seep=0.7 in Fig. 2, a strong dependence between themoye from one intersection to the succeeding one, i.e.,
cycle time and the mean flow may be found with character-rfree:D/Ufree. Thus, this is the optimal time delaYgela

istic maxima and minima similar to the free-flow case. Thispetween two intersections. Since we are interested in consti-
is caused by the fact that at high _densmes, the dynamics %ting the “green wave” in the whole network, two direc-
the system are completely determined by the movement of fons" must be taken into account. We choose the intersection
jam. For example, if the length of one cydieed light and 5t the pottom-left corer of the network as the starting point
green light is chosen in such a manner that it is equal to theyith no time delayA T, o= 0. Then the offset in the first row
time the downstream front of a jam needs to move from Ongyjj| he chosen as described, i.e., the time delay between two
intersection to the next one, the large jam will block thegcessive intersections is in the optimal case equj,dg

intersection when it is red anyway. This corresponds 10 &g the first row is initialized, every intersection in this row
maximum in the global network flow. The fraction of time i he seen as a new starting point to initialize the corre-
when the “red light” has no influence on the mean flow ¢hnding columns. In summary, the offset parameter of the
because it is blocked by a jam determines the shape of th&iarsections is given by

curve between the extrema similar to the free-flow scenarios.

For a more detailed discussion, 4&8]. At this point, we AT ;=[(i+])Tgerymod 2T), (i,j=0,1,...N—1),

want to emphasize that high densities are more difficult to (6)
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with the optimal offset parameter given Byejay= Tree, I-€., 0.35 ' '
o--—0p=0.05NxN=16,D=50,T,, =0
5 &-—0p=0.05NxN=16,D=50,T,, =10
AT, =[ (+]) )mod(zT), (i,j=01,...N-1). =P =00, NiN=1,D =200, T,y =0
’ Ufree dﬁﬁb
7 ,
0.3 e

Using this method, a two-dimensional “green wave” strat-
egy may be established in the ChSch model. -

To quantify the improvement obtained by the “green
wave” strategy, the overall network flow is plotted against
the cycle time(see Fig. 5 and compared with the synchro- 025
nized strategy. The left diagram corresponds to the free-flow
case of the system. The density is chosep+00.05 to en-
sure that moving vehicles are able to drive from one inter-
section to the next one without being constricted by standing

cars. Obviously, the green wave strategy with a properly 0'20 50 100 150
chosen offset parameter, i.e., for the considered street lengt T
equal t0Tgee= Tgelny= 10, shows reasonable improvements 03

over the strategy with synchronized traffic lightB{,,~ O,
N=4). The whole spectrum of plotted cycle tim€dor the
“‘green wave” strategy exceeds the performance of the net-
work with synchronized traffic lights or at least keeps the
performance. Moreover, comparing the green wave strateg
to a network consisting of only one intersection, but with the 02
same total street length, one finds a remarkable agreement ¢

the curves. Note that every street in the considered networl™
with N=4 is intersected four times. We want to stress here 445
that for free-flow densities in the ChSch model, the “green
wave” strategy is capable to pipe all vehicles through the
streets, i.e., for the vehicles on the streets, it seems as if ther ¢ 4

0.25

e--—0p=07,NxN=16,D=50,T,, =0
" e--ap=07NxN=16D=50,T,, =-10 1

is only one intersection in the system left due to the fact that +—+p=07,NxN =16, D =50, T, = -55

the remaining ones are always green when approached by tF —op=07,NxN=1,D=200,T,, =0

vehicle cluster. Further, we want to point out that similar to g5 : .

the case with a synchronized strategy, the traffic lights inter- 0 50 T 100 150

act with the vehicles in such a way that a “green wave” is
established in the network independent of the initial vehicle FIG. 5. In order to compare the gain of a network operating with
distribution or the density fluctuations caused by the internah “green wave” strategy to a system with a synchronized strategy,
stochasticity of the model. Recapitulating, one of the mostve plotted the flow against the cycle time for both systems. The top
important benefits of the green wave strategy is the fact thatiagram shows the free-flow case of the system. As one can see, the
a street with total lengtih consisting ofN street segments, green wave strategftime delayT e~ 10) shows reasonable im-
each with a lengtlD, behaves like a street intersected only provements over the network with synchronized traffic lights
once (see Fig. 5. Therefore, the optimal cycle time of a Taeay=0. Moreover, for comparing the green wave strategy with a
traffic light corresponding to the maximal flow is shifted network consisting of only one intersection, but an equal total street
towards realistic valuefsee Sec. Ill A, Caséa)] even for  length, one finds a remarkable agreement. Th_e bottom diagr&_lm
small street segment lengths One obtains the following shows the |nf|l_Jence of the green wave strategy in the high-density
equation for the cycle time corresponding to maximal flowstate. Itis obvious that by definition, no green wave may be estab-

[see Eq(2)]: lished in the system because the density is too high, so that no
jam-free states may be obtained. Nonetheless, the performance of
L ND the network with synchronized traffic lights is exceeded by the
Tha=s—— = ) (8) “‘green wave” strategy. The randomization parametqy#s0.1 and
2Vfree  2Ufree the maximum velocity i% y,=5.

As one can see in the right part of Fig. 5, even for highdensities, the dynamics is driven by vehicles organized in
densities, the “green wave” strategy shows an incisive im-clusters that may move through the streets undisturbed due to
pact to the network flow. Although by definition no “green the optimal strategy whereas the dynamics for high densities
wave” can be established at high densitiésr the chosen is governed by the motion of large jams. Large jams move
density ofp=0.7 no jam-free state can exisan offsetin the oppositely to the driving direction of the vehicles from one
switching between successive traffic lights may lead anyhovintersection to the one before. Due to their spatial extension,
to an improved flow. The origin of this improvement is com- an intersection is blocked for a certain time when trespassed
pletely different in comparison to the free-flow case. For lowby a jam. Thus, the optimal system state would be reached if
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a jam moves backward from one intersection to the one be:
fore and blocks it while the traffic light is red anyway so that
afterwards moving vehicle®utflow of the jam may take
advantage of the green phase as much as possible. In fact, tt
portion of time that an intersection is blocked or free deter-
mines the system flow. Note, that the time delay at high
densities has to be negative since jams move opposite to th
driving direction. For a time delay in the order of the optimal
time delay of the free-flow casfsee Fig. 5(right) for
Tgelay= — 10] the curves corresponding to the “green wave”
strategy and the synchronized traffic lights do not differ
much because thi$ s, is determined by the free vehicle
movement. Considering instead the velocity of a jam that is
approximately about,,= 1/(1—p) (see[29]) and assuming
that the optimal time delay is the travel tinfg,,=D/vjam

for the backward motion of a jam between two intersections,

0.25
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0.2

0.1

0.05

o--—0 p=0.05, NxN = 100, D = 100, random o
&--—0p = 0.05, NxN = 100, D = 100, synchronized

50

100

150

the difference to the synchronized case gets transpgseat
Fig. 5 (right) for Tgea= —55]. The “green wave” strategy
allows now a reasonable improvement over the synchronizec
strategy. Similar to the free-flow density case, the perfor-
mance of the network with synchronized strategy is ex-
ceeded by the “green wave” strategy for almost all cycle
times. Moreover, comparing the “green wave” strategy with
an optimal time delay to an idealized “mini network” con-
sisting of only one intersection, but with an equal total street
length, one finds a reasonable agreement between the curvi®
as well. This indicates that for high densities, jams can be
guided perfectly through the streets by a “green wave” strat-
egy. However, one has to recognize that strong oscillations a
high densities depend on the statistics of the underlying NS
model so that the expected gain at these high densities wil
decrease with increasiny

0.275 T T
o--—0p=0.7, NxN = 100, D = 100, random
&---0p=0.7, NxN = 100, D = 100, synchronized

0.225

0.175 -

0.125 !
0

50 100 150

T
C. Random offset strategy

FIG. 6. The random offset strategy is compared to the original

ChSch model with synchronized traffic lights. The mean flow is

lotted versus the traffic light periods for the two different strate-
gies. The network consists ®fx N=100 intersections with 192

In this section, we want to point out that switching suc-
cessive traffic lights with a random shift instead of a fixed
time delay may lead to a more flexible strategy, e.g., withou
oscillations. Moreover, it will be shown that in contrast to a g segments each of len@ik= 100 cells. Top: In the left part of

system wit'h synchronized traffic lights, a random shift be-the figure, we chose a low-densitiree-flow regime,p=0.05). It
tween the intersections may lead to a remarkable higher glgs,, pe seen clearly that the oscillations found in the synchronized
bal system flow. As in the previous section, the traffic lightspenwork are suppressed by the random offset strategy. Furthermore,
are not enforced to switch simultaneously anymore. For thi, the free-flow density regime the random offset strategy shows
purpose, an individual offset paramet®T; ; is introduced  some advantages over the synchronized strategy, but only for low
and assigned to every intersecti@ee previous section for a cycle times. Bottom: The oscillations for high densitigs=0.70)
detailed explanation The offset parameter itself may take are suppressed in a similar manner as for the low-density case. In
values betwee\T; ;=0,...,2I, which are chosen in the addition, the random offset strategy seems to outperform the syn-
following from an equally distributed random distribution. chronized strategy in the whole plotted area. The randomization
To give an insight into the effects induced by randomparameter i=0.1 and the maximum velocity i$ma.=5.
offsets, we depicted the throughput in the network in depen-
dence of the cycle times in Fig. 6. The random offset strategy The left part of Fig. 6 shows a system with free-flow
is compared to the ChSch model with synchronized strategydensityp=0.05. The random offset strategy outperforms the
Obviously, the strong oscillations found in the curves corressynchronized strategy only for relatively low-cycle times be-
sponding to the synchronized strategy are destroyed by theause unfavorable statéstates with minimal global floyv
randomness in the switching. Thus, the random offset stratare avoided by the randomness. For higher-cycle times, the
egy leads to a smoothed curve that is very useful adjustinglobal flow in a system with random offset strategy falls
the optimal cycle times in a network. One is no longer forcedclearly below the global flow in a system with synchronized
to pay strong attention to the cycle times such as those istrategy. In the case of a system with synchronized traffic
systems with synchronized or “green wave” strategies. lights, the curve converges in the limit—co to the half of
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the flow found in the NaSch model. This corresponds to thenodel is mainly determined by the travel times between in-
case in which vehicles in the network are free to move in ondersections, which depends on the length of the street seg-
direction all the time while in the other direction, it comes to ments and the density and maximal velocity of the cars.
a complete stop. In contrast, the flow in the random offset In order to allow a more flexible traffic light control the
strategy converges to zero since the switching is not synchr&shSch model was enhanced by an additional model param-
nous, and therefore, the traffic lights along one direction areter. This parameter is assigned to every intersection repre-
green or red at random so that all vehicles are gathered isenting a time offset, so that the traffic lights are not enforced
front of the red lights. Additionally, one has to consider thatto switch simultaneously anymore. A two-dimensional
although the random offset strategy is very effective for low-"“green wave” is implemented with the help of this param-
cycle times, one may obtain higher flows with the “greeneter. The “green wave” gives much improvement to the
wave” strategy. flow in comparison to the synchronized strategy at low den-
At high densities =0.70 in Fig. 6, the oscillations are sities and has even an incisive impact on the throughput at
suppressed in a similar manner as for the low-density caséigh densities. Moreover, it is shown that the influence of
Hence, as for low densities, this strategy gives an improveéhtersections along a street is completely avoided by the
flexibility when adjusting optimal cycle times in the network. “green wave” strategy because the results may be compared
In addition, the random offset strategy outperforms the synwith results obtained from a system containing only one
chronized strategy not only for low-cycle times, but also insingle intersection instead of many others. Although the
the whole range plotted in Fig. 6 except for some peaks. Onggreen wave” strategy is capable to give a strong improve-
obvious explanation for the profit out of the randomly ment, the dependence between flow and the cycle time found
switching traffic lights is that parts of the network are com-in the original ChSch model remains. Thus, to avoid these
pletely jammed, while in other parts of the network, the carsstrong oscillations, we further analyzed a network where
can move nearly undisturbed. However, the flow obtained byraffic lights are switched at random. It is shown that the
the “green wave” strategy is still remarkably higher than the strong oscillations found for a synchronized strategy and for
flow obtained by the random offset strategy. Furthermorethe “green wave” strategy are completely suppressed by
one has to consider that the strong oscillations at high derrandomness. Thus, the random offset strategy may be very
sities depend on the statistics of the underlying NaSchuseful if a control strategy is required that is not very sensi-
model, so that the expected gain at this high densities wiltive to the adjustment of the cycle times. Moreover, the ran-
decrease with increasing randomization paramptefhus, dom offset strategy outperforms the standard ChSch model
we want to point out that among the analyzed global stratewith synchronized traffic lights at low densities for small
gies, the “green wave” strategy leads to the highest globatycle times and at high densities for all cycle times. An
flow in the network for free-flow densities, as well as for explanation for the profit at high densities is the fact that
high density states, while the “random offset” strategy pro-some parts of the network are completely jammed, while in
vides the greatest flexibility, hence the oscillations are supether parts of the network, the cars can move nearly undis-
pressed. turbed. This additional gain due to the inhomogeneous allo-
cation of vehicles indicates that an autonomous traffic light
IV. SUMMARY AND DISCUSSION control based on local decisions could be more effective than
) ) the analyzed global shemes. [80], Faieta and Huberman
~ We have analyzed the ChSch model, which combines banyestigated an autonomous traffic light strategy that shows a
sic ideas from the Biham-Middleton-Levine model of city yery good performance. Results of simulations with the
traffic and the Nagel Schreckenberg model of highway trafchsch model about the impact of traffic lights that are au-
fic. In our investigation, we focused on global traffic light tonomously adapted to the traffic conditions by suitable pa-
control strategies and tried to find optimal model parameterggmeters will be presented [B1].
in order to maximize the network flow. For this purpose, we g conclude, the results presented here are of practical
started with the original formulation of the ChSch model, yglevance for various applications of city traffic. Due to its
where the traffic lights are switched synchronously. It iSsimpIicity, cellular automata models have become quite
shown that the global throughput of the network stronglypopylar for large-scale computer simulations whereby espe-
erends on the cycle times, i.e, one finds strong oscnlanonéia”y city traffic with its complex network topology is one of
in the global flow in dependence of the cycle times both forine favorable applications. In particular, the knowledge of
low, as well as for high densities. A simple phenomenologi-the impact of topological factors in regard to certain traffic
cal approach has been suggested for the free-flow regime ibntrol strategies may be very benefiual when studying vari-
order to determine the characteristics in regard to the modgj;s kinds of city networks, even those with a more sophisti-

parameters and to obtain a deeper insight into the dynamicsteq topology than those implemented in the ChSch model.
in the network. The phenomenological results show a very

good agreement to numerical data and indicate that the ACKNOWLEDGMENTS

choice of the underlying model for vehicle movement be-

tween intersections does not play an important role. Thus, we We thank Torsten Huisinga, Wolfgang Knospe, and An-
want to stress here that the global throughput in the ChScHreas Pottmeier for useful discussions.

056132-11



ELMAR BROCKFELD et al. PHYSICAL REVIEW E 64 056132

[1] Traffic and Granular Flow edited by D.E. Wolf, M. Schreck- [15] T. Nagatani, J. Phys. Soc. J@2, 1085(1993.
enberg, and A. BachertWorld Scientific, Singapore, 1996 [16] S. Tadaki and M. Kikuchi, Phys. Rev. &D, 4564 (1994).
[2] Traffic and Granular Flow ‘97 edited by M. Schreckenberg [17] T. Nagatani, Physica A98, 108(1993.

and D.E. Wolf(Springer, New York, 1998 [18] T. Nagatani and T. Seno, Physica287, 574 (1994.

[3] Traffic and Granular Flow ‘99 edited by D. Helbing, H.J. [19] F.C. Martinez, J.A. Cuesta, J.M. Molera, and R. Brito, Phys.
Herrmann, M. Schreckenberg, and D.E. Wpringer, New Rev. E51, 175(1995.
York, 2000. o _ [20] T. Nagatani, Phys. Rev. E8, 3290(1993.

[4] I Prigogine and R. HermaiKinetic Theory of Vehicular Traf-  59] R Barlovic, L. Santen, A. Schadschneider, and M. Schrecken-
fic (Elsevier, Amsterdam, 1971 berg, Eur. Phys. J. B, 793(1998.

[5] C.F. Daganzo, M.J. Cassidy, and R.L. Bertini, Transp. Res.
Part A33, 365(1999.

[6] D. Helbing, Verkehrsdynamik: Neue Physikalische Model-
lierungskonzeptéSpringer, New York, 1997

[7] D. Helbing, e-print cond-mat/0012229.

[8] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Re
329 199 (2000; Curr. Sci. 77, 411 (1999; Compos. Sci.

[22] W. Knospe, L. Santen, A. Schadschneider, and M. Schrecken-
berg, J. Phys. /83,48 477 (2000.

[23] W. Brilon and N. Wu, Traffic and Mobility (Springer, New
York, 1998.

F[24] H. Emmerich and E. Rank, Physica284, 676 (1997).

[25] D. Helbing and M. Schreckenberg, Phys. Rev5& R2505

Technol.2(5), 80 (2000. (1999. _
[9] S. Wolfram, Theory and Applications of Cellular Automata [26] R. Barlovic, A. Schadschneider, and M. Schreckenberg,
(World Scientific, Singapore, 1986 Physica A294, 525 (2001).
[10] D. Chowdhury and A. Schadschneider, Phys. Rev5% [27] K. Nagel and M. Paczuski, Phys. Rev.5&, 2909(1995.
R1311(1999. [28] E. Brockfeld, Diploma thesis, Universtt®snabrak, 2000.
[11] A. Schadschneider, D. Chowdhury, E. Brockfeld, K. Klauck, [29] L. Neubert, H.Y. Lee, and M. Schreckenberg, J. Phys32A
L. Santen, and J. ZittartZJraffic and Granular Flow ‘99 6517(1999.
(Springer, New York, 2000 [30] B. Faieta and B.A. Hubermarfirefly: A Synchronization
[12] O. Biham, A.A. Middleton, and D. Levine, Phys. Rev.45, Strategy for Urban Traffic ContralXerox Palo Alto Research
R6124(1992. Center, Palo Alto, CA, 1993
[13] K. Nagel and M. Schreckenberg, J. Phy®, 2221(1992. [31] R. Barlovic, A. Schadschneider, and M. Schreckenbery
[14] J. Krug, Phys. Rev. Let67, 1882(1991J). published.

056132-12



