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We develop a generalization of the Thouless-Anderson-Pali¥daP) mean-field approach of disorder
physics, which makes the method applicable to the computation of approximate averages in probabilistic
models for real data. In contrast to the conventional TAP approach, where the knowledge of the distribution of
couplings between the random variables is required, our method adapts to the concrete set of couplings. We
show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a
wide class of toy model&@ssuming a nonglassy phaseéth given disorder distributions in the thermodynamic
limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate
predictions as compared to conventional TAP approaches.
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I. INTRODUCTION tional complexity when the number of hidden variables is

large. Both the statistical inference about the hidden vari-
Models of statistical physics with random infinite rangedables and the learning of the model parameters requires the

interactions have the nice feature that they can be treate@pmputation of marginal distributions of the hidden
exactly by mean-field methods. To compute average propeiariables/the observed data, i.e., the evaluation of high-
ties of the system, one may choose two possible alternativdimensional sums or integrals. Since similar types of calcu-
but equivalent approaches. The first one is based on the refltio_nS are ubiquitous in computing thermal averages, e.g.,
lica method in which the replicated system is first averaged°r finding local magnetizations and free energies, there is a
over the disorder and the resulting nonrandom system is d&l'éat deal of interest in adopting approximation techniques

coupled by saddle-point methods, which leads to exact aveffOm statisti_cal physics. AIready. the simpleften called na-
age case mean-field equatiof. In the second approach ive) mean-field MF) method, which neglects all correlations

one derives a mean-field theory forfixed set of random of random valrl'at?les has been applied successfully to a vari-
couplings which becomes exact in the thermodynamic limit ety of probab|llst_|c_ da_ta mod_els. At present, there 'S & grow-

o . gng research activity in the field of probabilistic models try-
for almost all realizations of the randomness. This type of

field th ) ditionall lied the TAP hmg to overcome the limitations of the simple MF method by
mean-field theory Is traditionally called the approac partly including the dependencies of variables but still keep-
after Thouless, Anderson, and Palnmigt who developed it

’ : : X ; ing the approximation tractable. In the case where the indi-
first for the Sherrington-Kirkpatrick modef3] of spin  \;qyal dependencies are weak but their total effect cannot be
glasses. In a final step, one may average TAP mean-fieldaglected, the TAP method is a natural candidate for such an
equations over the couplings to achieve the same result as iﬁ,proved approximation. TAP approaches for different
the replica approacf#]. probabilistic models have already been discussed for neural
Besides the importance of the TAP approach in the theoryietworks [10-12, Boltzmann machine$13,14], Gaussian
of disordered systems there is a recent interest in thiprocess models for classificati¢8], error correcting codes
method, which comes from a more applied area of researcf15], etc.; for a review see aldd 6.
dealing with adaptive probabilistic data modélsr a review Unfortunately, the TAP mean-field approach shows a
see, e.g.5]). The goal of such models is to explain complex characteristic difference from the naive MF method, which
observed data by a set of unobservhidldenrandom vari- makes its straightforward application to models for real data
ables based on the joint distribution of both sets of variablesnontrivial. While the simple MF equations are expressed in
A few popular examples are Bayes belief netwdiis(used  terms of the concrete couplingahich encode observed data
as trainable expert systejnsndependent component analy- in application$, the Onsager correctionto the naive MF
sis[7] (abbreviated ICA, which detects independent sourcesheory (for models with extensive connectivitieprovided
in nonlinear signal processingGaussian process modé¢8 by the TAP approach will explicitly depend on the distribu-
(modeling hidden spatial structures by random figldsxd  tion from which these couplings were generated at random.
Boltzmann machine$9] (the Ising version of the random Two models with the same connectivities but different dis-
fields). tributions for the couplings, like, e.g., the SK model and the
The price that a modeler has to pay for the high degree ofopfield model[17] have different expressions for the On-
flexibility of these models is the vast increase in computasager correctionssee, e.g.[1], Chap. Xlll). While in the
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models of disorder physics this distribution is given in ad-which includes a variety of popular “network” models like
vance, such a knowledge is obviously not available for modperceptrons (see Sec. 1Y, sigmoid belief networks
els of real data. Simply taking results from a theory that[25,22,26, and combinatorial optimization problems with in-
assumesa specific distribution may lead to suboptimal per- equality constraints, e.g., the knapsack probJem.

formance. To define the “correct” TAP approach, which is  Luckily, the models of the type Eq2) can be easily
valid in these more general situations, truncated perturbativeepresented in the standard form Ef). by the “field theo-
expansions for the free energy or for marginal distributionsretic” trick of introducing the fields 3N ,J,S, k
have been considered8—21. While such a finite order —1  m as new variables by using Dirag functions
truncation becomes exact for the SK model this is, in genand their exponential representations. Denoting the purely

eral, not to be expected. . . . _ P -
In this paper we present a new approach to this proElIem.Imagmalry conjugate variables 1=(Sy,....Sy), the space

Our criteria for a valid TAP method are twofold: We require Of V?‘“ableﬁ is augmented to the s& &) where the “prior
that the lack of knowledge of the underlying distribution of distribution” for the hatted variables is given by
the couplings must be compensated by a self-consistent com- A
putation, whichadaptsthe Onsager correction to theon- f)(é)= f d_h_e—?sﬁF(ﬁ) 3)
creteset of couplings. Second, when applied to a set of inter- 2
actions, which was randomly generated fromkaown ) .
distribution (for which the mean-field assumption is valia ~ @nd the augmented coupling matrix is
suitable average of the adaptive TAP method should repro- 35T
duce thecorrectaverage case results known from the replica _
i e el )
approach. We achieve the first goal by combining the cavity
approacH 1] with a simple linear response technique, which
yields a second set of TAP equations for the Onsager corre&ince all the subsequent manipulations are of the analytic
tion. This method fulfills the second requirement so far onlytype, i.e., they are based on certain formal expansions rather
for the class of extensively connected models with nonglassthan on probabilistic argument&n the sense of assuming
behavior. These models can be described by a single ergodimsitive normalized measupesve expect that our use of
phase, which is correctly described by a finite set of ordenonpositive and even complex measures will not be prob-
parametergunlike the sparsely connected model$ in rep-  lematic.
lica symmetry. Our experience with average case studies of The paper is organized as follows. The adaptive TAP
neural networks makes us expect that the assumption of regguations are derived in Sec. (With a summary given in
lica symmetry may well describe practical situations whenSec. I1B. In Sec. Ill, we show how the adaptive theory
the models are sufficiently matched to the data. reproduces the correct average case results when applied to a
Our approach is most naturally developed for models witHfairly general class of distributions for the couplings. We
pairwise interactions between variab®s i=1, ...,N derive “self-averaging” TAP equations, replica results, and
the stability condition for the mean-field solutidthe de
(S) Almeida—Thoules$AT) condition]. In Sec. IV, we apply our
P(S)= p—exp{E SJ:S+ > S6 . (1)  results to the SK model, the Hopfield network, and the
ZAQ/N) I e B simple perceptron. Finally, we present an outlook in Sec. V.

4

0

Here S=(S;,...,S), and we have setl;=0. All self- Il. ADAPTIVE TAP APPROACH

interactions are (rz]ant]ai?ed in the felllctprizling (;Iistlribution In this section, we will derive both an adaptive TAP ap-
p(S)=I1;p;(S;), which also contains all single variable con- . oyimation  for the marginal distribution P;(S)

straints of the variableS; like their range, their discreteness, _ I...dSP(S) (Secs. IA-IIO and the free ener
etc. Examples of models that are included in this frameworliz(f‘] 01)’;' _S"n (Z(\)J 0() (Séc. IlD. the free energy corrge)f

are Ising modelglike the SK model, the Hopfield model, the ,nds 1o the negative log probability of the observed data,

Bqltzmann machine in t.he neural computa}tion contetkte . which can be used as a yardstick for deciding which model
finite temperature versions of the matching and travelmgDest fits the data.

salesman probleni23,1], Gaussian process mod¢8, and
the ICA model of 24]. However, many other interesting data
models are of a more complicated form such as

Our derivation will be based on the cavity approach intro-
ced by[1]. We will assume that we are not dealing with a
glassy system with its many ergodic components, but that all
averages are for a single state. This is usually expected to
m N hold when the probabilistic model is well matched to the
P(S)ocp(S)ex;{z SJ;S+> S ei} 11 F( > JkiSi) , data. We expect that the adaptive TAP approximation can be
1<) ! k=1 \i=1 @ extended to glassy systems along the line of Chap. M]jn

A. The marginal distribution

IA shorter presentation of the main results of this paper can be The starting point of our derivation is the following exact
found in[22]. equation for the marginal distribution of the varial3e
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* (1)
P(S\S) ~H(9=3, T(—Tsk (13)

f,—,l,-li d%m(S)G!Xp[&(? Jijs;+ 0,
fl:[ dS;m(S)m{S(? 3;S+6

Pi(S)= ,
P(SS) with k= (hy)y, €9 =(h?)—(h)3, etc.

(5) The usual argument in deriving TAP equations is based

on the assumption of weak dependencies between the ran-

whereP(S\S,) is the distribution of all variables for a system dom variablesS, which is expressed in the so-called cluster-
where theith variable is absent. We see from Ef) thatS, ~ ing hypothesig1],
interacts with the remaining variables only through the field 1
hi=%;J;;S;. Hence, we introduce its “cavity” distribution, S)— S))2.,0 14
i.e., the distribution of the field at the “position” of the ﬁz% (SS)=(SHSH™— (149
“empty” site i by

and similar relations for higher connected correlation func-

tions. One concludes that if the varial8gis removed from

the system, the effect of the correlations betweer'S]'-’onn

the distribution of the field; is so weak thatas in proofs of

and rewrite Eq(5) as the central limit theorem by characteristic functippse can
neglect all cumulants of order greater than 2, i.e.,

P(hi\s)zf J];[I ds 5( hi—Ej: J”sj)P(33) (6)

pI(Si) —Hi(
. = i(Sp) )

PilS)="Zme 7 @) =0 for k>2. (15
where we have introduced an effective single variabldf Sis a real random vector this is equivalent to approximat-
Hamiltonian ing Eq. (6) by a Gaussian distributiofi,8], setting

—Hi(S)=In(e%"),;, ®8) 1 hi—(hi))?
| ) P(N\S)~ =— xr{—%} (16
and the bracketg---),; denote an average with respect to 27V, i

P(h\S), Eqg. (6). The corresponding partition function is . . .
(n\S). Eq. (0 P gp whereV;= k)= (h?),;—(h;)3. From Eq.(15), we immedi-

28)=f d4Sp(S)e S, © ately get the marginal distribution
_1 Vi
The complete knowledge of;(S) would provide us with the Pi(S)= ZTOi)Pi(S)EXF{ S((hiji+ 6D+ S } (17)
ability to compute averages of functions of a single variable
S like, e.g., and the single variable partition function
<a>:ilnz“) (10) () Vig
99, 0 Z; —fdspi(S)ex S((hi)+6,)+ ?S . (18

Second, by using appropriate derivatives with respect to thg, the following, we will assume the validity of E415) and

external fieldsg; we can compute correlaﬁion functions.. For the resulting Eq(17) also in the cases, wheBis a complex
example, the connected correlation function of two variables,ariable with nonreal prior distributiop(S).

is expressed by thinear response relatioms All that remains to derive the TAP equations is to com-
5 21z pute the sets of the first two cumularts;),; andV; for i
X--E<S«S>—<Si><3>=ﬂ= 0 (11) =1, ..., N self-consistently. The first cumulant is easily
g ! ! a0, 36,00 found from Eq.(12) using Eq.(17) as

Moreover, from the definition(8), we also realize that the (hjy=(h)\i+Vi(S). (19
distribution ofh; can be reconstructed using derivatives with

respect tS A corresponding result that will be useful in the Hence, we can eliminatéh;),; in favor of the mean-field
following is variables(S;) andV;,i=1, ..., N via

1 PR
<hi>:ZTOi)J dSPi(S)&_Se Hi(S), (12 <hi>\i:; Jij(S;) —Vi(S)- (20)

This has the well-known structure of a mean field corrected
, by a so-calleddnsager reactioterm, which accounts for the

In general, we can express E®) by the cumulantsx(k') nontrivial correlations between variables that are neglected
of the cavity distribution in a naive mean-field approach.

B. The cavity approach
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So far, this approach is well known. The new aspect of S
our paper is in the way we compute thigs. A naive com- Xii =5 | Gii +2k (Jik= Vi) Xkj | » (23
putation would lead to !

which can be solved with respect fo={x;;} and yields
Vi= % Jij Jik({S;Sihi — (Shi{ Sii)

x=(A-3)"1. (24)
~ 2 2\ 2 . . .
”; Jii(<sj N~ (S, (21) Here we have introduced the diagonal matrix
neglecting the nondiagonal correlations. This turns out to be A=diagAyg,... An),  A=Vit+ Ly (25

correct in the thermodynamic limil— o for models(like

the SK mode) where different pairs of couplings; andJ;y Specializing to the diagonal eIemerytgz(S?)—(SiV de-
are drawnindependentlat random. However, it fails when terminesV; implicitly via

the J;;’'s become weakly correlated. Consider, e.g., the

simple Gaussian modgl(S)x<e~(2I% with a “Hopfield- Yi=[(A=3) 1. (26)
type” coupling matrix defined byJ;=(1/N) =N xS,

wherexX are random variables with zero mean and unit vari-The requirement that the susceptibility mat¢ice., the ma-

ance. The corresponding covariance trix of covariancesmust be positive definite can be used to
. test whether the mean-field solution is consistent. In the ther-
(SS)—(SHS)=1-J); (22 modynamic limit this requirement leads to a criterion that is

equivalent to the well-knowde Almeida-Thoulessstability
would still fulfill the clustering conditior{14), but nondiago- condition[1] (see Sec. I D.
nal contributions td/; do not vanish because of higher order  Two important remarks should be made at this point: Al-
correlations, €.9.3J;;JikJjk~a do not vanish. though all approximations are expected to be exact, in gen-
While it is well known how to derive TAP equations for eral, only in a suitable thermodynamic limit framewddee
this type of coupling matrix) (see, e.g.[1,28]), these ap- Sec. Il)), the final resul(26) is correct for a Gaussian model
proaches require the explicit knowledge of the statistics ofor arbitrary N (see Appendix A Secondly, we note that the
the J;;’s. In the following section, we aim at a computation functional relationship between thg, and theV;, Eq.(26),
of the cavity field variance¥,’s, which does not assume js independent of the specific single spin meag®. This
such a knowledge. argument can be used for a derivation of the free energy
different from the one of the following sections.
C. Computing the second moments

Our derivation is based on a self-consistent computation D. The adaptive TAP free energy
of the matrix of susceptibilitiesy;;=d(S)/70;=(SS) In this section, we will derive a TAP approximation to the
—(S)(S;) based on the mean E(L0). Hence, the diagonal free energy
elementsy;;, i=1, ..., N are expressed both by linear re-
sponse and by the explicit resyl = (S?) — (S;)? that can be F(J,00=—InZ(J,0)

evaluated using the marginal distributi¢hti7). Equating the
two expressions we obtain implicit equations for the vari-using the adaptive form of the Onsager term given by Eq.
ances V;=(h?);—(h)3, i=1, ...,N. Self-interactions (26). For this purpose, it is useful to generalize the model Eq.
Vi(S;) determined by the linear response method have als@l) to a one parameter class of models where the interaction
been introduced if29] as a heuristics to correct the naive J is replaced bytJ with 0<I<1, i.e.,
MF equations for Boltzmann machines.

Our crucial approximation in the linear response calcula- |
tion is that it is sufficient to include a perturbation of the Z(|J,0)=J’ ds[ 1 Pi(Si)eXF<§STJS+ s'e
means of the cavity field&h;),; whereas the varianc&4 are '

kept unchanged. This is consistent with the fact thatMfie ) . . . .
become self-averaging quantities in a suitable thermodySince the solutions of the TAP equations provide us with the

. (27

namic limit framework where the mean-field method be-momentsm;=(S) andM;=(s?) fori=1, ..., N, we wil
comes exact. Hence, by differentiating Ej0) with respect ~Work with the Gibbs free energyi.e., the free energy for
to the external fieldy;, Eq. (18), we get fixed m andM;, which is defined by a Legendre transform

using external fieldg; and\; conjugate tam, andM,, i.e.,

O ;(m,M)=extr¥(\,y,m,M), (28
Ay

_@< 5+ ‘3<hi>\i>,

Xi™ 50, 36,

whered(S;)/ 36; is the explicit derivative of Eq(10). Further
differentiating Eq.(20), we finally get where
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finally identify the conjugate fields as the mean and the vari-

V(N y,mM)=—InZ(1J+ X\, 0+ 7)+2i Yim, ance of the cavity field via®=(h;),; and\’=V; from Eq.
(3D).
\i In Sec. lll we give a simplification of the free energy for
+§i: - Mi. (29 the thermodynamic limit when the distribution of the cou-

plings J is explicitly given, i.e., for the conventional TAP

\ is a diagonal matrix with entries; . The valuesm® and approach. Assuming that the free energy is self-averaging in
Me, which make®, stationary, i.e., for whichy,,® ;= dy®, this case, we show the equivalence of our TAP approach to
=0, determine the correct equilibrium expectation valuesin€ results of a replica calculation.
(S)=me and(Slz>|= M€ (where the index indicates that the In Apper)dlx B, an alternative derivation gf the TAP free
expectation is taken with parametr Furthermore, by in- energy is given. Itis l?ased on the observation that the func-
serting these values back infb;, the original free energy t|onal form (as afunct!on ofr; andM) of the Onsager term' '
F(3,0)= —InZ(3,8) = ® ,(m®,M®) is recovered. V_i in the .TAP equa_tl_ons does not depend on the specific
single variable densities(S). Hence, we may compute the

We compute the TAP approximation ®, from the re- corresponding universal form &f® by calculating® for an

lati : .
ation exactly solvable model, i.e., for a Gaussjaand subtract the
D, naive mean-field part. This is the strategy used by Parisi and
<I>1:¢>O+f dl R Potters[30] to derive TAP equations for a spin glass model
0 with an orthogonal random matrik
1 (1
=®o- 2 Jo dl[ Iz] m;Ji;m; +Tr(,\/|J)] (30 E. Summary of adaptive TAP equations
. To summarize our results so far, we write the adaptive
with X =(SS)1—(S)(S and TAP equations fo(S) andV;, i=1, ...,N as
\D P .
4= extr[—InZ()\O,oero)qL}i: miy?+§i: TIMi . <S)=£In28), (33
)\OJ’O i

31

o ) ) where the single variable partition function is
Note, that the derivatives of; and y; with respect td dis- g P

appear from Eq(30) because of, ¥ =4, ¥ =0.

. V.
We next insert our TAP approximatiog = (A, —1J) %, Zg'):J dSpi(S)exp{S > Ji(S)—Vi(S)+ 6|+ E'SZ}.
Eq. (24) with A ;=V,;+1lx;;, into Eq. (30) and integrate ]
with respect td. Note, thaty;; = Mi—mi2 is a fixed quantity (34)
that does not depend dnUsing ) )
The second set of TAP equations gy is
Tr(xd)=Tr[ (A —13)"1J]
HS)y :
d dA B () — —-N 1.
=-— aTrIn(A|—IJ)+Tr( mTl) a0, aafln Zo =LA=I) i, 39
d AN
— THRA 1) S gt where
dl i dl
. : : _ oSy
and noting tha¥/,;=0, we obtain A=diagAq,...,Ay), A=V;+ e (36
i
Py=®o— %izj miJijm;+Ad, (32 Note that the partial derivatives are now taken with respect to

the explicit ; dependence, i.e., all remaining arguments in
ZS) arefixed Finally, the free energy is given by E(B2)
AP=3Inde(A=3)=52 Vixi+32 Inxii- with mi=(S;), M;=(S?), 1°=(h;), andA’=V, .

The first two terms constitute the naive mean-field approxi- F. The generalized model

mation to® and the last termA® is the Onsager correction. Th ial struct £ h ted i i
Note, that this result is not equivalent to truncation of a € special structure ot the augmented coupling matrix

power series expansion @b to second order irl (often (4) allows for a variety of simplifications in treating the

termed the Plefka expansig8]) but contains terms of all Model (2). By introducing hatted variabletS), V, and A
orders. It is easy to see that we also recover the TAP equ&xplicitly, the previous results for the mea(®3) and (34)
tions from the equilibrium conditions,®,=dy®,;=0. We  are(S)=(d/36,)InZY and(S,)=(9/36,)In Z§ with
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. R that quantities likeV, and the free energy become self-

ZS)ZJ dSPi(S)eXF{S(E Ji(S)+ 2 (S0 averaging in the thermodynamic linfit—, i.e.,V;=V in-
) K dependent of the specific realization of the disorder. Such

Vv, quantities can be computed by suitable quenched averages

+ 752}, (87 using the statistics of the disorder variablgs.
As usual, quenched averages over the distribution of the

coupling matrixJ are performed within the replica frame-
work using[In Z];=(d/dn)In[Z"];|,,.=o, Where for integem

—Vi(S)+6;

z = f dASbk(é)eXr{ é( Z (S~ V(S + By

we have
Vi

5 ENN PP f dS'l] p(Sa) exp(%g 2 sﬁaJijsja” .

J
. o (42)

The augmented susceptibility matrix is given by
ATy -1 —r a=1, ...,n are replica indices and the brackéts:]; de-
A 3oyl A=J - (XX note the average over thg’s.
Xaug= (Aaug=Jaug = 3 A - Y x/ If all matrix elementsJ;; for i<j are assumed to be iid

Gaussian random variabléss for the SK modelthe average
~ _ e _ overJ is easily carried out. The simplest way to generalize
where X, =0(SJ/96;. It can be shown that although the this Gaussian orthogonal ensembéad allow for correla-
tions betweenJ;;’s is to keep the orthogonality of the en-
semble but make it non-Gaussian. Such distributions, which
Iso lead to a well-defined thermodynamic lirtiiitroduced
y Ref.[32] and subsequently used by RES0]), are defined
by generating functions of the type

vector S is purely imaginary, its expectatio(’fs) and the
susceptibility matrixy,,q come out real.

The TAP equations for th&,’s can be simplified using
identities for the inverse and the determinant of partitione
matrices[31],

x=(A=J-JTA 131 (39 [L2TAI] = N T G(AN), 43)

and  det@ g~ Jau) =detA detA—J—JT A1), which  with the functionG fully specifying the ensemble. In Appen-
leads to dix D, it is shown howG is related to the spectrum of the
matrix 32.2 The Gaussian ensemble is recovered by setting
. _d 1 1 A a G(x)x*. Note that scaling with N inside of G keeps the
ka—g In detAaug—Jaug = f\_ + E; Jidkixiy. trace of order one foN— < when the elements of the matrix
k K k (40 A are of order one.
Distributions with generating functiorg3) have the nice

showing that the hatted covariances can be explicitly comfeature that the averagé2) depends only on a single set of
puted from the nonhatted ones. The varian¢eandV, are quadratlc order parameters given qybz(l/N)EiS‘a.S‘b'
obtained from a straightforward generalization of E8f): Th|sn can be seen by applying E(3) to the matrix A
ASH a0 =[(A-I—TTA-13)"1], and ﬂ<ék>/ﬁbk=ikk =2,-1SaSja appearing in Eq(42). We note thatA hasN

I I .

Finally, we can use the identity for partitioned determinants n eigenvalues equal to zero, but in the space spanned by

to show that in the Onsager ter(®3) a few terms cancel and vectorsS, we get
we can write

2}_: AijsjaZEa: JabSip - (44)

Z| -

ACD: %In de(A_J_jTAilj)_ %2 ViXii + %2 |n Xii
' ' Hence, in thisn-dimensional subspace, the matd¥N acts
N . as the matrixq={qap}-
—%Ek: Vkaﬁ%Ek: IN(1+ Vi) - (41 In this way we can derive general results for the self-
averaging case and connect these with the previous results
Finally, we note that for the consistency of the TAP equa-Or the adaptive TAP theory. In Secs. Il A-IIIC we com-
tions, only the positive definiteness of the submayifor ~ Pute the Onsager term, the replica free energy, and the aver-
the original real random variable® (and not x,,g is re- ~ 29€ of the TAP free energy and show that both coincide.

quired.

2In Sec. Il A, we discuss the extension of this assumption to the
model (2).
30ur ensembles do not apply to diluted models, for which usually
For specific choices of the distribution of disorder, wherean infinite sequence of order parameters of any order has to be
different sitesi appear in a symmetric way, we can expectconsidered.

Ill. THERMODYNAMIC LIMIT AND SELF-AVERAGING
THEORY
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Finally, in Sec. Il D, we show how the condition of a posi- and V;=V=f (when taken together with the definitiok,

tive definite susceptibility matriy translates to the AT sta-
bility condition.

A. The Onsager term

In this section, we computeV=[V;]; and Adsef
=[A®]; from Eq. (32) for the model(1). We will briefly
sketch how to generalize these results to the m@@edt the
end of the section. To computg we write Eq.(35) as

X..I[(A—J)fl]n:%ln de(A—J) (49)

and replace the right-hand side by its average over the dis-.

tribution of the matrixJ for N—«. Since there is no spin

=V;+ 1ly;;). Finally, variation with respect to yields
=2G’(r). Summarizing, we find that in the thermodynamic
limit,

V=2G'(Y). (51

As sketched in Appendix C, the same result is obtained when
the general Gaussian model used in the derivation of the
Gibbs free energy is replaced bysphericalmodel, where
only2 a single Lagrange parametgr(or A) is coupled to
3, S

Inserting the saddle-point values into E47), the expres-
sion for the Onsager tert83) simplifies remarkably,

glass ordering for a Gaussian model, it is sufficient to per-

form an annealed average using the identity

det YA A-J)= f —,zexq 17" (A-J)z]. (46)

Applying Eq. (43) to the matrixA=zz", which has a single
eigenvalue equal t@'z (with eigenvectorz) and an (N

ADS=NG(Y). (52)

Turning to the generalized model, it can be seen from Egs.
(39) and (41) thatJ in the original model is replaced hy
+JTA~1J in the generalized model. For this case, we extend
the definition of orthogonal ensemblé$3) to

—1)-fold degenerate eigenvalue 0, and using the fact that

G(0)=0 we arrive at
—1/2 dz 1 2
[det "AA=2)),= | ZweeX 3> Az
I

+NG

>

drdf  dz
_ 1S A2
_f 47i/N (277)'“729’“{ P2 A

Ez—Nr

+1ir
+ar

+NG(r)}

where in the last line the order paramertt—z-r(1/N)Eizi2 and
its conjugatef have been introduced. Fdr— oo, F is found
from the saddle point of

IndetA—J)=2, In(A;—F)+Ntr—2NG(r), (47)
yielding
1
SO “8)
Hence, the averaged TAP equati@®b) reads
[Xii]J:AI_";! (49)
giving
_ 1
r=x=y2 bxils (50

[exp{3 TrA(J+JTA13}]; 5=eN TeAAN),

(53
With this definition, the result51) for V remains valid, i.e.,
V=2G;(x). Self-averaging results fdf, obtained from Eq.

(39) and the Onsager terit#l) are derived for neural net-
work models in Sec. IV.

B. Replica free energy

To get the average free energy, we use ER) and
computé

[ZM],= f dS"ifa[ p(Sa)

exp(%é ; SiaJiija”

J

dS'[] p(Sa)eN e, (54)

In replica symmetryq has only two types of eigenvalues: a
nondegenerate one given byn{1)g+q, and an
(n—1)-fold degenerate eigenvalue equalgp-q. Hence

TrG(g)=(n—1)G(do—q)+G(ng+[go—q]). (59

After introducing and eliminating conjugate parametérs
and{, with a saddle-point method, we find the replica sym-
metric free energy

“This analysis can be easily generalized to include cases with
more than one order parameter, e.g., for a neural network learning
from a teacher.
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1[I Z] L d In[Z"] ) trli 1I Y (58
——[InZ];=— —===In[Z"], =—extrlim—InY.
N Ndn n=0 }\’qOBHOOB
:_f DzlnfdSp(S)exp{~/2qG”(q)zS Variation with respect to gg Vyields A=2G’'(qo
—(1/N)Eimi2). The calculation of[®]; proceeds by a
+G'(go— )] —G(go—a) +(do—q) straightforward replica calculation using the average
X[qG"(do—a)+G'(do— ], (56) 1
° ° Nln ex 52 E Bmia\]ijmja):|
a I
whereDz=dze #/%/\27 and q, and q are obtained from : J
the saddle point. =(n—1)G(B(g—q))+G(B(ng+q—7q)). (59
C. Averaging the TAP free energy For B—, the integrations over; and m; are decoupled

and performed by the saddle-point method yielding=0

andy;=+qG"(q—4d)z , wherez is a standard normal ran-
dom variable showing the equivalence to Eg6). In com-

We will next prove the consistency of our TAP approach
with the results of the replica theory in the thermodynamic
limit. We want to show that th_e avergge_d free_ ene('@@. paring both replica calculations, it is useful to note that by a
calculated with the help of replicas coincides with the dlsor—Iinear response argument we can identify
der averaged Gibbs free energy from the TAP approxima-
tion. From this result we can conclude that self-averaging

guantities that can be derived from the free energy by deriva- [!"jlc AA=Q)=x=0d~do- (60
tives with respect to external fields will be exact in the TAP
approach.

Putti thing togeth find tHab],=—[InZ];.
In order to prove this, we define an auxiliary partition 2 CoYiNg tOgEIEr we in hab],=~lIn 2,

function, which reproduces the TAP Gibbs free energy - .
®,(m,M), Eq. (32), evaluated at equilibrium, i.e., for the D. Stability and AT condition
values ofm and M provided by the solutions of the TAP We will show next(by generalizing the arguments of
equations. We will only give a brief description. The calcu-[33]) how the positive definiteness of the susceptibility ma-
lation uses the representatiof®8) and (29) of the free en- trix (i.e., the matrix of covariancgs, Eq. (24) [or Eq.(39)
ergy. With Eq.(32) and the thermodynamic limit simplifica- for the model(2)], translates into the de Almeida—Thouless
tions (52), \;— N\, and defininggg=(1/N)X;M;, we rewrite  stability condition well known from the replica theory.
Eqg. (29 as From Eq.(24), positive definiteness of is equivalent to
\ 1 the condition thatH=A—J has only positive eigenvalues.
__ N _ - 1 Hence, in the thermodynamic limit, the eigenvalue density
W==ln Z(M’YHZ Miyit5N=7 %: Midijmy p(y)=limy_.(1N)%,6(n—7), where u denotes the ei-
genvalues oH, must be exactly zero for small positive

+NG| gy— %Z m.z) Using a standard representationdfunctions, we have

1 1

=— lim Im2>, ——
Following Eg. (28), ¥ will coincide with the equilibrium () N = o+ 2,} pu—y—io
value of the Gibbs free energy when evaluated at the values
for v, m, \, andq,, which make¥ stationary The station- _ 1 B a1
ary values are equal to those obtained from the TAP equa- T N7 I|m+ ImTrH=(y+id)l]
tions when we identifyn;=(S;) andgo=(1/N)3;(S?). The o0
auxiliary partition function

N
50"

1 d
=—— |lim Im—IndefA—J—(y+id)l].
dy
Y=f dy dme #Y (57)
Since we have already calculated In det(J) in Sec. Il A,

. - . we can immediately write down the result as
is in the limit B—o~ dominated by the values af; and v,

for which ¥ is stationary, provided the paths of integration 1 1

are chosen such that the integral exfsfsssuming also sta- p(y)= lim Im— > = — .
tionarity with respect to. andq,, we recover the TAP free 6—07" TNT A=F () = (y+id)
energy at equilibrium from

(61)

In general, it is hard to obtain a closed form solution to the
saddle-point equation fof(y). However for y close to
Note that the stationary value df is not given by a minimum zero—the interesting region with regard to the stability—
but by a saddle point. () is close tof (0)=V and we can easily get a solution for
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f andr by expanding to second order éii=f(y)—f(0) and
or=r(y)—r(0),r(0)=x. We find that as long as the con-
dition
” 1 2
1-2G"G0 [ 2 Lxiils>0 (62)
is satisfiedf (y) is real and the density(y), Eqg.(61), van-
ishes for smally>0.

On the other hand, if the left-hand side of E§2—the
stability condition—is zero, theaf has an imaginary part

12
-7

of= (63
l GNI(Y)
n p— . 3 e pgrygpr——
2G (D N EI [XII]J+ [ZG”(Y)]Z
and the support of the density of eigenvalues, 6&4),
1 ’ R
(1= 2 DxilfIm of
1 y 1/2
= (64)

1
[26" (015 2 Dxil3+G" (0

extends toy=0 and the solutions of TAP equations are only
marginally stable. As we will show for some examples in the
next section, Eq(62) coincides with the AT stability condi-
tion of replica theony1].

IV. APPLICATIONS

In this section we will give explicit examples for adaptive
TAP equations for a few models that have been previousl

considered in the literature. These are the SK and Hopfie%

models and the perceptron. The latter is of the generalize
model type(2). Finally, in simulations, we investigate the
effect of the choice of the Onsager term for perceptron learn
ing problems.

A. Ising models

For Ising models we have a prior distribution(S)
=18(S—1)+15(S+1) so that

zg‘):cosr( Z Ji(S)—Vi(S)+ 6,
INEal

which leads to

<S>:tam‘(,—%i Jii(S) —Vi(S) + 6,

and y;; = 1_<Si>2-
1. SK model

For the SK model[3] the statistics of the couplings is
given by J;; =0, Jjj=B/N with J;;=J;;. Then theG func-
tion (43) becomes5(r)=(Br)?/4 and according to Ed51),

PHYSICAL REVIEW E 64 056131

V=2G'(1-q)=p*1-0q), (65

whereq=(1/N)3(S)? is theEdwards Andersoparameter.
The stability condition simplifies to % (ﬁZ/N)EiXﬁ>O and
p(y)=(1m)\yI(BSIN)Z, xZ in agreement witti33].

2. Hopfield model

The coupling matrix of the Hopfield mod¢lL7] is Jj;
=(,8/N)EL"xkixkj , where we assume that tixg, are iid ran-
dom variables of zero mean and unit variance. The
functiorf (43) is then found to be

G(r)=—%[ln(1—,8r)+,8r], (66)
leading to

Cra M BE1-0)

V=2G'(1 q)—N—l_B(l_q), (67)

in agreement with1].

B. Perceptron

Perceptrons are single layer neural networks that are pa-
rametrized by a vector of weight® We consider both the
learning of regression and binary classification problems
from a training set that is given by{(x,Yyy),k
=1, ..., m}. xe RN denotes a vector of inputs agd: R is
a real valued output for regression and a binary label
+1 for classification. In the first case the output of the per-
ceptron is given bys-x and in the latter case by sgh).
Although this simple linear model is of limited power com-
pared to multilayer neural networks, it can be easily gener-
lized to the so-calleGaussian process modelShese are
ble to make nonlinear predictions and achieve state-of-the-
rt performance on a variety of standard benchmark data
sets. An application of the adaptive TAP approach to the
Gaussian process models was giveridh

Perceptrons can be understood as probabilistic models by
defining a probability(likelihood) P(y|S-x) for the observa-
tions y given inputsx and weightsS. For classification we
consider the so-callggrobit model, which can be derived by
assuming that labels are generated yassgnS: x+u),
where u is a Gaussian noise of variance?. Hence,
P(y|S-xX)=¢(y[S-x/a]), where ¢(z2)=[%.Dt. In the
noise-free limit¢ reduces to the unit step function. For re-
gression with additive Gaussian noise the likelihood is
P(y|S-x)xexd —(y—S-x)%/202].

The model is clearly of the form given by E¢) with
Ji=X andJ=0. We identify the likelihoodP(y|h) with
F(h) in Eq. (3) whereh=S-x. The explicit appearance of
the hatted variables in the algorithm will be especially useful
when we want to discuss the important effects of removing a

5This is easily shown for Gaussiag;. For binaryx,;, the aver-
age must be restricted to the condensed patterns and the relation
(43) will hold only for N— oo,
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FIG. 1. Test of self-consistency of TAPyk(hk)\k versusy,(hy) &, The stars/circles are for adaptive/conventional TAP. The right plot

shows the distribution of the cavity variancég. The line in the middle is the value found from the self-averaging theory. The plot is for
the noise-free perceptron with=N=100.

data point(rather than a weigh®;) from the set of training
examples. GA(r)= 2 IN(1—r/Ay).
Under the assumptions of a Gaussian cavity field, the

Bayes predictors for regression and classification becomeo goif. averaging value for the variances of the original
(hy=(s)-x and sgih) [12]. For the weight variable§; we  variablesv; =V is given by Eq(51) and the variance for the
consider both Ising weighte(S)=38(S—1)+3 5(S+ 1) hatted variables is given by E@40). Taken together they
and weights with a Gaussian prior distribution(S)  lead to the symmetric result in the two sets of variables
—e 52/ \2. In the first case, we recover the Ising result

1
. X=52 [xilss, (69
(s)-tanl] 3 x(&) Vi) <0, (69 N
— 1
and in the Gaussian case we simply get V=x= NE [Xkia,3- (70)
& b The Onsa ili iti i-
= x,. +— ger termé1l), stability condition(62), and the ei
(S)=2 %S 1-V; genvalue spectrurt64) become
The AT':‘PA equations for the hatted variable&S,) Adseli= _ EV{/, (71)
=91n Z¥16, are obtained from Eq39), 2
1
0= [ DZP(y (A + B+ VW,2), 1- 55> X XG>0, (72)
0 [\ |
with (A= 2ixi(S) — Vi(Sy). Explicit expressions are for ( )Zi 4 vz
classification, PRY=Z 1T %1 s 1< 5
N; Xik NZ Xii+N2k Xkk
o (Pt B (73
‘/02+Vk Specializing to a Gaussian weight prior for whigh=1/(1
—V;), we find in accordance with previous resyli9—-12
and for regression, that V= 1/(1—V) and the stability condition reduces to
—V2(1IN)3 k2> 0.
1 (yk_<ﬁk>\k_ bk)z Finally, we test the adaptive and self-averaging TAP
ZW=—exp - . equations in two learning scenarios. We first test the internal
\/ZW(UZJF\A/I() 2(02+\7k) consistency of the theory by comparing the cavity field cal-

culated from the solution of the TAP equation&).

To connect with results known in the literature, we derive the=3xi(S) — VS with the “exact” cavity field (h )&

self-averaging properties for the case, wherexfeare iid  computed by actuallyemovingexamplek from the training
random variables with zero means and varian®& TheG  set and solving the TAP equations for the remaining 1
function (53) becomes examples and repeating this procedurekerl, ..., m. A
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precise estimate of the cavity field is of practical relevance in In these simulations we consider a nontrivial regression
machine learning since it can be used to define “leave-onemodel with binary weights. See R¢B5] for a discussion of

out” estimators of the generalization errft2,8,24. One this model in the context of demodulation in communica-
such ‘leave-one-out’ estimate for classification is the fractiortions systems. As it can be seen directly from the likelihood,

of negative tefmSYk(ﬁk)\k over the training set:ep, the regression problem can alternatively be regarded as an

_ _u /R ; R e N-dimensional model of the typél), i.e., IT,P(yy|S %)
prt(a%j/ir(;)ifrr?)f(yk?/kmk%k) since sgthy) is the leave-one-out coxpl, S0.§45.50). The cg)uplings > externzal 0 e
Figures 1 and 2 show the result of learning in the simple®"® 9IVen byJ;;=—2XXy;/o° and 6;=2 XY/ 0", We
perceptron with Gaussian weight prior, the likelihood for €N now directly compare the use of the correct self-
noise-free classification, and the iid distribution of inputs foraveragingV, Eq. (70, for this model with that provided
which the self-averaging theory is expected to become exadfom the adaptive TAP approach and that of other Ising mod-
in the thermodynamic limit. The output labels are generate'S With different random matrix ensembles, namely, the SK

b | network teach ). While f it and Hopfield model equatior{65) and (67).
¥ & nedral network feachyr Sgn(r X) i |e. or posrive In Fig. 4, we compare the TAP mean-field free enedgy
values ofy(h (not shown in the figuresi.e., the ex- 54 in simulations using the different expressions for the

amples for which thAe Ieave—otle—out prediction is correct, th‘bnsager term with the prediction of replica thed86]. In
agreement betweg(in,),, and(h,)3*“'tends to be better, the the simulationdN=60, 02=0.2, and the training set is gen-
negative values are more crucial for real applications becausgrated by a noise-free binary teachgr=T-x with T;=
they give the desired leave-one-out error count. The results 1. The simulations are averaged over 100 runs and the
clearly show that the internal consistency of the adaptiveerror bars are of the size of the symbols. Weetl for the
TAP is better than that of the self-averaging theory. TheSK model andg=0.99 for the Hopfield modél.The figure
results indicate that finite size effects are quite importanshows that both adaptive and self-averaging TAP results
even for reasonably large systems and that the adaptivwith the Onsager terni71) are in excellent agreement with
theory is better at taking these into account. replica theory. Using the SK and Hopfield-Onsager terms
Performing the same analysis for real data gives evetends to produce saturated solutions, &)~ *1 even for
more striking results. Here we consider the data setraining set sizes where this is not expected theoretically, and
“Sonar—Mines versus Rocks[34] of size m=104 with leads to a completely wrong estimate of the free energy.
binary class labely,=*1 and aN=60-dimensional input
space. We use the Gaussian prior for the weights @hd

=0.5 in the likelihood. In Fig. 3 we again plgt(h,) ver- V. SUMMARY AND OUTLOOK

susy(h) & For the adaptive theory, we find a perfect \we have presented a generalization of the TAP approach

agreement between the two computations of the leave-ongor disordered systems, which is able to cope with the lack of
out estimate: €= €fpg =104 FOr comparison, the self- knowledge of the disorder distribution. Such a generalization
averaging TAP approach giveg,= 153 andefc®= 5. The s necessary for the recent applications of mean-field meth-
consistency of the leave-one-out error based on the adaptivels to probabilistic data models.
TAP approach is also apparent in the generalization of the We have demonstrated the significance of our approach in
perceptron to the Gaussian process moceae[8]). two ways: We have shown that it reproduces the correct
In the second set of simulations we have tested the influthermodynamic limit results for a class of disorder distribu-
ence of using a wrong cavity variand in the mean-field tions compatible with fully connected models in replica sym-
equationgand wrong Onsager terth® in the free energy  metry. Second, the application of our approach to toy models
Since the free energy is the negative log likelihood of theas well as real data models has shown the importance of
observed data, i.eat equilibrium ®=—InP(y), it can be
used for deciding which model gives the best fit to data. Itis—
therefore also of practical interest to get a reliable estimate "The latter was chosen in order to avoid numerical problems when
of ®. g~1.
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yk<ilk>\k FIG. 3. The same as above for the Sonar data
set. For clarity we have left out half of the data
1 0. points in the left plot.
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using the correct TAP approximation when good approximasolution of TAP equations but also be able to significantly
tions forleave-one-out estimatof errors andree energies extend the range of applications of the TAP approach.

are required. Such quantities serve as practical yardsticks for

comparing different data models and assessing the validity of ACKNOWLEDGMENTS

model predictions. . . ] )

While the present framework may be sufficient for a va- This 'research is supported by the Sv_vedlsh Foundation fo'r
riety of practical applications, it could nevertheless breakStrategic Research as well as the Danish Research Councils
down when the probabilistic model is multimodal having through the THOR Center for Neuroinformatics and Center
many modes of almost equal weighlsee energies For  for Biological Sequence Analysis.
systems in such “glassy” phases our TAP solutions are ex-
pected to violate the stability condition and an extension of APPENDIX A: CORRECTNESS OF TAP EQUATIONS
our framework to a theory, which includes Parisi’s hierarchi- FOR THE GAUSSIAN MODEL
cal organization _of states, would be h|ghly important. We We will show that the relatiori24),
expect that this is possible by generalizing the ideas pre-
sented in Chap. V dfl]. However, one may speculate that in x=(A-37L (A1)
such cases, solving the TAP equations may be highly non-
trivial. is correct for a Gaussian model. Gaussian models are defined

We conclude with two other problem areas that have higfp,, pi(a)xe—(l/Z)Aixi2 and we have alwayy=(A—J) %,

priority for our future research. These are the limitations OfWhereA=diag@1 ..., Ay). Hence, we only have to show
our method to models with extensive connectivities and thep,5¢ Ai=A;=V,+1/x; . To see this we look at the single

algorithmic aspects of our approach, i.e., the development Qfariaple partition function(18) derived from the Gaussian
efficient algorithms for solving the TAP equations. Recentca\,ity field assumption, which is exact for the Gaussian
studies on other advanced mean-field techniques indicate thafqe|

both problems have interesting relationships and also give
promising directions for their solutions. 0 ) e
The so-called belief propagation algoritti6i, used in the Zy = j dSpi(S)exd S((hi)i+6:) +3ViS7].  (A2)
field of artificial intelligence for approximate probabilistic
computations on graphical models with sparse connectivitiesthis gives in facty;;=d%In zg)/,gaaizzl/(,a\i -V)).
was recently identified15,37,38 as an efficient method to
solve the Bethe apprOXimatiC(a CaVity type of apprOXima- APPENDIX B: ADAPTIVE TAP FREE ENERGY Il
tion) of statistical physics. This observation has already led
to principled ways of combining the improved accuracy of Parisi and Potter§30] in their analysis of a spin glass
higher order(Kikuchi) Bethe approximation§38] with the ~ model with random orthogonal couplings made the important
efficiency of the belief propagation method. observation—motivated by a high temperature expansion—
Another interesting approach to an approximate propagathat (within the TAP approximationtwo models having the
tion of probability distributions when data arrive sequentiallysame interactions,;-;S;J;;S; but differing only in their
is the Bayesian on-line method introduced[B9,40 and  single spin constraintp;(S), should have free energieb
further developed ifi41—43. This technique can be formu- that differ also only in the “single variable'{or entropig
lated for fairly general model classes but was so far limitedcontribution®,, Eq. (31).
to a single sweep through the data, thereby making the ap- Hence, it is possible to compute the TAP approximation
proximation dependent on the ordering of the data sequenctar the free energyP from the free energy for an exactly
In a recent study by Minkd444] it was shown that by a solvable modefb®, the entropic term for the solvable model
proper recycling of the data, a convergence to the solution®g, and the single variable term for our mode}, i.e.,
of the TAP equations for the case of a Gaussian process
classifier[8] was achieved. We expect that by a consequent O =PS— D5+ Dy. (BY)
and principled combination of the cavity idea with algo- _ _
rithms that are similar to the on-line or the belief propagationSince the TAP equations for a Gaussian model are dxaet
technique, we will not only get efficient methods for the Appendix A we choosep(S)=e 2 \[27 for the solvable
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This result should be compared to E(B2). Using the

0.8} A a X . . . . . .
R ,@'é'é i saddle-point conditiorvy, ® =0, which implies A;=1/x;;
L x % i ]
0.6 A 5 & +\;, we can rewrite the Onsager term in the form of Eq.
' N . 3'3 (33), where it should be noted that=\;. We have thus
& rederived the result obtained in Sec. Il D.
D 04} A x &
N . ¥
P APPENDIX C: FREE ENERGY
0.2 ;@ ] FOR THE SPHERICAL MODEL
R , For the spherical model defined by the constr&mﬁ2
0 0.2 0.4 0.6 =N we obtain
m
N NA x
O=Py—3 Ji(S)+3Indet Al —J)— —=
FIG. 4. The free energ® as a function of the training set size 0 ZiZJ (S ”< '> z ( ) 2

m. The dashed line is the prediction of replica theory. Stars/circles

(almost coinciding are the results for adaptive TAP/correct self- + E
averaging TAP. Crosses/triangles are the results for self-averaging 2
TAP with the Hopfield/SK Onsager term.

N
lnX_E’ (C)

_ _ ~_ wherey=(1/N)X;x;i and there is also only a singk’ in
model. We easily get the following exact result for its Gibbs g | A is determined by

free energy(after eliminating the Lagrange multipliers
and with hindsight redefiningy;=1—\;): 1
x=<Tr(Al=J3)" L. (C2
N
®S(m,M)=3Inde(A—J)+3> mIym—3> xiA
! ' Second, we hava =1/y+V. Repeating the same averaging

M; step as before yields again E&1).
5> 7. 82 P y gain E§1)
I

) ) APPENDIX D: EIGENVALUE SPECTRUM OF J
where we have to insert the value far, which solves

In this appendix we will show how th& function (43)
Xi =(SH—(S)?=[(A—3)"1];. (B3)  can be expressed in terms of the eigenvalue spectrum of the
matrix J. We define
The single variable term for the Gaussian mo#glis found
by settingJ;;=0 in Eq. (B2). Eliminating A using d,®g J ; p(w)
_ r=| du =

1 -1
=0, A—,u_NTr(AI J) -, (DD
M
> (B4)  wherep(u) is the density of eigenvalues df By adding a
small imaginary part to\ we get apart from a factor, directly
We can now write down the general result for the TApthe density. Using again the Gaussian representation of the
mean-field Gibbs free energy for a model of the typgp  determinantyields the equations: 1/(A —7), wheref is the

H 2 & __ ’
Collecting the terms in EqiB2) and (B4), we arrive at the Order-parameter conjugate @;z. It obeysf=2G'(r).

N
‘I’S(m,M):_%Z InXii_E+Ei

free energy Hence
— &S s _ 1 1 A
d=0P —c1>0+<1>0_c1>0—5; mJ;m+A®, (B5) > 5 +G'(N=0. (D2)
N .
AD=1IndetA—D—21> Ay t1 Ny + — Solving Eq.(D2) enables us to computé A) when the func-
zInde(A=)) ZEi Xii ZEi Xi™ 3 tion G(r) is given. We may also g& as a function ofA by

(B6) integrating Eq.{(D2).
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