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We develop a generalization of the Thouless-Anderson-Palmer~TAP! mean-field approach of disorder
physics, which makes the method applicable to the computation of approximate averages in probabilistic
models for real data. In contrast to the conventional TAP approach, where the knowledge of the distribution of
couplings between the random variables is required, our method adapts to the concrete set of couplings. We
show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a
wide class of toy models~assuming a nonglassy phase! with given disorder distributions in the thermodynamic
limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate
predictions as compared to conventional TAP approaches.
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I. INTRODUCTION

Models of statistical physics with random infinite rang
interactions have the nice feature that they can be tre
exactly by mean-field methods. To compute average pro
ties of the system, one may choose two possible alterna
but equivalent approaches. The first one is based on the
lica method in which the replicated system is first averag
over the disorder and the resulting nonrandom system is
coupled by saddle-point methods, which leads to exact a
age case mean-field equations@1#. In the second approac
one derives a mean-field theory for afixed set of random
couplings, which becomes exact in the thermodynamic lim
for almost all realizations of the randomness. This type
mean-field theory is traditionally called the TAP approa
after Thouless, Anderson, and Palmer@2# who developed it
first for the Sherrington-Kirkpatrick model@3# of spin
glasses. In a final step, one may average TAP mean-
equations over the couplings to achieve the same result
the replica approach@4#.

Besides the importance of the TAP approach in the the
of disordered systems there is a recent interest in
method, which comes from a more applied area of resea
dealing with adaptive probabilistic data models~for a review
see, e.g.,@5#!. The goal of such models is to explain compl
observed data by a set of unobserved,hiddenrandom vari-
ables based on the joint distribution of both sets of variab
A few popular examples are Bayes belief networks@6# ~used
as trainable expert systems!, independent component anal
sis @7# ~abbreviated ICA, which detects independent sour
in nonlinear signal processing!, Gaussian process models@8#
~modeling hidden spatial structures by random fields!, and
Boltzmann machines@9# ~the Ising version of the random
fields!.

The price that a modeler has to pay for the high degre
flexibility of these models is the vast increase in compu
1063-651X/2001/64~5!/056131~14!/$20.00 64 0561
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tional complexity when the number of hidden variables
large. Both the statistical inference about the hidden v
ables and the learning of the model parameters requires
computation of marginal distributions of the hidde
variables/the observed data, i.e., the evaluation of hi
dimensional sums or integrals. Since similar types of cal
lations are ubiquitous in computing thermal averages, e
for finding local magnetizations and free energies, there
great deal of interest in adopting approximation techniq
from statistical physics. Already the simple~often called na-
ive! mean-field~MF! method, which neglects all correlation
of random variables has been applied successfully to a v
ety of probabilistic data models. At present, there is a gro
ing research activity in the field of probabilistic models tr
ing to overcome the limitations of the simple MF method
partly including the dependencies of variables but still ke
ing the approximation tractable. In the case where the in
vidual dependencies are weak but their total effect canno
neglected, the TAP method is a natural candidate for such
improved approximation. TAP approaches for differe
probabilistic models have already been discussed for ne
networks @10–12#, Boltzmann machines@13,14#, Gaussian
process models for classification@8#, error correcting codes
@15#, etc.; for a review see also@16#.

Unfortunately, the TAP mean-field approach shows
characteristic difference from the naive MF method, whi
makes its straightforward application to models for real d
nontrivial. While the simple MF equations are expressed
terms of the concrete couplings~which encode observed dat
in applications!, the Onsager correctionto the naive MF
theory ~for models with extensive connectivities! provided
by the TAP approach will explicitly depend on the distrib
tion from which these couplings were generated at rand
Two models with the same connectivities but different d
tributions for the couplings, like, e.g., the SK model and t
Hopfield model@17# have different expressions for the On
sager corrections~see, e.g.,@1#, Chap. XIII!. While in the
©2001 The American Physical Society31-1
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models of disorder physics this distribution is given in a
vance, such a knowledge is obviously not available for m
els of real data. Simply taking results from a theory th
assumesa specific distribution may lead to suboptimal pe
formance. To define the ‘‘correct’’ TAP approach, which
valid in these more general situations, truncated perturba
expansions for the free energy or for marginal distributio
have been considered@18–21#. While such a finite order
truncation becomes exact for the SK model this is, in g
eral, not to be expected.

In this paper we present a new approach to this proble1

Our criteria for a valid TAP method are twofold: We requi
that the lack of knowledge of the underlying distribution
the couplings must be compensated by a self-consistent c
putation, whichadapts the Onsager correction to thecon-
creteset of couplings. Second, when applied to a set of in
actions, which was randomly generated from aknown
distribution~for which the mean-field assumption is valid!, a
suitable average of the adaptive TAP method should re
duce thecorrectaverage case results known from the repl
approach. We achieve the first goal by combining the ca
approach@1# with a simple linear response technique, whi
yields a second set of TAP equations for the Onsager cor
tion. This method fulfills the second requirement so far o
for the class of extensively connected models with nongla
behavior. These models can be described by a single erg
phase, which is correctly described by a finite set of or
parameters~unlike the sparsely connected models@1#! in rep-
lica symmetry. Our experience with average case studie
neural networks makes us expect that the assumption of
lica symmetry may well describe practical situations wh
the models are sufficiently matched to the data.

Our approach is most naturally developed for models w
pairwise interactions between variablesSi , i 51, . . . , N

P~S!5
r~S!

Z~u,J!
expF(

i , j
SiJi j Sj1(

i
Siu i G . ~1!

Here S5(S1 ,...,S), and we have setJii 50. All self-
interactions are contained in the factorizing distributi
r(S)[P jr j (Sj ), which also contains all single variable co
straints of the variablesSi like their range, their discretenes
etc. Examples of models that are included in this framew
are Ising models~like the SK model, the Hopfield model, th
Boltzmann machine in the neural computation context!, the
finite temperature versions of the matching and travel
salesman problems@23,1#, Gaussian process models@8#, and
the ICA model of@24#. However, many other interesting da
models are of a more complicated form such as

P~S!}r~S!expF(
i , j

SiJi j Sj1(
i

Siu i G)
k51

m

FS (
i 51

N

ĴkiSi D ,

~2!

1A shorter presentation of the main results of this paper can
found in @22#.
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which includes a variety of popular ‘‘network’’ models lik
perceptrons ~see Sec. IV!, sigmoid belief networks
@25,22,26#, and combinatorial optimization problems with in
equality constraints, e.g., the knapsack problem@27#.

Luckily, the models of the type Eq.~2! can be easily
represented in the standard form Eq.~1! by the ‘‘field theo-
retic’’ trick of introducing the fields S i 51

N ĴkiSi , k
51, . . . , m as new variables by using Diracd functions
and their exponential representations. Denoting the pu
imaginary conjugate variables byŜ5(Ŝ1 ,...,Ŝm), the space
of variables is augmented to the set (S,Ŝ) where the ‘‘prior
distribution’’ for the hatted variables is given by

r̂~Ŝ!5E dĥ

2p i
e2ŜĥF~ ĥ! ~3!

and the augmented coupling matrix is

Jaug5S J ĴT

Ĵ 0
D . ~4!

Since all the subsequent manipulations are of the ana
type, i.e., they are based on certain formal expansions ra
than on probabilistic arguments~in the sense of assumin
positive normalized measures!, we expect that our use o
nonpositive and even complex measures will not be pr
lematic.

The paper is organized as follows. The adaptive T
equations are derived in Sec. II~with a summary given in
Sec. II E!. In Sec. III, we show how the adaptive theo
reproduces the correct average case results when applied
fairly general class of distributions for the couplings. W
derive ‘‘self-averaging’’ TAP equations, replica results, a
the stability condition for the mean-field solution@the de
Almeida–Thouless~AT! condition#. In Sec. IV, we apply our
results to the SK model, the Hopfield network, and t
simple perceptron. Finally, we present an outlook in Sec.

II. ADAPTIVE TAP APPROACH

In this section, we will derive both an adaptive TAP a
proximation for the marginal distribution Pi(S)
[*P j Þ idSj P(S) ~Secs. II A–II C! and the free energy
F(J,u)52 ln Z(J,u) ~Sec. II D!. The free energy corre
sponds to the negative log probability of the observed d
which can be used as a yardstick for deciding which mo
best fits the data.

Our derivation will be based on the cavity approach int
duced by@1#. We will assume that we are not dealing with
glassy system with its many ergodic components, but tha
averages are for a single state. This is usually expecte
hold when the probabilistic model is well matched to t
data. We expect that the adaptive TAP approximation can
extended to glassy systems along the line of Chap. V in@1#.

A. The marginal distribution

The starting point of our derivation is the following exa
equation for the marginal distribution of the variableSi

e

1-2
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Pi~Si !5

E )
j , j Þ i

dSjr i~Si !expFSi S (
j

Ji j sj1u i D Gp~S\Si !

E )
j

dSjr i~Si !expFSi S (
j

Ji j Sj1u i D GP~S\Si !

,

~5!

whereP(S\Si) is the distribution of all variables for a syste
where thei th variable is absent. We see from Eq.~5! thatSi
interacts with the remaining variables only through the fi
hi5S j Ji j Sj . Hence, we introduce its ‘‘cavity’’ distribution
i.e., the distribution of the field at the ‘‘position’’ of the
‘‘empty’’ site i by

P~hi \Si !5E )
j Þ i

dSj dS hi2(
j

Ji j Sj D P~S\Si ! ~6!

and rewrite Eq.~5! as

Pi~Si !5
r i~Si !

Z0
~ i ! e2Hi ~Si !, ~7!

where we have introduced an effective single varia
Hamiltonian

2Hi~S!5 ln^eShi& \ i , ~8!

and the bracketŝ¯& \ i denote an average with respect
P(hi \Si), Eq. ~6!. The corresponding partition function is

Z0
~ i !5E dSr i~S!e2Hi ~S!, ~9!

The complete knowledge ofHi(S) would provide us with the
ability to compute averages of functions of a single varia
Si like, e.g.,

^Si&5
]

]u i
ln Z0

~ i ! . ~10!

Second, by using appropriate derivatives with respect to
external fieldsu j we can compute correlation functions. F
example, the connected correlation function of two variab
is expressed by thelinear response relationas

x i j [^SiSj&2^Si&^Sj&5
]^Si&
]u j

5
]2 ln Z0

~ i !

]u i]u j
. ~11!

Moreover, from the definition~8!, we also realize that the
distribution ofhi can be reconstructed using derivatives w
respect toS. A corresponding result that will be useful in th
following is

^hi&5
1

Z0
~ i ! E dSr i~S!

]

]S
e2Hi ~S!. ~12!

B. The cavity approach

In general, we can express Eq.~8! by the cumulantskk
( i )

of the cavity distribution
05613
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2Hi~S!5 (
k51

` kk
~ i !

k!
Sk ~13!

with k1
( i )5^hi& \ i , k2

( i )5^hi
2& \ i2^hi& \ i

2 , etc.
The usual argument in deriving TAP equations is bas

on the assumption of weak dependencies between the
dom variablesS, which is expressed in the so-called cluste
ing hypothesis@1#,

1

N2 (
i j

~^SiSj&2^Si&^Sj&!2→0 ~14!

and similar relations for higher connected correlation fun
tions. One concludes that if the variableSi is removed from
the system, the effect of the correlations between theSj8s on
the distribution of the fieldhi is so weak that~as in proofs of
the central limit theorem by characteristic functions! one can
neglect all cumulants of order greater than 2, i.e.,

kk
~ i !50 for k.2. ~15!

If S is a real random vector this is equivalent to approxim
ing Eq. ~6! by a Gaussian distribution@1,8#, setting

P~hi \Si !'
1

A2pVi

expF2
~hi2^hi& \ i !

2

2Vi
G , ~16!

whereVi[k2
( i )5^hi

2& \ i2^hi& \ i
2 . From Eq.~15!, we immedi-

ately get the marginal distribution

Pi~S!5
1

Z0
~ i ! r i~S!expFS~^hi& \ i1u i !1

Vi

2
S2G ~17!

and the single variable partition function

Z0
~ i !5E dSr i~S!expFS~^hi& \ i1u i !1

Vi

2
S2G . ~18!

In the following, we will assume the validity of Eq.~15! and
the resulting Eq.~17! also in the cases, whereS is a complex
variable with nonreal prior distributionr(S).

All that remains to derive the TAP equations is to com
pute the sets of the first two cumulants^hi& \ i and Vi for i
51, . . . , N self-consistently. The first cumulant is easi
found from Eq.~12! using Eq.~17! as

^hi&5^hi& \ i1Vi^Si&. ~19!

Hence, we can eliminatêhi& \ i in favor of the mean-field
variables^Si& andVi ,i 51, . . . , N via

^hi& \ i5(
j

Ji j ^Sj&2Vi^Si&. ~20!

This has the well-known structure of a mean field correc
by a so-calledOnsager reactionterm, which accounts for the
nontrivial correlations between variables that are neglec
in a naive mean-field approach.
1-3
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So far, this approach is well known. The new aspect
our paper is in the way we compute theVi ’s. A naive com-
putation would lead to

Vi5(
j ,k

Ji j Jik~^SjSk& \ i2^Sj& \ i^Sk& \ i !

'(
j

Ji j
2 ~^Sj

2& \ i2^Sj& \ i
2 !, ~21!

neglecting the nondiagonal correlations. This turns out to
correct in the thermodynamic limitN→` for models~like
the SK model! where different pairs of couplingsJi j andJik
are drawnindependentlyat random. However, it fails when
the Ji j ’s become weakly correlated. Consider, e.g.,
simple Gaussian modelr(S)}eÀ(1/2)zSz2 with a ‘‘Hopfield-
type’’ coupling matrix defined byJi j 5(1/N) (k51

aN xi
kxj

k ,
wherexi

k are random variables with zero mean and unit va
ance. The corresponding covariance

^SiSj&2^Si&^Sj&5~ I2J! i j
21 ~22!

would still fulfill the clustering condition~14!, but nondiago-
nal contributions toVi do not vanish because of higher ord
correlations, e.g.,( jkJi j JikJjk'a do not vanish.

While it is well known how to derive TAP equations fo
this type of coupling matrixJ ~see, e.g.,@1,28#!, these ap-
proaches require the explicit knowledge of the statistics
the Ji j ’s. In the following section, we aim at a computatio
of the cavity field variancesVi ’s, which does not assum
such a knowledge.

C. Computing the second moments

Our derivation is based on a self-consistent computa
of the matrix of susceptibilitiesx i j 5]^Si&/]u j5^SiSj&
2^Si&^Sj& based on the mean Eq.~10!. Hence, the diagona
elementsx i i , i 51, . . . , N are expressed both by linear r
sponse and by the explicit resultx i i 5^Si

2&2^Si&
2 that can be

evaluated using the marginal distribution~17!. Equating the
two expressions we obtain implicit equations for the va
ances Vi5^hi

2& \ i2^hi& \ i
2 , i 51, . . . , N. Self-interactions

Vi^Si& determined by the linear response method have
been introduced in@29# as a heuristics to correct the naiv
MF equations for Boltzmann machines.

Our crucial approximation in the linear response calcu
tion is that it is sufficient to include a perturbation of th
means of the cavity fieldŝhi& \ i whereas the variancesVi are
kept unchanged. This is consistent with the fact that theVi ’s
become self-averaging quantities in a suitable thermo
namic limit framework where the mean-field method b
comes exact. Hence, by differentiating Eq.~10! with respect
to the external fieldu j , Eq. ~18!, we get

x i j 5
]^Si&
]u i

S d i j 1
]^hi& \ i

]u j
D ,

where]^Si&/]u i is the explicit derivative of Eq.~10!. Further
differentiating Eq.~20!, we finally get
05613
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]^Si&
]u i

Fd i j 1(
k

~Jik2Vkd ik!xk jG , ~23!

which can be solved with respect tox5$x i j % and yields

x5~L2J!21. ~24!

Here we have introduced the diagonal matrix

L5diag~L1 ,...,LN!, L i[Vi11/x i i . ~25!

Specializing to the diagonal elementsx i i 5^Si
2&2^Si&

2 de-
terminesVi implicitly via

x i i 5@~L2J!21# i i . ~26!

The requirement that the susceptibility matrix~i.e., the ma-
trix of covariances! must be positive definite can be used
test whether the mean-field solution is consistent. In the th
modynamic limit this requirement leads to a criterion that
equivalent to the well-knownde Almeida–Thoulessstability
condition @1# ~see Sec. III D!.

Two important remarks should be made at this point: A
though all approximations are expected to be exact, in g
eral, only in a suitable thermodynamic limit framework~see
Sec. III!, the final result~26! is correct for a Gaussian mode
for arbitrary N ~see Appendix A!. Secondly, we note that th
functional relationship between thex i i and theVi , Eq. ~26!,
is independent of the specific single spin measurer(S). This
argument can be used for a derivation of the free ene
different from the one of the following sections.

D. The adaptive TAP free energy

In this section, we will derive a TAP approximation to th
free energy

F~J,u!52 ln Z~J,u!

using the adaptive form of the Onsager term given by E
~26!. For this purpose, it is useful to generalize the model E
~1! to a one parameter class of models where the interac
J is replaced bylJ with 0< l<1, i.e.,

Z~ lJ,u!5E dS)
i

r i~Si !expS l

2
STJS1STuD . ~27!

Since the solutions of the TAP equations provide us with
momentsmi[^Si& andMi[^Si

2& for i 51, . . . , N, we will
work with the Gibbs free energy, i.e., the free energy for
fixed mi andMi , which is defined by a Legendre transfor
using external fieldsg i andl i conjugate tomi andMi , i.e.,

F l~m,M !5extr
l,g

C l~l,g,m,M !, ~28!

where
1-4



es
e

x
.
a

l
u

ari-

r
u-

g in
h to

e
nc-

ific
e

and
el

ive

t to
in

trix
e

ADAPTIVE AND SELF-AVERAGING THOULESS- . . . PHYSICAL REVIEW E 64 056131
C l~l,g,m,M !52 ln Z~ lJ1l,u1g!1(
i

g imi

1(
i

l i

2
Mi . ~29!

l is a diagonal matrix with entriesl i . The valuesme and
Me, which makeF l stationary, i.e., for which]mF l5]MF l
50, determine the correct equilibrium expectation valu
^Si& l5mi

e and^Si
2& l5Mi

e ~where the index indicates that th
expectation is taken with parameterl!. Furthermore, by in-
serting these values back intoF1 , the original free energy
F(J,u)52 ln Z(J,u)5F1(me,Me) is recovered.

We compute the TAP approximation toF1 from the re-
lation

F15F01E
0

1

dl
]F l

] l

5F02
1

2 E0

1

dlH(
i , j

miJi j mj1Tr~xlJ!J ~30!

with x l ,i j 5^SiSj& l2^Si& l^Sj& l and

F05 extr
l0,g0

H 2 ln Z~l0,u1g0!1(
i

mig i
01(

i

l i
0

2
MiJ .

~31!

Note, that the derivatives ofl i andg i with respect tol dis-
appear from Eq.~30! because of]g i

C5]l i
C50.

We next insert our TAP approximationxl5(Ll2 lJ)21,
Eq. ~24! with L l ,i5Vl ,i11/x i i , into Eq. ~30! and integrate
with respect tol. Note, thatx i i 5Mi2mi

2 is a fixed quantity
that does not depend onl. Using

Tr~xlJ!5Tr@~Ll2 lJ!21J#

52
d

dl
Tr ln~Ll2 lJ!1TrS xl

]Ll

] l D
52

d

dl
Tr ln~Ll2 lJ!1(

i
x i i

]Ll ,i

] l
,

and noting thatV0,i50, we obtain

F15F02 1
2 (

i j
miJi j mj1DF, ~32!

DF5 1
2 ln det~L2J!2 1

2 (
i

Vix i i 1
1
2 (

i
ln x i i .

The first two terms constitute the naive mean-field appro
mation toF and the last termDF is the Onsager correction
Note, that this result is not equivalent to truncation of
power series expansion ofF to second order inl ~often
termed the Plefka expansion@18#! but contains terms of al
orders. It is easy to see that we also recover the TAP eq
tions from the equilibrium conditions]mF15]MF150. We
05613
:

i-

a-

finally identify the conjugate fields as the mean and the v
ance of the cavity field viag i

05^hi& \ i andl i
05Vi from Eq.

~31!.
In Sec. III we give a simplification of the free energy fo

the thermodynamic limit when the distribution of the co
plings J is explicitly given, i.e., for the conventional TAP
approach. Assuming that the free energy is self-averagin
this case, we show the equivalence of our TAP approac
the results of a replica calculation.

In Appendix B, an alternative derivation of the TAP fre
energy is given. It is based on the observation that the fu
tional form ~as a function ofmi andMi! of the Onsager term
Vi in the TAP equations does not depend on the spec
single variable densitiesr(S). Hence, we may compute th
corresponding universal form ofDF by calculatingF for an
exactly solvable model, i.e., for a Gaussianr and subtract the
naive mean-field part. This is the strategy used by Parisi
Potters@30# to derive TAP equations for a spin glass mod
with an orthogonal random matrixJ.

E. Summary of adaptive TAP equations

To summarize our results so far, we write the adapt
TAP equations for̂ Si& andVi , i 51, . . . , N as

^Si&5
]

]u i
ln Z0

~ i ! , ~33!

where the single variable partition function is

Z0
~ i !5E dSr i~S!expFSS (

j
Ji j ^Sj&2Vi^Si&1u i D 1

Vi

2
S2G .
~34!

The second set of TAP equations forVi is

]^Si&
]u i

5
]2

]u i
2 ln Z0

~ i !5@~L2J!21# i i , ~35!

where

L5diag~L1 ,...,LN!, L i[Vi1S ]^Si&
]u i

D 21

. ~36!

Note that the partial derivatives are now taken with respec
the explicit u i dependence, i.e., all remaining arguments
Z0

( i ) are fixed. Finally, the free energy is given by Eq.~32!
with mi5^Si&, Mi5^Si

2&, g i
05^hi& \ i , andl i

05Vi .

F. The generalized model

The special structure of the augmented coupling ma
~4! allows for a variety of simplifications in treating th
model ~2!. By introducing hatted variableŝŜ&, V̂, and L̂
explicitly, the previous results for the means~33! and ~34!

are ^Si&5(]/]u i)ln Z0
(i) and ^Ŝk&5(]/]uk)ln Ẑ0

(k) with
1-5
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Z0
~ i !5E dSr i~S!expFSS (

j
Ji j ^Sj&1(

k
Ĵki^Ŝk&

2Vi^Si&1u i D 1
Vi

2
S2G , ~37!

Ẑ0
~k!5E dŜr̂k~Ŝ!expF ŜS (

i
Ĵki^Si&2V̂k^Ŝk&1 ûkD

1
V̂k

2
Ŝ2G . ~38!

The augmented susceptibility matrix is given by

xaug5~Laug2Jaug!
215S L2J 2 ĴT

2 Ĵ L̂
D 21

5S x x̃T

x̃ x̂
D ,

where x̃ki[](Ŝk)/]u i . It can be shown that although th
vector Ŝ is purely imaginary, its expectation̂Ŝ& and the
susceptibility matrixxaug come out real.

The TAP equations for theVi ’s can be simplified using
identities for the inverse and the determinant of partition
matrices@31#,

x5~L2J2 ĴTL̂21Ĵ!21 ~39!

and det(Laug2Jaug)5detL̂ det(L2J2 ĴT L̂21Ĵ), which
leads to

x̂kk5
]

]L̂k

ln det~Laug2Jaug!5
1

L̂k

1
1

L̂k
2
(
i j

ĴkiĴk jx i j ,

~40!

showing that the hatted covariances can be explicitly co
puted from the nonhatted ones. The variancesVi andV̂k are
obtained from a straightforward generalization of Eq.~35!:
]^Si&/]u i5@(L2J2 ĴTL̂21Ĵ)21# i i and ]^Ŝk&/]ûk5x̂kk .
Finally, we can use the identity for partitioned determina
to show that in the Onsager term~33! a few terms cancel and
we can write

DF5 1
2 ln det~L2J2 ĴTL̂21Ĵ!2 1

2 (
i

Vix i i 1
1
2 (

i
ln x i i

2 1
2 (

k
V̂kx̂kk1

1
2 (

k
ln~11V̂kx̂kk!. ~41!

Finally, we note that for the consistency of the TAP equ
tions, only the positive definiteness of the submatrixx for
the original real random variablesS ~and not xaug! is re-
quired.

III. THERMODYNAMIC LIMIT AND SELF-AVERAGING
THEORY

For specific choices of the distribution of disorder, whe
different sitesi appear in a symmetric way, we can expe
05613
d

-

s

-

t

that quantities likeVi and the free energy become se
averaging in the thermodynamic limitN→`, i.e., Vi5V in-
dependent of the specific realization of the disorder. S
quantities can be computed by suitable quenched aver
using the statistics of the disorder variablesJi j .

As usual, quenched averages over the distribution of
coupling matrixJ are performed within the replica frame
work using @ ln Z#J5(d/dn)ln@Zn#Jun50 , where for integern
we have

@Zn#J5E dSn)
ia

r~Sia!FexpS 1
2 (

a
(
i j

SiaJi j SjaD G
J

.

~42!

a51, . . . , n are replica indices and the brackets@¯#J de-
note the average over theJi j ’s.

If all matrix elementsJi j for i , j are assumed to be iid
Gaussian random variables~as for the SK model! the average
over J is easily carried out. The simplest way to general
this Gaussian orthogonal ensembleand allow for correla-
tions betweenJi j ’s is to keep the orthogonality of the en
semble but make it non-Gaussian. Such distributions, wh
also lead to a well-defined thermodynamic limit~introduced
by Ref.@32# and subsequently used by Ref.@30#!, are defined
by generating functions of the type

@e1/2TrAJ#J5eN Tr G~A/N!, ~43!

with the functionG fully specifying the ensemble. In Appen
dix D, it is shown howG is related to the spectrum of th
matrix J.2 The Gaussian ensemble is recovered by set
G(x)}x2. Note that scaling with 1/N inside ofG keeps the
trace of order one forN→` when the elements of the matri
A are of order one.

Distributions with generating functions~43! have the nice
feature that the average~42! depends only on a single set o
quadratic order parameters given byqab[(1/N)S iSiaSib .3

This can be seen by applying Eq.~43! to the matrix Ai j

5Sa51
n SiaSja appearing in Eq.~42!. We note thatA hasN

2n eigenvalues equal to zero, but in the space spannedn
vectorsSa we get

1

N (
j

Ai j Sja5(
a

qabSib . ~44!

Hence, in thisn-dimensional subspace, the matrixA/N acts
as the matrixq5$qab%.

In this way we can derive general results for the se
averaging case and connect these with the previous re
for the adaptive TAP theory. In Secs. III A–III C we com
pute the Onsager term, the replica free energy, and the a
age of the TAP free energy and show that both coinci

2In Sec. III A, we discuss the extension of this assumption to
model ~2!.

3Our ensembles do not apply to diluted models, for which usua
an infinite sequence of order parameters of any order has to
considered.
1-6
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Finally, in Sec. III D, we show how the condition of a pos
tive definite susceptibility matrixx translates to the AT sta
bility condition.

A. The Onsager term

In this section, we computeV5@Vi #J and DFself

5@DF#J from Eq. ~32! for the model~1!. We will briefly
sketch how to generalize these results to the model~2! at the
end of the section. To computeV, we write Eq.~35! as

x i i 5@~L2J!21# i i 5
]

]L i
ln det~L2J! ~45!

and replace the right-hand side by its average over the
tribution of the matrixJ for N→`. Since there is no spin
glass ordering for a Gaussian model, it is sufficient to p
form an annealed average using the identity

det21/2~L2J!5E dz

~2p!N/2 exp@2 1
2 zT~L2J!z#. ~46!

Applying Eq. ~43! to the matrixA5zzT, which has a single
eigenvalue equal tozTz ~with eigenvectorz! and an (N
21)-fold degenerate eigenvalue 0, and using the fact
G(0)50 we arrive at

@det21/2~L2J!#J5E dz

~2p!N/2 expF2 1
2 (

i
L izi

2

1NGS 1

N (
i

zi
2D G

5E dr dr̂

4p i /N

dz

~2p!N/2 expF2 1
2 (

i
L izi

2

1 1
2 r̂ S (

i
zi

22Nr D 1NG~r !G ,
where in the last line the order parameterr 5(1/N)S izi

2 and
its conjugater̂ have been introduced. ForN→`, r̂ is found
from the saddle point of

ln det~L2J!5(
i

ln~L i2 r̂ !1Nr̂r 22NG~r !, ~47!

yielding

r 5
1

N (
i

1

L i2 r̂
. ~48!

Hence, the averaged TAP equation~35! reads

@x i i #J5
1

L i2 r̂
, ~49!

giving

r 5x̄[
1

N (
i

@x i i #J ~50!
05613
is-
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and Vi5V5 r̂ ~when taken together with the definitionL i
5Vi11/x i i !. Finally, variation with respect tor yields r̂
52G8(r ). Summarizing, we find that in the thermodynam
limit,

V52G8~ x̄ !. ~51!

As sketched in Appendix C, the same result is obtained w
the general Gaussian model used in the derivation of
Gibbs free energy is replaced by asphericalmodel, where
only a single Lagrange parameterl ~or L! is coupled to
S iSi

2.
Inserting the saddle-point values into Eq.~47!, the expres-

sion for the Onsager term~33! simplifies remarkably,

DFself5NG~ x̄ !. ~52!

Turning to the generalized model, it can be seen from E
~39! and ~41! that J in the original model is replaced byJ
1 ĴTL̂21Ĵ in the generalized model. For this case, we exte
the definition of orthogonal ensembles~43! to

@exp$ 1
2 TrA~J1 ĴTL̂21Ĵ%#J,Ĵ5eN TrGL̂~A/N!. ~53!

With this definition, the result~51! for V remains valid, i.e.,
V52G

L̂
8 (x̄). Self-averaging results forV̂k obtained from Eq.

~39! and the Onsager term~41! are derived for neural net
work models in Sec. IV.

B. Replica free energy

To get the average free energy, we use Eq.~42! and
compute4

@Zn#J5E dSn)
ia

r~Sia!FexpS 1
2 (

a
(
i j

SiaJi j SjaD G
J

5E dSn)
ia

r~Sia!eN TrG~q!. ~54!

In replica symmetry,q has only two types of eigenvalues:
nondegenerate one given by (n21)q1q0 and an
(n21)-fold degenerate eigenvalue equal toq02q. Hence

Tr G~q…5~n21!G~q02q!1G~nq1@q02q# !. ~55!

After introducing and eliminating conjugate parametersq̂
and q̂0 with a saddle-point method, we find the replica sym
metric free energy

4This analysis can be easily generalized to include cases
more than one order parameter, e.g., for a neural network lear
from a teacher.
1-7
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2
1

N
@ ln Z#J52

1

N

d

dn
ln@Zn#JU

n50

52E Dz ln E dSr~S!exp@A2qG9~q!zS

1G8~q02q!S2#2G~q02q!1~q02q!

3@qG9~q02q!1G8~q02q!#, ~56!

whereDz[dze2z2/2/A2p and q0 and q are obtained from
the saddle point.

C. Averaging the TAP free energy

We will next prove the consistency of our TAP approa
with the results of the replica theory in the thermodynam
limit. We want to show that the averaged free energy~56!
calculated with the help of replicas coincides with the dis
der averaged Gibbs free energy from the TAP approxim
tion. From this result we can conclude that self-averag
quantities that can be derived from the free energy by der
tives with respect to external fields will be exact in the TA
approach.

In order to prove this, we define an auxiliary partitio
function, which reproduces the TAP Gibbs free ener
F1(m,M ), Eq. ~32!, evaluated at equilibrium, i.e., for th
values ofm and M provided by the solutions of the TAP
equations. We will only give a brief description. The calc
lation uses the representations~28! and ~29! of the free en-
ergy. With Eq.~32! and the thermodynamic limit simplifica
tions ~52!, l i→l, and definingq05(1/N)S iM i , we rewrite
Eq. ~29! as

C52 ln Z~lI ,g!1(
i

mig i1
l

2
q0N2

1

2 (
i j

miJi j mj

1NGS q02
1

N (
i

mi
2D .

Following Eq. ~28!, C will coincide with the equilibrium
value of the Gibbs free energy when evaluated at the va
for g, m, l, andq0 , which makeC stationary. The station-
ary values are equal to those obtained from the TAP eq
tions when we identifymj[^Sj& andq05(1/N)S i^Si

2&. The
auxiliary partition function

Y5E dg d me2bC ~57!

is in the limit b→` dominated by the values ofmi andg i
for which C is stationary, provided the paths of integratio
are chosen such that the integral exists.5 Assuming also sta-
tionarity with respect tol andq0 , we recover the TAP free
energy at equilibrium from

5Note that the stationary value ofC is not given by a minimum
but by a saddle point.
05613
c
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F52extr
l,q0

lim
b→`

1

b
ln Y. ~58!

Variation with respect to q0 yields l52G8(q0

2(1/N)S imi
2). The calculation of @F#J proceeds by a

straightforward replica calculation using the average

1

N
lnFexpS 1

2 (
a

(
i j

bmiaJi j mjaD G
J

5~n21!G„b~q2q̄!…1G„b~nq̄1q2q̄!…. ~59!

For b→`, the integrations overg i and mi are decoupled
and performed by the saddle-point method yieldingmi50
andg i5AqG9(q2q0)zi , wherezi is a standard normal ran
dom variable showing the equivalence to Eq.~56!. In com-
paring both replica calculations, it is useful to note that b
linear response argument we can identify

lim
b→`

b~q2q̄!5x̄5q2q0 . ~60!

Putting everything together we find that@F#J52@ ln Z#J .

D. Stability and AT condition

We will show next ~by generalizing the arguments o
@33#! how the positive definiteness of the susceptibility m
trix ~i.e., the matrix of covariances! x, Eq. ~24! @or Eq. ~39!
for the model~2!#, translates into the de Almeida–Thoule
stability condition well known from the replica theory.

From Eq.~24!, positive definiteness ofx is equivalent to
the condition thatH5L2J has only positive eigenvalues
Hence, in the thermodynamic limit, the eigenvalue dens
r(g)[ limN→`(1/N)Smd(m2g), where m denotes the ei-
genvalues ofH, must be exactly zero for small positiveg.
Using a standard representation ofd functions, we have

r~g!5
1

Np
lim

d→01

Im (
m

1

m2g2 id

5
1

Np
lim

d→01

Im Tr@H2~g1 id!I #21

52
1

Np
lim

d→01

Im
]

]g
ln det@L2J2~g1 id!I #.

Since we have already calculated ln det(L2J) in Sec. III A,
we can immediately write down the result as

r~g!5 lim
d→01

Im
1

pN (
i

1

L i2 r̂ ~g!2~g1 id!
. ~61!

In general, it is hard to obtain a closed form solution to t
saddle-point equation forr̂ (g). However for g close to
zero—the interesting region with regard to the stability
r̂ (g) is close tor̂ (0)5V and we can easily get a solution fo
1-8
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r̂ andr by expanding to second order ind r̂[ r̂ (g)2 r̂ (0) and
dr 5r (g)2r (0),r (0)5x̄. We find that as long as the con
dition

122G9~ x̄ !
1

N (
i

@x i i #J
2.0 ~62!

is satisfiedr̂ (g) is real and the densityr(g), Eq. ~61!, van-
ishes for smallg.0.

On the other hand, if the left-hand side of Eq.~62!—the
stability condition—is zero, thend r̂ has an imaginary part

d r̂ 5H 2g

2G9~ x̄ !
1

N (
i

@x i i #J
31

G-~x̄ !

@2G9~ x̄ !#2
J 1/2

~63!

and the support of the density of eigenvalues, Eq.~61!,

r~g!.
1

pN (
i

@x i i #J
2 Im d r̂

5
1

p H g

@2G9~ x̄ !#3
1

N (
i

@x i i #J
31G-~x̄ !J 1/2

~64!

extends tog50 and the solutions of TAP equations are on
marginally stable. As we will show for some examples in t
next section, Eq.~62! coincides with the AT stability condi-
tion of replica theory@1#.

IV. APPLICATIONS

In this section we will give explicit examples for adaptiv
TAP equations for a few models that have been previou
considered in the literature. These are the SK and Hopfi
models and the perceptron. The latter is of the general
model type~2!. Finally, in simulations, we investigate th
effect of the choice of the Onsager term for perceptron lea
ing problems.

A. Ising models

For Ising models we have a prior distributionr(S)
5 1

2 d(S21)1 1
2 d(S11) so that

Z0
~ i !5coshS (

j , j Þ i
Ji j ^Sj&2Vi^Si&1u i D ,

which leads to

^Si&5tanhS (
j , j Þ i

Ji j ^Sj&2Vi^Si&1u i D
andx i i 512^Si&

2.

1. SK model

For the SK model@3# the statistics of the couplings i
given by Ji j 50, Ji j

2 5b/N with Ji j 5Jji . Then theG func-
tion ~43! becomesG(r )5(br )2/4 and according to Eq.~51!,
05613
ly
ld
d

-

V52G8~12q!5b2~12q!, ~65!

whereq5(1/N)S i^Si&
2 is theEdwards Andersonparameter.

The stability condition simplifies to 12(b2/N)S ix i i
2 .0 and

r(g)5(1/p)Ag/(b6/N)S ix i i
3 in agreement with@33#.

2. Hopfield model

The coupling matrix of the Hopfield model@17# is Ji j

5(b/N)Sk
mxkixk j , where we assume that thexki are iid ran-

dom variables of zero mean and unit variance. TheG
function6 ~43! is then found to be

G~r !52
m

2N
@ ln~12br !1br #, ~66!

leading to

V52G8~12q!5
m

N

b2~12q!

12b~12q!
, ~67!

in agreement with@1#.

B. Perceptron

Perceptrons are single layer neural networks that are
rametrized by a vector of weightsS. We consider both the
learning of regression and binary classification proble
from a training set that is given by$(xk ,yk), k
51, . . . , m%. xPRN denotes a vector of inputs andyPR is
a real valued output for regression and a binary labely5
61 for classification. In the first case the output of the p
ceptron is given byS•x and in the latter case by sgn(S•x).
Although this simple linear model is of limited power com
pared to multilayer neural networks, it can be easily gen
alized to the so-calledGaussian process models. These are
able to make nonlinear predictions and achieve state-of-
art performance on a variety of standard benchmark d
sets. An application of the adaptive TAP approach to
Gaussian process models was given in@8#.

Perceptrons can be understood as probabilistic model
defining a probability~likelihood! P(yuS•x) for the observa-
tions y given inputsx and weightsS. For classification we
consider the so-calledprobit model, which can be derived b
assuming that labels are generated asy5sgn(S•x1u),
where u is a Gaussian noise of variances2. Hence,
P(yuS•x)5f(y@S•x/s#), where f(z)[*2`

z Dt. In the
noise-free limitf reduces to the unit step function. For r
gression with additive Gaussian noise the likelihood
P(yuS•x)}exp@2(y2S•x)2/2s2#.

The model is clearly of the form given by Eq.~2! with
Ĵki5xki and J50. We identify the likelihoodP(yuĥ) with
F(ĥ) in Eq. ~3! where ĥ5S•x. The explicit appearance o
the hatted variables in the algorithm will be especially use
when we want to discuss the important effects of removin

6This is easily shown for Gaussianxki . For binaryxki , the aver-
age must be restricted to the condensed patterns and the re
~43! will hold only for N→`.
1-9
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FIG. 1. Test of self-consistency of TAP—yk(ĥk) \k versusyk(ĥk) \k
exact. The stars/circles are for adaptive/conventional TAP. The right p

shows the distribution of the cavity variancesV̂k . The line in the middle is the value found from the self-averaging theory. The plot is
the noise-free perceptron withm5N5100.
th
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data point~rather than a weightSj ! from the set of training
examples.

Under the assumptions of a Gaussian cavity field,
Bayes predictors for regression and classification beco

^ĥ&5^S&•x and sgn̂ĥ& @12#. For the weight variablesSj we
consider both Ising weightsr(S)5 1

2 d(S21)1 1
2 d(S11)

and weights with a Gaussian prior distributionr(S)
5e2S2/2/A2p. In the first case, we recover the Ising resu

^Si&5tanhS (
k

xki^Ŝk&2Vi^Si&1u i D , ~68!

and in the Gaussian case we simply get

^Si&5(
k

xki^Ŝk&1
u i

12Vi
.

The TAP equations for the hatted variableŝŜk&
5] ln Ẑ0

(k)/]ûk are obtained from Eq.~38!,

Ẑ0
~k!5E DzP~yku^ĥk& \k1 ûk1AV̂kz!,

with ^ĥk& \k5S ixki^Si&2V̂k^Ŝk&. Explicit expressions are fo
classification,

Ẑ0
~k!5fS yk

^ĥk& \k1 ûk

As21V̂k

D ,

and for regression,

Ẑ0
~k!5

1

A2p~s21V̂k!

expF2
~yk2^ĥk& \k2 ûk!

2

2~s21V̂k!
G .

To connect with results known in the literature, we derive
self-averaging properties for the case, where thexki are iid
random variables with zero means and variance 1/N. TheG
function ~53! becomes
05613
e
e

e

GL̂~r !52
1

2N (
k

ln~12r /L̂k!.

The self-averaging value for the variances of the origi
variablesVi5V is given by Eq.~51! and the variance for the
hatted variables is given by Eq.~40!. Taken together they
lead to the symmetric result in the two sets of variables

V̂5x̄5
1

N (
i

@x i i #J,Ĵ , ~69!

V5 x̄̂[
1

N (
k

@ x̂kk#J,Ĵ . ~70!

The Onsager term~41!, stability condition~62!, and the ei-
genvalue spectrum~64! become

DFself52
N

2
VV̂, ~71!

12
1

N2 (
k

x̂kk
2 (

i
x i i

2 .0, ~72!

r~g!.
1

p H g

F 1

N (
k

x̂kk
2 G3 1

N (
i

x i i
3 1

1

N (
k

x̂kk
3 J 1/2

.

~73!

Specializing to a Gaussian weight prior for whichx i i 51/(1
2Vi), we find in accordance with previous results@10–12#
that V̂51/(12V) and the stability condition reduces t
12V̂2(1/N)Skx̂kk

2 .0.
Finally, we test the adaptive and self-averaging TA

equations in two learning scenarios. We first test the inter
consistency of the theory by comparing the cavity field c
culated from the solution of the TAP equations^ĥk& \k

5S ixki^Si&2V̂kŜk with the ‘‘exact’’ cavity field ^ĥk& \k
exact

computed by actuallyremovingexamplek from the training
set and solving the TAP equations for the remainingm21
examples and repeating this procedure fork51, . . . , m. A
1-10
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FIG. 2. The same as above withm5N
5200.
i
n

io

t

pl
or
fo
xa
te

th

u
u

tiv
h
an
ti

ve
se

ct
on
-

pt
th

flu

th

t i
a

ion

a-
od,
s an

s

lf-

od-
SK

the

-

the

ults
h
ms

and

ach
of

ion
eth-

h in
ect
u-
m-
els

of

hen
precise estimate of the cavity field is of practical relevance
machine learning since it can be used to define ‘‘leave-o
out’’ estimators of the generalization error@12,8,22#. One
such ‘leave-one-out’ estimate for classification is the fract

of negative termsyk^ĥk& \k over the training set:e loo

5(1/m)SkU(2yk^ĥk& \k) since sgn̂ĥk&\k is the leave-one-ou
prediction ofyk .

Figures 1 and 2 show the result of learning in the sim
perceptron with Gaussian weight prior, the likelihood f
noise-free classification, and the iid distribution of inputs
which the self-averaging theory is expected to become e
in the thermodynamic limit. The output labels are genera
by a neural network teachery5sgn(T•x). While for positive

values ofyk^ĥk& \k ~not shown in the figures!, i.e., the ex-
amples for which the leave-one-out prediction is correct,

agreement between̂ĥk& \k and^ĥk& \k
exacttends to be better, the

negative values are more crucial for real applications beca
they give the desired leave-one-out error count. The res
clearly show that the internal consistency of the adap
TAP is better than that of the self-averaging theory. T
results indicate that finite size effects are quite import
even for reasonably large systems and that the adap
theory is better at taking these into account.

Performing the same analysis for real data gives e
more striking results. Here we consider the data
‘‘Sonar—Mines versus Rocks’’@34# of size m5104 with
binary class labelsyk561 and aN560-dimensional input
space. We use the Gaussian prior for the weights ands2

50.5 in the likelihood. In Fig. 3 we again plotyk^ĥk& \k ver-
sus yk^ĥk& \k

exact. For the adaptive theory, we find a perfe
agreement between the two computations of the leave-
out estimate:e loo5e loo

exact5 33
104. For comparison, the self

averaging TAP approach givese loo5
41

104 ande loo
exact5 33

104. The
consistency of the leave-one-out error based on the ada
TAP approach is also apparent in the generalization of
perceptron to the Gaussian process models~see@8#!.

In the second set of simulations we have tested the in
ence of using a wrong cavity varianceV in the mean-field
equations~and wrong Onsager termDF in the free energy!.
Since the free energy is the negative log likelihood of
observed data, i.e.,at equilibrium, F52 ln P(y), it can be
used for deciding which model gives the best fit to data. I
therefore also of practical interest to get a reliable estim
of F.
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In these simulations we consider a nontrivial regress
model with binary weights. See Ref.@35# for a discussion of
this model in the context of demodulation in communic
tions systems. As it can be seen directly from the likeliho
the regression problem can alternatively be regarded a
N-dimensional model of the type~1!, i.e., PkP(ykuS•xk)
}exp(Si.jSiJijSj1SiSiui). The couplings and external field
are given byJi j 52Skxkixk j /s

2 and u i5Skxkiyk /s2. We
can now directly compare the use of the correct se
averagingV, Eq. ~70!, for this model with that provided
from the adaptive TAP approach and that of other Ising m
els with different random matrix ensembles, namely, the
and Hopfield model equations~65! and ~67!.

In Fig. 4, we compare the TAP mean-field free energyF
found in simulations using the different expressions for
Onsager term with the prediction of replica theory@36#. In
the simulationsN560, s250.2, and the training set is gen
erated by a noise-free binary teacher:y5T•x with Ti5
61. The simulations are averaged over 100 runs and
error bars are of the size of the symbols. We setb51 for the
SK model andb50.99 for the Hopfield model.7 The figure
shows that both adaptive and self-averaging TAP res
with the Onsager term~71! are in excellent agreement wit
replica theory. Using the SK and Hopfield-Onsager ter
tends to produce saturated solutions, i.e.,^Si&'61 even for
training set sizes where this is not expected theoretically,
leads to a completely wrong estimate of the free energy.

V. SUMMARY AND OUTLOOK

We have presented a generalization of the TAP appro
for disordered systems, which is able to cope with the lack
knowledge of the disorder distribution. Such a generalizat
is necessary for the recent applications of mean-field m
ods to probabilistic data models.

We have demonstrated the significance of our approac
two ways: We have shown that it reproduces the corr
thermodynamic limit results for a class of disorder distrib
tions compatible with fully connected models in replica sy
metry. Second, the application of our approach to toy mod
as well as real data models has shown the importance

7The latter was chosen in order to avoid numerical problems w
q'1.
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FIG. 3. The same as above for the Sonar d
set. For clarity we have left out half of the dat
points in the left plot.
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using the correct TAP approximation when good approxim
tions for leave-one-out estimatorsof errors andfree energies
are required. Such quantities serve as practical yardstick
comparing different data models and assessing the validit
model predictions.

While the present framework may be sufficient for a v
riety of practical applications, it could nevertheless bre
down when the probabilistic model is multimodal havin
many modes of almost equal weights~free energies!. For
systems in such ‘‘glassy’’ phases our TAP solutions are
pected to violate the stability condition and an extension
our framework to a theory, which includes Parisi’s hierarc
cal organization of states, would be highly important. W
expect that this is possible by generalizing the ideas p
sented in Chap. V of@1#. However, one may speculate that
such cases, solving the TAP equations may be highly n
trivial.

We conclude with two other problem areas that have h
priority for our future research. These are the limitations
our method to models with extensive connectivities and
algorithmic aspects of our approach, i.e., the developmen
efficient algorithms for solving the TAP equations. Rece
studies on other advanced mean-field techniques indicate
both problems have interesting relationships and also g
promising directions for their solutions.

The so-called belief propagation algorithm@6#, used in the
field of artificial intelligence for approximate probabilist
computations on graphical models with sparse connectivit
was recently identified@15,37,38# as an efficient method to
solve the Bethe approximation~a cavity type of approxima-
tion! of statistical physics. This observation has already
to principled ways of combining the improved accuracy
higher order~Kikuchi! Bethe approximations@38# with the
efficiency of the belief propagation method.

Another interesting approach to an approximate propa
tion of probability distributions when data arrive sequentia
is the Bayesian on-line method introduced in@39,40# and
further developed in@41–43#. This technique can be formu
lated for fairly general model classes but was so far limi
to a single sweep through the data, thereby making the
proximation dependent on the ordering of the data seque
In a recent study by Minka@44# it was shown that by a
proper recycling of the data, a convergence to the soluti
of the TAP equations for the case of a Gaussian proc
classifier@8# was achieved. We expect that by a consequ
and principled combination of the cavity idea with alg
rithms that are similar to the on-line or the belief propagat
technique, we will not only get efficient methods for th
05613
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solution of TAP equations but also be able to significan
extend the range of applications of the TAP approach.
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APPENDIX A: CORRECTNESS OF TAP EQUATIONS
FOR THE GAUSSIAN MODEL

We will show that the relation~24!,

x5~L2J!21, ~A1!

is correct for a Gaussian model. Gaussian models are defi

by r i(Si)}e2(1/2)Aixi
2

and we have alwaysx5(A2J)21,
whereA5diag(A1, . . . , AN). Hence, we only have to show
that Aj5L j5Vj11/x j j . To see this we look at the singl
variable partition function~18! derived from the Gaussian
cavity field assumption, which is exact for the Gauss
model

Z0
~ i !5E dSr i~S!exp@S~^hi& \ i1u i !1 1

2 ViS
2#. ~A2!

This gives in factx i i 5]2 ln Z0
(i)/]u i

251/(Ai2Vi).

APPENDIX B: ADAPTIVE TAP FREE ENERGY II

Parisi and Potters@30# in their analysis of a spin glas
model with random orthogonal couplings made the import
observation—motivated by a high temperature expansio
that ~within the TAP approximation! two models having the
same interactionsS i , jSiJi j Sj but differing only in their
single spin constraintsr i(S), should have free energiesF
that differ also only in the ‘‘single variable’’~or entropic!
contributionF0 , Eq. ~31!.

Hence, it is possible to compute the TAP approximati
for the free energyF from the free energy for an exactl
solvable modelFs, the entropic term for the solvable mod
F0

s , and the single variable term for our modelF0 , i.e.,

F5Fs2F0
s1F0 . ~B1!

Since the TAP equations for a Gaussian model are exact~see
Appendix A! we chooser(S)5e2S2/2/A2p for the solvable
1-12



bs

P

q.

g

f the

the

e
le

lf-
gi

ADAPTIVE AND SELF-AVERAGING THOULESS- . . . PHYSICAL REVIEW E 64 056131
model. We easily get the following exact result for its Gib
free energy~after eliminating the Lagrange multipliersg i
and with hindsight redefiningL i[12l i!:

Fs~m,M !5 1
2 ln det~L2J!1 1

2 (
i j

miJi j mj2
1
2 (

i
x i i L i

1(
i

M i

2
, ~B2!

where we have to insert the value forL i , which solves

x i i 5^Si
2&2^Si&

25@~L2J!21# i i . ~B3!

The single variable term for the Gaussian modelF0
s is found

by settingJi j 50 in Eq. ~B2!. Eliminating L using ]LF0
s

50,

F0
s~m,M !52 1

2 (
i

ln x i i 2
N

2
1(

i

M i

2
. ~B4!

We can now write down the general result for the TA
mean-field Gibbs free energy for a model of the type~1!.
Collecting the terms in Eq.~B2! and ~B4!, we arrive at the
free energy

F5Fs2F0
s1F05F02 1

2 (
i j

miJi j mj1DF, ~B5!

DF5 1
2 ln det~L2J!2 1

2 (
i

L ix i i 1
1
2 (

i
ln x i i 1

N

2
.

~B6!

FIG. 4. The free energyF as a function of the training set siz
m. The dashed line is the prediction of replica theory. Stars/circ
~almost coinciding! are the results for adaptive TAP/correct se
averaging TAP. Crosses/triangles are the results for self-avera
TAP with the Hopfield/SK Onsager term.
lo

05613
This result should be compared to Eq.~32!. Using the
saddle-point condition]Mi

F50, which implies L i51/x i j

1l i , we can rewrite the Onsager term in the form of E
~33!, where it should be noted thatVi5l i . We have thus
rederived the result obtained in Sec. II D.

APPENDIX C: FREE ENERGY
FOR THE SPHERICAL MODEL

For the spherical model defined by the constraintS iSi
2

5N we obtain

F5F02 1
2 (

i j
^Si&Ji j ^Sj&1 1

2 ln det~LI2J!2
NLx

2

1
N

2
ln x2

N

2
, ~C1!

wherex[(1/N)S ix i i and there is also only a singlel0 in
F0 . L is determined by

x5
1

N
Tr~LI2J!21. ~C2!

Second, we haveL51/x1V. Repeating the same averagin
step as before yields again Eq.~51!.

APPENDIX D: EIGENVALUE SPECTRUM OF J

In this appendix we will show how theG function ~43!
can be expressed in terms of the eigenvalue spectrum o
matrix J. We define

r[E dm
p~m!

L2m
5

1

N
Tr~LI2J!21, ~D1!

wherep(m) is the density of eigenvalues ofJ. By adding a
small imaginary part toL we get apart from a factor, directly
the density. Using again the Gaussian representation of
determinant yields the equationsr 51/(L2 r̂ ), wherer̂ is the
order-parameter conjugate toS izi

2. It obeys r̂ 52G8(r ).
Hence

1

2r
2

L

2
1G8~r !50. ~D2!

Solving Eq.~D2! enables us to computer (L) when the func-
tion G(r ) is given. We may also getG as a function ofL by
integrating Eq.~D2!.
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