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Quantum thermodynamic cooling cycle
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The quantum-mechanical and thermodynamic properties of a three-level molecular cooling cycle are de-
rived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption
associated with the coupling to the coherent driving field via an environmental reservoir. This additional
coupling need not be dissipative, and can provide a thermal driving force—the quantum analog of classical
absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultralow
temperatures, is determined and shown to respect the recently established fundamental bound based on the
second and third laws of thermodynamics.
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I. INTRODUCTION

Recently, a fundamental model-independent bound
derived for the temperature dependence of the fastest ratQ̇c
at which any substance can be cooled toward absolute
via an energetic exchange with a cold reservoir at temp
ture Tc @1#:

Q̇c}Tc
a , a>1. ~1.1!

In the same study, a three-level quantum-mechanical coo
cycle was postulated and shown to achieve this bound.
notion of analyzing molecular cooling with quantum therm
dynamic cycles had been introduced earlier@2#. A system
~working fluid! rejects heat to a hot bath, removes heat fr
a cold bath, and is driven by a coherent driving field:
idealized model for the laser cooling of magnetically co
fined gases at ultralow temperatures, as well as the l
cooling of solids and dyes@3,4#.

An important ingredient absent from previous models
the spontaneous emission and absorption related to the
pling between the system and the driving field. Superficia
this extra coupling provides a dissipative path, and hen
lowers achievable cooling rate. However, we will show th
this coupling also introduces the possibility of driving th
cooling cycle thermally, and broadens the conditions un
which cooling can be generated. It constitutes the quant
mechanical analog of classical absorption chillers. The qu
tum dynamics and thermodynamic properties of this i
proved three-level model will be derived, in particular:~a!
the identification of thermodynamic with quantum
mechanical variables;~b! the conditions required to produc
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cooling; ~c! the dependence of the cooling rate on the qu
tum control variables;~d! the efficiency of the cooling cycle
and~e! rigorous confirmation that the fundamental bound
Eq. ~1.1! is respected as the absolute zero is approached

II. THE THREE-LEVEL MODEL

The model is portrayed schematically in Fig. 1: a thre
level system coupled to three infinite baths~reservoirs! plus
an external driving field of coherent radiation. The allow
transitions are:~1! between levels one and three, with a h
bath at temperatureTh ~heat rejection!; ~2! between levels
one and two, with a cold bath at temperatureTc ~heat re-
moval, i.e., cooling!; and ~3! between levels two and three
simultaneously with the driving field and an environmen
bath at temperatureTe ~dissipative heat rejection whenTe
<Th , and heat input whenTe.Th!. The environmental bath
is treated as either:~a! independent of the hot and cold bath
or, when interference among the transitions is negligible@5#,

FIG. 1. Schematic of the three-level quantum cooling cycle
©2001 The American Physical Society30-1
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~b! representing an additional transition to the hot or c
bath. Two special cases are:~1! Te5Th , signifying sponta-
neous emission to the hot bath, i.e., coupling the transitio
the hot bath; and~2! Te5Tc , describing nonradiative~e.g.,
phonon! decay, i.e., coupling to the cold bath.

The Hamiltonian of the extended system~system, baths
and driving field! is expressed as

Ĥ5Ĥs1Ĥs f~ t !1Ĥsh1Ĥsc1Ĥse1Ĥh1Ĥc1Ĥe ,
~2.1!

whereĤs is the Hamiltonian of the three-level system~the
working fluid of the thermodynamic cycle!; Ĥs f(t) describes
the time-dependent coupling between the system and
driving field ~coherent radiation!; Ĥsh ,Ĥsc ,Ĥse account for
the coupling between the system and its respective baths
Ĥh ,Ĥc ,Ĥe are the respective Hamiltonians of the hot (h),
cold (c), and environmental~e! baths.

The system’s Hamiltonian may be cast as

Ĥs5D31P̂331D21P̂22, ~2.2!

whereD i j 5Ei2Ej is the transition energy between levelsi

and j ~with E1 chosen as zero!, and P̂i j 5u i &^ j u for i 5 j are
the projection operators over the statesi 51,2,3. ~Our units
are chosen such that\51 andkB51.!

Our expression forĤs f(t) is based on the semiclassic
rotating wave approximation@6#:

Ĥs f~ t !5e~ P̂32e
2 ivt1 P̂23e

ivt! ~2.3!

for a field frequencyv and a coupling strengthe that de-
pends on the amplitude of the driving field, as well as
dipole moment of the transition, the latter being assumed
be independent ofD32. With linear coupling between eac
transition in the three-level system and its correspond
bath, the other coupling Hamiltonians can be written as

Ĥsh5 P̂31Ĝh1 P̂13Ĝh
† ,

Ĥsc5 P̂21Ĝc1 P̂12Ĝc
† ,

Ĥse5 P̂32Ĝe1 P̂23Ĝe
† , ~2.4!

where P̂i j now represents the raising (i . j ) or lowering (i

, j ) operator for the transitioni↔ j , andĜb denotes a bath
operator (b5h,c,e). Only the general properties of the ba
correlation functions are needed to obtain the reduced
scription of the system’s dynamics. The more detailed inf

mation on the bath Hamiltonians and the operatorsĜb will be
derived afterwards when we examine the explicit forms
the correlation functions.

The standard tools for quantum open systems may
used to obtain a reduced description of system dynamics,
the time evolution for the system’s density matrixr̂s(t), in
terms of the operators of the three-level system.r̂s(t)
5TrB$r̂(t)% where r̂ is the density matrix of the extende
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system and TrB denotes the trace over all bath variables. W
invoke the following approximations:

• Weak coupling between the three-level system and e
bath.

• Factorization of the initial density matrix of the extende
system,

r̂~t50!5r̂s~t50!^r̂h^r̂c^r̂e ~2.5!
with the initial density matrix of each bath assumed to
in thermal equilibrium,

r̂b5
e2Ĥb /Tb

Trb$r̂b%
. ~2.6!

• The Markovian assumption that the bath correlations

CĜbĜ
b8
5Trb$ĜbĜb8~2t !r̂b%5Trb$Ĝbe2 iĤ btĜb8e

iĤ btr̂b%

~2.7!
decay rapidly relative to the time scale of evolution of t
three-level system.

• Weak coupling with the driving field, i.e.,e being of the
same order as the coupling with the baths. This appro
mation permits us to treat the effect of the field on t
baths and the system separately@2,6#.

These approximations result in the density matrix of t
extended system factorizing at all times. One consequenc
that the interfaces between the system and its baths bec
isothermal partitions that allow energy transfer but do n
destroy the system’s integrity, i.e., no quantum entanglem
is created between the system and its baths@7#. This point is
essential to the validity of the thermodynamic cycle a
proach, i.e., to distinct energy flows between a system an
reservoirs such that the intactness of the system is not c
promised.

The analyses that follow build upon the derivation of t
system’s reduced dynamics as detailed in Appendix A.
adopt the Heisenberg representation and express the
evolution of an arbitrary operatorX̂ as

Ẋ̂5 i @Ĥs1Ĥs f~ t !,X̂#1S ]X̂

]t
D 1 (

b5h,c,e
Lb~X̂!, ~2.8!

where the super-operatorLb describes the effect of the bath
on the dynamics of the three-level system and possess
structure ~the Lindblad form! that assures the~complete!
positivity of the reduced dynamics of Eq.~2.8!

Lb~X̂!5
lb

2
$@ P̂b ,X̂# P̂b

†2 P̂b@ P̂b
† ,X̂#%

1
l̄b

2
$@ P̂b

† ,X̂# P̂b2 P̂b
†@ P̂b ,X̂#% ~2.9!

with P̂b5 P̂31, P̂21, P̂32 for b5h,c,e, respectively. The cor-
relation coefficientslb and l̄b , defined in Appendix A, de-
pend on the transition energies, the bath temperatures,
the coupling strength. They appear as coefficients in
0-2
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equations forP̂33, P̂22, P̂11, P̂32, andP̂23 that follow from
Eq. ~2.8! and decouple from the others

Ṗ̂3352 i ee2 ivt P̂321 i eeivt P̂232~lh1le!P̂331l̄eP̂22

1l̄hP̂11,

Ṗ̂225 i ee2 ivt P̂322 i eeivt P̂231leP̂332~lc1l̄e!P̂22

1l̄cP̂11,

Ṗ̂115lhP̂331lcP2212~ l̄h1l̄c!P̂11,

Ṗ̂325 iD32P̂322 i eeivt P̂331 i eeivt P̂22

2
1

2
$lh1lc1le1l̄e%P32,

P̂235 P̂32
† . ~2.10!

The termsP̂i j are related to the diagonal elements of t
reduced density matrix wheni 5 j (Trs$P̂ii r̂s%5r i i ), and to
the off-diagonal elements wheniÞ j (Trs$Pi j r̂s%5r j i ).
Hence, Eq.~2.10! represents rate equations for the dens
matrix elements. The diagonal and off-diagonal elements
coupled by the driving field. The bath is responsible for t
self couplings of both diagonal and off-diagonal elemen
lb and l̄b are then transition probabilities, per unit tim
between energy levels. For example,lh is the transition
probability of a decay from level three to one in which e
ergy is rejected to the hot bath, andl̄h is the probability for
an excitation from level one to three in which energy is a
sorbed from the hot bath.

III. IDENTIFICATION OF THE THERMODYNAMIC
VARIABLES

The identity of the thermodynamic energy flows in t
cooling cycle follows from energy conservation and aver
ing @8,9#. The HamiltonianĤT5Ĥs1Ĥs f(t) is introduced
into the evolution Eq.~2.8!, is multiplied by the initial den-
sity matrix, and is traced over the variables of the three-le
system, to yield

^ Ḣ̂T&5K ]Ĥs f~ t !

]t L 1^Lh~ĤT!&1^Lc~ĤT!&1^Le~ĤT!&.

~3.1!

The energy flow associated with the driving field@the first
term on the right-hand side of Eq.~3.1!# is the power input
~cycle-averaged work! to the cycle,Ẇ. The remaining three
terms are the respective heat flows between the system
its baths,Q̇h ,Q̇c ,Q̇e . At steady state,̂ĤT& is constant and

independent of the system’s initial state, so^ Ḣ̂T&50 and Eq.
~3.1! may be expressed as the first law of thermodynam
for the thermodynamic cycle
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Ẇ1Q̇h1Q̇c1Q̇e50, ~3.2!

with energy flows into the system defined as positive.
Now we can derive the relation between the cycle’s th

modynamic variables and the quantum-mechanical par
eters. At steady state~denoted by the superscriptss!, the
generalP operators become

P̂i j → P̂i j
sseia i j t, ~3.3!

where Ṗ̂i j
ss50, a i i 50, a325v, and the remaining values o

P̂i j
ss follow from introducing Eq.~3.3! into Eq. ~2.10! and

solving the resultant set of linear time-independent eq
tions. The solutions forP̂i j

ss turn out to be proportional to the

identity operator 1ˆ , P̂i j
ss5pi j 1̂, wherepi j is real wheni 5 j

and complex wheniÞ j . From the relation between theP̂
operators and the elements of the density matrix, the ste
state expectation values of the populations~i.e., the diagonal
elements! are constants,̂P̂ii &5^P̂ii

ss&5pii , and the expecta-

tion values of the off-diagonal elementsP̂32 andP̂23 oscillate
in time, ^P̂i j &5^P̂i j

sseia i j t&5pi j e
ia i j t. Explicit formulas for

pi j are provided in Appendix B for the condition of reso
nance that is assumed in the analysis that follows:

v[D32. ~3.4!

The cycle-average thermodynamic variables of the qu
tum refrigerator may now be expressed as

Ẇ52eD32 Im@p32#5D32e
2$A~nc2nh!1B%,

Q̇h5D31~2lhp331l̄hp11!

52D31$e
2A~nc2nh!1C~ncne2nh!%,

Q̇c5D21~2lcp221l̄cp11!

5D21$e
2A~nc2nh!1C~ncne2nh!%,

Q̇e5D32~2lep331l̄ep22!52D32$e
2B2C~ncne2nh!%,

~3.5!

where Eq.~A6! of Appendix A has been used, andnb de-
notes the equilibrium populations:nh5e2D31 /Th, nc
5e2D21 /Tc, ne5e2D32 /Te. Detailed expressions for the pos
tive coefficientsA, B, and C are presented in Appendix B
and depend on the bath temperatures, the transition ener
and the coupling strength. Each energy flow constitute
competition between two processes with ratesDblbpkk and
Dbl̄bpll (k. l ), with the former describing heat rejection o
magnitudeDb to the bath in the decayk→ l , and the latter
representing heat removal of the same magnitude from
bath in the excitationl→k. Also, as will be elucidated in
Sec. VI, the work input rateẆ need not be the only driving
force for the cooling cycle. WhenTe.Th , the incoherent
thermal flowQ̇e may become positive, and hence, may a
contribute to the cooling rate.

The entropy production rate for the cycle is
0-3
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Ṡ52H Q̇h

Th
1

Q̇c

Tc
1

Q̇e

Te
J

524e2
lclh

D
~nc2nh!S D21

Tc
2

D31

Th
D

14e2
le~ l̄c1l̄h!

D

D32

Te
~12ne!2

lhlcle

D
~nh2ncne!

3S D31

Th
2

D21

Tc
2

D32

Te
D , ~3.6!

whereD is a positive function derived in Appendix B. Wit
the relations noted above for the equilibrium populationsnb ,
it is straightforward to prove thatṠ in Eq. ~3.6! must be
non-negative, in accordance with the second law.

IV. COUPLING WITH THE BATHS

The results for the cooling performance of the quant
refrigeration cycle depend on the particulars of the coupl
between the system and its baths. Hence, specific mo
must be invoked. The primary variable of interest is the co
ing rate ~the interaction with the cold bath!. Since in any
event the results that will now be derived are independen
the nature of the hot and environmental reservoirs, we
treat these two as white baths, i.e., baths with a cons
density of energy modes~at least in the frequency range o
interest!, for which

lb5Lb , l̄b5Lbe2Db /Tb, ~4.1!

whereLb is the strength of the coupling.
Earlier quantum refrigeration models also treated the c

bath as having a constant mode density@1,2#. Here, a more
elaborate and realistic model is introduced for the cold ba
an assembly of harmonic oscillators—a viable model in
weak-coupling limit@10#. The bath’s Hamiltonian may the
be expressed as

Ĥc5(
i

Dciâci
† âci , ~4.2!

whereâci andâci
† are the annihilation and creation operato

with the index i spanning the bath oscillator energiesDci .
The operator of Eq.~2.4!, that couples the system and bath
then

Ĝc5(
i

gciâci1gci* âci
† , ~4.3!

wheregci andgci* denote the coupling constants.
The influence of an harmonic bath on system dynamic

embedded in the spectral strength function@10,11# Jc(D)
5S i ugciu2d(D2Dci) that, for low energies, is well approxi
mated by a simple power-law dependence

Jc~D!'LcD
sc, ~4.4!
05613
g
els
l-

of
ll
nt

ld

:
e

,

is

wheresc must be positive@12#. The coefficientsl then fol-
low as

lc~Dc ,Tc!5
LcDc

sc

12e2Dc /Tc
, l̄c~Dc ,Tc!5

LcDc
sc

eDc /Tc21
.

~4.5!

V. COOLING PERFORMANCE

A. Objectives

Several aspects of the thermodynamic performance of
quantum cooling cycle will be addressed in this section:~1!
how strong a coupling with the driving field is required
achieve cooling~i.e., to insureQ̇c.0!; ~2! how does the
cooling rate vary with the natural control variableD21 and
under what conditions is the cooling rate maximized;~3!
how does the maximum cooling rate depend onTc in the
limit of the absolute zero and how does this depende
compare to the fundamental bound established from the
ond and third laws; and~4! what is the efficiency of this
cooling cycle and may it be cast in the same form as class
chiller analyses. In this section, onlyTe values in the range
Tc<Te<Th are analyzed, so the environmental bath serve
solely dissipative role. The following section will focus o
the special thermodynamic consequences whenTe.Th .

B. Cooling window and electronic analog

Because of the competition between the coupling to
driving field and dissipative losses, only certain combin
tions of system parameters produce cooling. The thermoe
tric chiller offers a familiar example of the existence of
refrigeration window, where the cooling effect exists on
for: ~a! a sufficiently high thermopower~Seebeck coeffi-
cient!; and~b! a particular voltage window. There are anal
gous limits in the three-level quantum chiller.

In fact, the three-level model may be viewed as an el
tronic device, with the analog of the voltageV beingD32 ~in
units of electronic charge!. The maximum voltage isVmax
5D31, andD215Vmax2V. The power input is the product o
voltage and current, so that Eq.~3.5! provides the analog o
the electrical current as a complicated implicit function
the system parameters, as well the relation between cur
and voltage. In the absence of the environmental bath,
rent is an exponentially increasing function of voltage@1#,
which, not coincidentally, is the same as for ideal diod
With the added dissipation to the environmental bath,
current remains a strongly increasing function of voltag
albeit not strictly exponential, similar to nonideal diodes.

The minimum coupling strength with the driving fiel
emin to produce a cooling effect follows from Eq.~3.5!:

emin5AC~nh2ne!/$A~12nh!%, ~5.1!

and is plotted as a function ofTe in Fig. 2.

C. Maximum cooling rate and the fundamental bound

Our ‘‘control knob’’ for the varying cooling rate is the
transition energyD21. The cooling rate vanishes at two va
0-4
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ues of D21 that delimit the cooling window:D2150 and
D215D21

max, whereD21
max depends on the principal system p

rameters, most notablyTc andLe @Eq. ~3.5!#, as illustrated in
Fig. 3. Sample curves of cooling rate as a function ofD21 are
plotted in Fig. 4.

Solving for the maximum cooling rate numerically in th
limit Tc→0 reveals that this three-level quantum chiller r
spects the fundamental bound of Eq.~1.1!. A more satisfying
analytic derivation is possible once we establish the accu
of an approximate closed-form expression for the cool
rate in the limit of the absolute zero. In the limit of vanishin
Tc : ~a! D21

max vanishes;~b! D32'D31; and~c! the coefficients
c10, c20 andcd0 of Appendix B become independent of bo
Tc andD21. Then, to an excellent approximation, the cooli
rate reduces to

Q̇c'D21
~sc11! Lc

12e2D21 /Tc

~e2D21 /Tcc102c20!

cd0
. ~5.2!

FIG. 2. Minimum coupling needed for cooling, as a function
the environmental bath temperature, at three values of coup
coefficient with the environmental bath. Other system parame
are fixed at:Tc50.1, Th50.2, D3151, Lh5Lc50.001, andsc

51. Units are chosen such that\51 and kB51. The regime of
Te.Th . where no coupling is required to produce cooling, is a
dressed in Sec. VI.

FIG. 3. Refrigeration window as a function ofTc for three val-
ues of the coupling coefficient with the environmental bath. Ot
system parameters are fixed at:Th5Tc50.2, D3151, Lh5Lc5e
50.001, andsc51. Units are chosen such that\51 andkB51.
05613
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The accuracy of this approximation is depicted in Fig.
Although maximizing the cooling rate of Eq.~5.2! yields a
transcendental equation that may only be solved numerica
the solution for that transition energyD21* is of the form
D21* }Tc , independent of the coupling with the environme
tal bath or the value of the positive exponentsc in Eq. ~4.4!.
It then follows from Eq.~5.2! that

Q̇c
max}Tc

~sc11!
~sc.0!, ~5.3!

as required by the second and third laws@1#.

D. Efficiency

Cooling cycle efficiency is usually defined by Coefficie
of Performance~COP!, the ratio of cooling rate to inpu
power, which in this instance isQ̇c /Ẇ. Cooling cycles are
conveniently characterized by a plot of COP against
cooling rate@13#, as in Fig. 5. Even in the absence of th
~parasitic! environmental bath, the three-level system po
sesses an energy leak that militates against efficient op
tion asD21→0 @1#, which appears as the lower branch of t
curves in Fig. 5, with COP vanishing as the cooling rate
lowered. At the other end of the refrigeration window (D21

→D21
max), the existence of the extra dissipation to the en

ronmental bath makes a quantum difference. In the abse
of this extra energy-leak pathway, there are no irreversib
ties that mitigate against efficient operation, so both the co
ing rate and power input vanish at the same rate such tha
COP approaches its fundamental reversible~Carnot! value of
Tc /(Th2Tc) @1,13#. The coupling to the environmental bat
introduces a loss mechanism that mitigates against this no
nally slow operation, so COP also vanishes in this limit~the
upper branch of the curve in Fig. 5 forLe.0!. Figure 6
offers an alternative view of the differences in dissipation
plot of the entropy production rate againstD21 with and
without coupling to the environmental bath.

g
rs

-

r

FIG. 4. Cooling rate as a function ofD21 for three values of cold
bath temperature. Other system parameters are fixed at:Th5Te

50.03,D3151, Lh5Lc5Le5e50.001, andsc51. Units are cho-
sen such that\51 andkB51. The broken curve and solid circle
indicate the locus of maximum cooling rate. The solid curves
nominally exact numerical results, while the solid squares illustr
the accuracy of the approximation of Eq.~5.2!.
0-5
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VI. QUANTUM ABSORPTION CHILLER

Classical cooling cycles may be driven by thermal sour
that are hotter than the heat rejection reservoir, commo
called absorption chillers~in contrast to more common work
driven mechanical chillers! @13#. A simple quantum analog is
our three-level cooling cycle withTe.Th , where the envi-
ronmental bath is analogous to what is called the generato
classical absorption cycles. Consider decoupling the th
level system from the coherent radiation field and driving
with incoherent radiation~e.g., a flash lamp! at input thermal
power Q̇e . The environmental bath becomes a heat sou
rather than a dissipative sink. As in classical absorption ch
ers, the COP is defined asQ̇c /Q̇e . While the refrigeration
window and characteristic chiller curve will now be derive
we note that the basic result for the dependence of the m

FIG. 5. Characteristic chiller plot, COP against cooling ra
with and without coupling to the environmental bath. The cont
variable isD21. System parameters are fixed at:Tc50.1, Th5Te

50.2, D3151, Lh5Lc5e50.001, andsc51. Units are chosen
such that\51 andkB51.

FIG. 6. Entropy production rate as a function ofD21, with and
without coupling to the environmental bath. The refrigeration w
dow is broader in the absence of this coupling~the two curves
terminate at different values ofD21

max!. Arrows indicate the points of
maximum cooling rate. System parameters are fixed at:Tc50.1,
Th5Te50.2, D3151, Lh5Lc5e50.001, andsc51. Units are
chosen such that\51 andkB51.
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mum cooling rate onTc in the limit Tc→0 ~5.3! remains
unaltered.

The refrigeration window follows from Eq.~3.5!:

D21
max5

Tc~Te2Th!

Th~Te2Tc!
D31, ~6.1!

which, as for the dissipative environmental bath atTe<Th ,
vanishes in the limitTc→0.

The characteristic chiller curve is graphed in Fig. 7. W
Te.Th , there is no irreversibility that undermines the ef
cient slow operation (D21→D21

max). Hence, the ordinate inter
cept of each curve may approach the reversible Carnot l
for absorption cycles of@13#

~COP!Carnot5

1

Th
2

1

Te

1

Tc
2

1

Th

. ~6.2!

Sections V and VI addressed the extreme cases of
power input to the cooling cycle being either pure coher
radiation or purely incoherent and thermal, respectively.
combination of the two~when Te.Th! may be calculated
directly from the results derived above.

VII. SUMMARY

In approaching the absolute zero, any cooling cycle m
be dominated by quantum dynamics. At the same time,
should be able to probe its behavior with fundamental chi
thermodynamics. The three-level quantum model propo
and explored here provides a simple case study. It steps
yond earlier quantum refrigeration models in account
fully for spontaneous emission~and spontaneous absorption!,
and including an environmental bath that either mimics
tual rate-dependent dissipative mechanisms in work-dri
chillers whenTe<Th , or establishes the quantum analog
an absorption~purely thermally driven! chiller when Te

,
l

-

FIG. 7. COP against cooling rate for the three-level quant
absorption cycle, at three values ofTe . System parameters are fixe
at: Tc50.1, Th50.2, D3151, Lh5Lc5Le5e50.001, andsc51.
Units are chosen such that\51 andkB51.
0-6
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.Th . All the irreversibilities modeled here and in previou
studies@1,2# are effectively heat leaks. The quantum ana
of internal friction stems from the noncommutation of t
field and system Hamiltonians. In the limit of weak field
(e→0), this internal dissipation grows negligible. Incorp
rating the quantum version of friction remains a challen
for a future study.

Subject to reasonable approximations that retain the in
rity of the system and its reservoirs, expressions may
derived for:~a! the conditions under which a cooling effe
may be generated,~b! chiller efficiency as a function of the
cooling rate, and~c! the temperature dependence of the fa
est rate at which molecular systems can be cooled at ultra
temperatures. The relation of this maximum cooling rate
the energy mode density has been established, and the
result has been shown to respect the fundamental bound
was recently established for the maximum cooling rate fr
the second and third laws.
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APPENDIX A: QUANTUM REDUCED DYNAMICS

To obtain the evolution equation for the three-level s
tem, we invoke standard tools for quantum open systems
Redfield approach@14,15# and the secular approximatio
@11,16#. Assuming~a! weak coupling of the system with it
bath,~b! a weak driving field,~c! rapidly decaying bath cor
relation functions, and~d! an initial density matrix in the
form of Eq. ~2.5!, we may express the evolution equation

ṙ̂s~ t !52 i @Ĥs1Ĥs f~ t !,r̂s~ t !#1$2ḠĜhĜ
h
†~D31!

3@ P̂31,P̂13r̂s~ t !#2ḠĜ
h
†Ĝh

~2D31!@ P̂13,P̂31r̂s~ t !#%

1$H.c.%1$2ḠĜcĜ
c
†~D21!@ P̂21,P̂12r̂s~ t !#

2ḠĜ
c
†Ĝc

~2D21!@ P̂12,P̂21r̂s~ t !#%1$H.c.%

1$2ḠĜeĜ
c
†~D32!@ P̂32,P̂23r̂s~ t !#

2ḠĜ
e
†Ĝe

~2D32!@ P̂23,P̂32r̂s~ t !#%1$H.c.%, ~A1!

where$H.c.% denotes the Hermitian conjugate of the expr
sion in brackets that immediately precedes it. Equation~A1!
is valid independent of the nature of the baths as long as
coupling is weak and the bath correlation functions de
quickly.

The influence of the baths is included in the coefficie
Ḡ,
05613
g

e

g-
e

-
w
o
sic

hat

w
e
ter

-
he

s

-

he
y

s

ḠĜbĜ
b8
~Db!5E

0

`

dt eitDbCĜbĜ
b8

~A2!

with Db5D31, D21, D32 for b5h,c,e, respectively, and

CĜbĜ
b8

being given by Eq.~2.7!. When Ĝb85Ĝb
† , Ḡ may be

decomposed as

ḠĜbĜ
b
†~Db!5

C̄ĜbĜ
b
†~Db!

2
1 iS̄ĜbĜ

b
†~Db!, ~A3!

with C̄,S̄ being real andC̄>0 @9,15,17#. With Eq. ~A3!, we
split each term of Eq.~A1! into two parts related toC̄ andS̄.
The C̄-related term is

C̄ĜbĜ
b
†~Db!

2
$@ P̂b ,P̂b

†r̂s~ t !#1@ r̂s~ t !P̂b ,P̂b
†#%

2
C̄Ĝ

b
†Ĝb

~2Db!

2
$@ P̂b

† ,P̂br̂s~ t !#1@ r̂s~ t !P̂b
† ,P̂b#% ~A4!

with P̂b5 P̂31, P̂21, P̂32 for b5h,c,e, respectively. It is
readily confirmed that the terms of Eq.~A4! have the stan-
dard Lindblad form that insures complete positivity of th
dynamics.

For simplicity of notation in Secs. II–IV and Appendix B
we introduce the notation

lb5lb~Db ,Tb!5C̄ĜbĜ
b
†~Db!,

l̄b5l̄b~Db ,Tb!5C̄Ĝ
b
†Ĝb

~2Db!, ~A5!

with lb and l̂b related by

l̄b5e2Db /Tblb . ~A6!

The S̄-related term is

iS̄ĜbĜ
b
†~Db!@ P̂bP̂b

† ,r̂s~ t !#1 iS̄Ĝ
b
†Ĝb

~2Db!@ P̂b
†P̂b ,r̂s~ t !#.

~A7!

P̂bP̂b
† and P̂b

†P̂b represent small corrections to the system
energy levels, which in the weak-coupling limit, also turn o
to be negligible.

Hence, from Eq.~A1!, the time evolution equation for an
operator~in the Heisenberg representation! may be obtained,
and the germane results are provided in Sec. II.

APPENDIX B: COEFFICIENTS AT STEADY STATE

The coefficientspi j are the solution of a 434 system of
linear equations the coefficients of which depend on:~a! the
system energy structure,~b! the coupling with the fielde, and
~c! the coupling with the bathslb and l̄b :
0-7
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p115~c101c11lc1c12lc
2!/D,

p225~c201c21lc1 c̄21l̄c1 c̄22lcl̄c!/D,

p335~c301c31lc1 c̄31l̄c1c32lc
21 c̄32lcl̄c!/D,

p325 i ~cc01cc1lc1 c̄c1l̄c!/D, p235p23* , ~B1!

where the denominatorD is

D5cd01cd1lc1 c̄d1l̄c1cd2lc
21 c̄d2lcl̄c , ~B2!

and thec coefficients are given by

cd05~lh1le1l̄e!$~lh11l̄h!l̄e1lel̄h%14e2~lh12l̄h!,

cd15~lh1le1l̄e!~lh1l̄h1le!1~lh1l̄h!l̄e1lel̄h

14e2,

c̄d15~lh1le1l̄e!
218e2,

cd25lh1l̄h1le ,

c̄d25lh1le1l̄e ,

c105~lh1le1l̄e!lhl̄e14e2lh ,

c115~lh1le1l̄e!~lh1le!1lhl̄e14e2,

c125~lh1le!,
ll

T

so

A

05613
c205~lh1le1l̄e!lel̄h14e2l̄h ,

c215lel̄h ,

c̄215~lh1le1l̄e!~lh1le!14e2,

c̄225~lh1le!,

c305~lh1le1l̄e!l̄el̄h14e2l̄h ,

c315~lh1le1l̄e!l̄h1l̄el̄h ,

c̄315~lh1le1l̄e!l̄e14e2,

c325l̄h ,

c̄325l̄e ,

cc052el̄h~le2l̄e!,

cc1522el̄h ,

c̄c152e~lh1le2l̄e!. ~B3!

The coefficientsA, B, andC of Eq. ~3.5! may be expressed a

A54e2lhlc /D,

B54~ l̄h1l̄c!~le2l̄e!/D,

C5lhlcle~lh1lc1le1l̄e!/D. ~B4!
d

.
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