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Quantum thermodynamic cooling cycle
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The quantum-mechanical and thermodynamic properties of a three-level molecular cooling cycle are de-
rived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption
associated with the coupling to the coherent driving field via an environmental reservoir. This additional
coupling need not be dissipative, and can provide a thermal driving force—the quantum analog of classical
absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultralow
temperatures, is determined and shown to respect the recently established fundamental bound based on the
second and third laws of thermodynamics.
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[. INTRODUCTION cooling; (c) the dependence of the cooling rate on the quan-
tum control variables(d) the efficiency of the cooling cycle;
Recently, a fundamental model-independent bound waand (e) rigorous confirmation that the fundamental bound of

derived for the temperature dependence of the fastestrate Ed- (1.1) is respected as the absolute zero is approached.
at which any substance can be cooled toward absolute zero
via an energetic exchange with a cold reservoir at tempera- Il. THE THREE-LEVEL MODEL

ture T [1]:
11 The model is portrayed schematically in Fig. 1: a three-

0.xTY, a=1. (1.1) level system coupled to three infinite ba_ﬂne_sservoirs plus
an external driving field of coherent radiation. The allowed

In the same study, a three-level quantum-mechanical coolingfansitions are(1) between levels one and three, with a hot
cycle was postulated and shown to achieve this bound. Theath at temperatur@;, (heat rejection (2) between levels
notion of analyzing molecular cooling with quantum thermo-one and two, with a cold bath at temperatdrg (heat re-
dynamic cycles had been introduced earfi2f. A system moval, i.e., cooling and(3) between levels two and three,
(working fluid) rejects heat to a hot bath, removes heat fromsimultaneously with the driving field and an environmental
a cold bath, and is driven by a coherent driving field: anbath at temperatur@, (dissipative heat rejection wheR,
idealized model for the laser cooling of magnetically con-<Ty, and heat input whefi,>Ty,). The environmental bath
fined gases at ultralow temperatures, as well as the lasés treated as eithefa) independent of the hot and cold baths;

cooling of solids and dyeg3,4]. or, when interference among the transitions is neglidible
An important ingredient absent from previous models is

the spontaneous emission and absorption related to the cot 3

pling between the system and the driving field. Superficially, [ ] / environmental

this extra coupling provides a dissipative path, and hence bath e

lowers achievable cooling rate. However, we will show that Aj

this coupling also introduces the possibility of driving the | hotbathh
cooling cycle thermally, and broadens the conditions underl T,
which cooling can be generated. It constitutes the quantum
mechanical analog of classical absorption chillers. The quan A, W
tum dynamics and thermodynamic properties of this im- o
proved three-level model will be derived, in particuléa °°heif;lft’f‘vd;fﬁ‘ve
the identification of thermodynamic with quantum- z

mechanical variablegh) the conditions required to produce cold bath ¢
A
N, M)

*Also at: Departamento de sica Fundamental 1I, Universidad de
La Laguna, La Laguna 38204, Spain. FIG. 1. Schematic of the three-level quantum cooling cycle.
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(b) representing an additional transition to the hot or coldsystem and Ty denotes the trace over all bath variables. We

bath. Two special cases af@) T.=Ty, signifying sponta- invoke the following approximations:
neous emission to the hot bath, i.e., coupling the transition to
the hot bath; and2) T.=T,, descnbmg nonradiativée.g., Weak coupling between the three-level system and each

phonon decay, i.e., coupIing to the cold bath. bath. o o . ]
The Hamiltonian of the extended systesystem, baths, * Factorization of the initial density matrix of the extended
and driving field is expressed as system,
o Pt=0)=pdt=0)@pn@pcBpe 2.9
H=Hs+Hg(t) +Hspt Hgct Hget Hp+He+He, with the initial density matrix of each bath assumed to be
(2.1 in thermal equilibrium,

whereH, is the Hamiltonian of the three-level systethe Po=
working fluid of the thermodynamic cydleH«(t) describes ® Trofpe}
the time-dependent coupling between the system and the

driving field (coherent radiation Hgp,,Hsc,Hse account for iRy e
the coupling between the system and its respective baths; and Crbrg,:Trb{Fbe(_t)Pb}:Trb{Fbe ST et py}

(2.6)

The Markovian assumption that the bath correlations

Hy,,H.,H, are the respective Hamiltonians of the ha ( (2.7)
cold (c), and environmentale) baths. decay rapidly relative to the time scale of evolution of the
The system’s Hamiltonian may be cast as three-level system.
* Weak coupling with the driving field, i.eg being of the
Ho=AgPast APy, (2.2 same order as the coupling with the baths. This approxi-

mation permits us to treat the effect of the field on the
whereA;; =E;—E; is the transition energy between levéls  baths and the system separatiy6].

andj (with E; chosen as zelpand I5ij =|i)(j| fori=j are

the projection operators over the statesl,2,3.(Our units These approximations result in the density matrix of the
are chosen such that=1 andkg=1.) extended system factorizing at all times. One consequence is
Our expression foﬂsf(t) is based on the semiclassical that the interfaces between the system and its baths become
rotating wave approximatiofs]: isothermal partitions that allow energy transfer but do not
destroy the system’s integrity, i.e., no quantum entanglement
Hef(t) = e(Pae '+ P,ge @t (2.3 s created between the system and its bBffisThis point is

essential to the validity of the thermodynamic cycle ap-
for a field frequencyw and a coupling strengtlk that de-  proach, i.e., to distinct energy flows between a system and its
pends on the amplitude of the driving field, as well as thereservoirs such that the intactness of the system is not com-
dipole moment of the transition, the latter being assumed t@romised.
be independent oA ,. With linear coupling between each ~ The analyses that follow build upon the derivation of the
transition in the three-level system and its correspondingystem’s reduced dynamics as detailed in Appendix A. We
bath, the other coupling Hamiltonians can be written as  adopt the Heisenberg representation and express the time

R A A ooy evolution of an arbitrary operatot as
Hon=Pail'nt P1sl'p,

X
A= Pl ot Pl X=i[FAg+Hgi(t),X]+| = | + Z Lb(X) (2.9

Foe=Pasl o+ P!, (2.4)  where the super-operatd}, describes the effect of the baths
on the dynamics of the three-level system and possesses a
where P;; now represents the raising>j) or lowering ¢  Structure(the Lindblad form that assures thécomplete

<j) operator for the transition— j, andf‘b denotes a bath positivity of the reduced dynamics of E2.8)
operator b=h,c,e). Only the general properties of the bath N
correlation functions are needed to obtain the reduced de- Ly(X)= _b{[ﬁbj(]ﬁg_ﬁ)b“sgj(]}
scription of the system’s dynamics. The more detailed infor- 2

mation on the bath Hamiltonians and the operaltgysvill be yb
derived afterwards when we examine the explicit forms of + [P XIP,—PI[P,,XT} (29
the correlation functions. 2
The standard tools for quantum open systems may be
used to obtain a reduced description of system dynamics, i.eWith P,=Pa;, P21, P3,for b=h,c,e, respectively. The cor-
the time evolution for the system’s density matfiXt), in  relation coefficients\, and\,,, defined in Appendix A, de-
terms of the operators of the three-level systeig(t) pend on the transition energies, the bath temperatures, and
=Trg{p(t)} wherep is the density matrix of the extended the coupling strength. They appear as coefficients in the
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equations foiP g3, Py, P11, Pa,, andP,; that follow from W+ O+ O+ 0.=0, (3.2
Eq. (2.8 and decouple from the others
with energy flows into the system defined as positive.

Pas— —i€e Pyt iee “Pys— (An+he) Pagt NePas Now we can derive the relation between the cycle’s ther-
o modynamic variables and the quantum-mechanical param-
+ NP1, eters. At steady statédenoted by the superscrigs, the
generalP operators become
P22:iEeiiwtpgz_i6eith23+)\eP33_(}\C+)\e) P22 ﬁijﬁﬁisjseiaijt’ (33)
+ NP1,

where |5i5f= 0, a;;=0, as=w, and the remaining values of
ﬁ’ﬁs follow from introducing Eq.(3.3) into Eg. (2.10 and
solving the resultant set of linear time-independent equa-
tions. The solutions fofais turn out to be proportional to the
identity operator 1 P;°=p;;1, wherep;; is real wheni = j

and complex when#j. From the relation between the

operators and the elements of the density matrix, the steady-
state expectation values of the populatidins., the diagonal

Pos=PL,. (2.10  elementsare constantg,P;)=(P5%)=p;;, and the expecta-
i tion values of the off-diagonal elemeri?s, and P 5 oscillate
The termsP;; are related to the diagonal elements of thejn time, <|5ij>:<|5isjsei“ijt>:pijei“ijt. Explicit formulas for
reduced density matrix whein=j (Trs{P;ips}=pii), and to  p;; are provided in Appendix B for the condition of reso-

P11=MPagt AcPaot — (Np+ ho)Puy,
I.S32= | Aszﬁ)gz_ | Eei wtﬁ)33+ | eeiwtﬁ)zz

1 —
- E{)\h+ Nt Net A} Pay,

the off-diagonal elements when#j(Trg{Pj;ps}=pji). nance that is assumed in the analysis that follows:
Hence, Eq.(2.10 represents rate equations for the density-
matrix elements. The diagonal and off-diagonal elements are w=A3;. (3.4

coupled by the driving field. The bath is responsible for the Th | h q . iabl £ h
self couplings of both diagonal and off-diagonal elements, e cycle-average thermodynamic variables of the quan-

- e I o tum refrigerator may now be expressed as
\p and A, are then transition probabilities, per unit time,

between energy levels. For exampbe, is the transition W=2€A32Im[p32]:A3262{A(n —ny)+B}
probability of a decay from level three to one in which en- ¢ ’
ergy is rejected to the hot bath, aikg is the probability for Qh:A31(_)\hp33+rhp11)
an excitation from level one to three in which energy is ab-
sorbed from the hot bath. =—Ag{€’A(Nc—np) +C(Nche—Np)},
lll. IDENTIFICATION OF THE THERMODYNAMIC Qo= Az1(—NePort AcP1)
VARIABLES = A €?A(nc—ny) +C(Ncne—np)},

The identity of the thermodynamic energy flows in the . _
cooling cycle follows from energy conservation and averag- Qe=Aszx —NeP3stNeP2s) = — Az €2B—C(Nene—np)},

ing [8,9]. The HamiltonianH=H¢+Hg(t) is introduced (3.5

into the evolution Eq(2.8), is multiplied by the initial den- \;hare Eq.(A6) of Appendix A has been used, amg de-
sity matrix, and is traced over the variables of the three-level, jioc  the equilibrium populationS'nh=e‘Aél’Th n

. o L] (o3
system, to yield =e 22/Te n,=e 2%/Te, Detailed expressions for the posi-
tive coefficientsA, B, andC are presented in Appendix B,

" " . and depend on the bath temperatures, the transition energies,
>+<£h(HT)>+<£°(HT)>+<£9(HT)>' and the coupling strength. Each energy flow constitutes a
(3.)  competition between two processes with ratga ppyx and
: . . ) ) Ap\ k>1), with the former describing heat rejection of
The energy ﬂ.OW assocw_tted with the (_1r|vmg fle{lrthe_flrst m%lgbnpi'l[lLfdeAz to the bath in the decak(—>gl, and tr:e latter
term on the right-hand side of E@'l)] is the pqwer input representing heat removal of the same magnitude from the
(cycle-averaged wojko the cycle V. The remaining three  path in the excitatiod —k. Also, as will be elucidated in

terms are the respective heat flows between the system ard,. \/ the work input ratéy need not be the only driving
its baths,Qp, Q;, Qe . At steady state(Hr) is constant and  force for the cooling cycle. Wheif,>T},, the incoherent

independent of the system’s initial state,(i;br)zo and Eq. thermal flowQ, may become positive, and hence, may also
(3.1) may be expressed as the first law of thermodynamicgontribute to the cooling rate.
for the thermodynamic cycle The entropy production rate for the cycle is

- (1)
N
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. _|%+ %+ %] :/;Cve;isc must be positivd12]. The coefficients\ then fol-
Th Tco Te
A A A A
PO A,y A ¢ N ¢
=—4ep h(nc—nh)(T_Zl_ T_il) No(Be To)= T—gaomy MelAe To)= grom 7
C
- (4.5
zke()\c"')\h) A32 )\h)\c)\e
e ————— = (1-ng)— (Nh=NcNe) V. COOLING PERFORMANCE
D Te D
Ay Ay Ag, A. Objectives
T T, T.) (3.6 Several aspects of the thermodynamic performance of the

quantum cooling cycle will be addressed in this sectidn:
whereD is a positive function derived in Appendix B. With how strong a coupling with the driving field is required to
the relations noted above for the equilibrium populatiops  achieve cooling(i.e., to insurch>0); (2) how does the
it is straightforward to prove tha$ in Eq. (3.6) must be cooling rate vary with the natural control variable, and

non-negative, in accordance with the second law. under what conditions is the cooling rate maximiz&8)
how does the maximum cooling rate depend Tanin the
IV. COUPLING WITH THE BATHS limit of the absolute zero and how does this dependence

compare to the fundamental bound established from the sec-

The results for the cooling performance of the quantunond and third laws; and4) what is the efficiency of this
refrigeration cycle depend on the particulars of the couplingzooling cycle and may it be cast in the same form as classical
between the system and its baths. Hence, specific modetdiller analyses. In this section, only, values in the range
must be invoked. The primary variable of interest is the cool-T,<T.<Tj, are analyzed, so the environmental bath serves a
ing rate (the interaction with the cold bathSince in any solely dissipative role. The following section will focus on
event the results that will now be derived are independent ofhe special thermodynamic consequences WhenT,,.
the nature of the hot and environmental reservoirs, we will
treat these two as white bathS, i.e., baths with a constant B. C00|ing window and electronic ana|og
density of energy mode&t least in the frequency range of

interes}, for which Because of the competition between the coupling to the

driving field and dissipative losses, only certain combina-
tions of system parameters produce cooling. The thermoelec-
tric chiller offers a familiar example of the existence of a
refrigeration window, where the cooling effect exists only
éor: (a) a sufficiently high thermopowe(Seebeck coeffi-
ciend; and(b) a particular voltage window. There are analo-
pgous limits in the three-level quantum chiller.
" In fact, the three-level model may be viewed as an elec-
etronic device, with the analog of the voltayebeingAs, (in
units of electronic charge The maximum voltage 1%/ .«
=Azq, andA,1=Va— V. The power input is the product of
. voltage and current, so that E@.5) provides the analog of
HC=E_ Agalag, (4.2  the electrical current as a complicated implicit function of

: the system parameters, as well the relation between current

. At o . and voltage. In the absence of the environmental bath, cur-
wherea; anda,; are the annihilation and creation operators, ;ant is an exponentially increasing function of voltdga,

No=Ap, Ap=Ape 20T, (4.1

where A, is the strength of the coupling.

Earlier quantum refrigeration models also treated the col
bath as having a constant mode den§ity2]. Here, a more
elaborate and realistic model is introduced for the cold bat
an assembly of harmonic oscillators—a viable model in th
weak-coupling limit[10]. The bath’s Hamiltonian may then
be expressed as

with the indexi spanning the bath oscillator energi&s;.  \yhich, not coincidentally, is the same as for ideal diodes.
The operator of Eq2.4), that couples the system and bath isyjith the added dissipation to the environmental bath, the
then current remains a strongly increasing function of voltage,
albeit not strictly exponential, similar to nonideal diodes.
FC:Z gciéci"'g:iéliv (4.3 The minimum coupling strength with the driving field

€min 10 produce a cooling effect follows from E¢B.5):

whereg,; andg?; denote the coupling constants. €min=VC(Nh—Ne) {A(1-np)}, (5.9
The influence of an harmonic bath on system dynamics is dis plotted function . in Fig. 2

embedded in the spectral strength functid®,11] J.(A) and Is piotted as a function dle In FIg. 2.

=310.i?6(A—Ag) that, for | ies, i I i-

miggcgy é Simplctla) posverf?;v?\:jve%réi?éenscels el approxi C. Maximum cooling rate and the fundamental bound

Our “control knob” for the varying cooling rate is the

Jo(A)~A A%, (4.4  transition energy,;. The cooling rate vanishes at two val-
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0.0005 3x10™"

8min
cooling rate

T=0.00010

0
0.10 0.15 0.20 0 0.0005 0.001
T Azl

FIG. 2. Minimum coupling needed for cooling, as a function of FIG. 4. Cooling rate as a function af, for three va!ues of cold
the environmental bath temperature, at three values of couplinBath temperature. Other system parameters are flxea‘hai:'l'e
coefficient with the environmental bath. Other system parameters=0'03'A31= 1,Ap=A;=Ae=€=0.001, ands;=1. Units are cho-
are fixed at:T,=0.1, T,=0.2, Ay;=1, A,=A,=0.001, ands, SN such that =1 andkB=. 1. The brpken curve and §0I|d circles
=1. Units are chosen such that=1 andks=1. The regime of indicate the locus of maximum cooling rate. The solid curves are

T,>T,,. where no coupling is required to produce cooling, is ad_nominally exact numerical results, while the solid squares illustrate
d?essed in Sec. VI ' the accuracy of the approximation of E.2).

ues of A, that delimit the cooling windowA,;=0 and  The accuracy of this approximation is depicted in Fig. 4.

Ay=AT¥ whereAT™ depends on the principal system pa- Although maX|m|zmg.the cooling rate of E@5.2) yields a

rameters, most notabll, andA . [Eq. (3.5)], as illustrated in ~ transcendental equation that may only be solved numerically,

Fig. 3. Sample curves of cooling rate as a functiongfare  the solution for that transition energy, is of the form

plotted in Fig. 4. A%,xT., independent of the coupling with the environmen-
Solving for the maximum cooling rate numerically in the tal bath or the value of the positive exponeptin Eq. (4.4).

limit T.—0 reveals that this three-level quantum chiller re-It then follows from Eq.(5.2) that

spects the fundamental bound of E#.1). A more satisfying _

analytic derivation is possible once we establish the accuracy Qrcnaxch(CSC“) (s:>0), (5.3

of an approximate closed-form expression for the cooling

rate in the limit of the absolute zero. In the limit of vanishing as required by the second and third laig

T.: (@ AT vanishesfb) Az~ A3 ; and(c) the coefficients

C10, Coo@andcyg of Appendix B become independent of both D. Efficiency

T. andA,;. Then, to an excellent approximation, the coolin . - . . -
rate reduces to PP 9 Cooling cycle efficiency is usually defined by Coefficient

of Performance(COP), the ratio of cooling rate to input
b AGH Ae (e 221/Teg p—cyp) 5.2 power, which in this instance i§./W. Cooling cycles are
¢ =21 1 e AulT ' ' conveniently characterized by a plot of COP against the
cooling rate[13], as in Fig. 5. Even in the absence of the
(parasiti¢ environmental bath, the three-level system pos-
sesses an energy leak that militates against efficient opera-

Cdo

0.6 . .
tion asA,;— 0 [1], which appears as the lower branch of the
A=0.0 curves in Fig. 5, with COP vanishing as the cooling rate is
04 lowered. At the other end of the refrigeration window,

—AJ™), the existence of the extra dissipation to the envi-
ronmental bath makes a quantum difference. In the absence
of this extra energy-leak pathway, there are no irreversibili-
0.2 A<0.01 ties that mitigate against efficient operation, so both the cool-
¢ ing rate and power input vanish at the same rate such that the
COP approaches its fundamental reversillarno} value of
00 £ o8 5o 515 TC/(Th—TC) [1,13. The cqupling to t.he environr.nentall bath _
' ' T ' ' introduces a loss mechanism that mitigates against this nomi-
¢ nally slow operation, so COP also vanishes in this littiie
FIG. 3. Refrigeration window as a function f, for three val-  Upper branch of the curve in Fig. 5 fot.>0). Figure 6
ues of the coupling coefficient with the environmental bath. Otheroffers an alternative view of the differences in dissipation: a
system parameters are fixed &;=T.=0.2, A;;=1, A,=A.=e plot of the entropy production rate againdb; with and
=0.001, ands,=1. Units are chosen such that1 andkg=1. without coupling to the environmental bath.

A,=0.001

max
A21
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1 1

COP
COP

A,=0.001

5x107°

0 5x107°
cooling rate cooling rate

FIG. 5. Characteristic chiller plot, COP against cooling rate, FIG. 7. COP against cooling rate for the three-level quantum
with and without coupling to the environmental bath. The controlabsorption cycle, at three valuesTf. System parameters are fixed
variable isA,,. System parameters are fixed at=0.1, T,=T, at: T.=0.1,T,=0.2,A3;=1, A,=A.=A.=€=0.001, ands.=1.
=0.2, Ay;=1, A,=A.=€=0.001, ands,=1. Units are chosen Units are chosen such that=1 andkg=1.
such thati =1 andkg=1.

mum cooling rate onl, in the limit T,—0 (5.3 remains
VI. QUANTUM ABSORPTION CHILLER unaltered.

) ) ) The refrigeration window follows from Ed3.5):
Classical cooling cycles may be driven by thermal sources

that are hotter than the heat rejection reservoir, commonly T(To—Th)

. . . max clle h
called absorption chillerén contrast to more common work- o1 ZWAM' (6.1
driven mechanical chilley§13]. A simple quantum analog is mie e

our three-level (_:ooling cycle Witﬁe>_—rh’ where the envi- which, as for the dissipative environmental batiTg& Ty,
ronmental bath is analogous to what is called the generator Danishes in the limif.—0
—0.

lclaslsical abs?rptior; cyclﬁs. Cons(ijo_ler_ dego:éplin% :jh? _thre_e- The characteristic chiller curve is graphed in Fig. 7. With
e.‘t’ﬁ.syshem rtomdt. oo ere”tﬂra r:"’l‘“o"‘ o and aving it > T, there is no irreversibility that undermines the effi-
with incoherent radiatioke.g., a flash lampat input therma cient slow operation4,,— AJ™). Hence, the ordinate inter-

power Q.. The environmental bath becomes a heat sourcgent of each curve may approach the reversible Carnot limit
rather than a dissipative sink. As in classical absorption chillf,, absorption cycles dfL3]

ers, the COP is defined a3,/Q,. While the refrigeration
window and characteristic chiller curve will now be derived, 1 1

we note that the basic result for the dependence of the maxi- T, T.
(COBCarnot:—l- (6.2

0.0005 — =

Tc Th

Sections V and VI addressed the extreme cases of the
power input to the cooling cycle being either pure coherent
radiation or purely incoherent and thermal, respectively. A
combination of the twowhen T,>T,) may be calculated
directly from the results derived above.

VIl. SUMMARY

Entropy Production Rate

In approaching the absolute zero, any cooling cycle must
be dominated by quantum dynamics. At the same time, one
A 05 should be able to probe its behavior with fundamental chiller

x thermodynamics. The three-level quantum model proposed

FIG. 6. Entropy production rate as a function/j;, with and ~ @nd explored here provides a simple case study. It steps be-

without coupling to the environmental bath. The refrigeration win-Yond earlier quantum refrigeration models in accounting

dow is broader in the absence of this couplifige two curves fully for spontaneous Qmissidand spontaneous absc_)rptjon
terminate at different values afJ®). Arrows indicate the points of ~and including an environmental bath that either mimics ac-

maximum cooling rate. System parameters are fixedTat:0.1,  tual rate-dependent dissipative mechanisms in work-driven
Th=Te=0.2, Ay;=1, A,=A,=€e=0.001, ands,=1. Units are chillers whenT,<T,, or establishes the quantum analog of
chosen such thdt=1 andkg=1. an absorption(purely thermally drivep chiller when T,

056130-6



QUANTUM THERMODYNAMIC COOLING CYCLE PHYSICAL REVIEW E64 056130

>T,. All the irreversibilities modeled here and in previous — o

studies[1,2] are effectively heat leaks. The quantum analog Gfbfé(Ab):f dte'*Cr i/ (A2)
of internal friction stems from the noncommutation of the 0
field and system Hamiltonians. In the limit of weak fields
(e—0), this internal dissipation grows negligible. Incorpo- ] . Ly
rating the quantum version of friction remains a challengeCr,i; being given by Eq(2.7). WhenI'y,=T",, G may be

with Ay,=A3;, Ay, Az, for b=h,c,e, respectively, and

for a future study. decomposed as
Subject to reasonable approximations that retain the integ-
rity of the system and its reservoirs, expressions may be Ef +1(Ay)
. . g . . _,\ R b b '_,\ .
derived for:(a) the conditions under which a cooling effect GFbFE(Ab): > +|SerE(Ab), (A3)

may be generatedb) chiller efficiency as a function of the
cooling rate, andc) the temperature dependence of the fast- o o
est rate at which molecular systems can be cooled at ultralowith C,S being real andC=0 [9,15,17. With Eq. (A3), we
temperatures. The relation of this maximum cooling rate tosplit each term of Eq(A1) into two parts related t€ andS.
the energy mode density has been established, and the ba§|ﬁe C-related term is

result has been shown to respect the fundamental bound that
was recently established for the maximum cooling rate from

the second and third laws. Cfbe(Ab)

———{[Po.Pips(D)]+[ps()Py PLT}
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For simplicity of notation in Secs. 11-1V and Appendix B,
we introduce the notation

To obtain the evolution equation for the three-level sys-
tem, we invoke standard tools for quantum open systems: the Mo=Ap(Ap, Tp) =Ef Ft(Ap),
Redfield approaci14,15 and the secular approximation oo
[11,16. Assuming(a) weak coupling of the system with its - _
bath, (b) a weak driving fieldc) rapidly decaying bath cor- Np=Np(Ap,Tp) =Cpir, (—Ap), (A5)
relation functions, andd) an initial density matrix in the
form of Eq.(2.5), we may express the evolution equation asyit, b ande related by

APPENDIX A: QUANTUM REDUCED DYNAMICS

ps(t) =~ [ A+ Flgi(t) po(D)]+{~ Gr,f1(Aa) Np=e” So'Tohp,. (A6)
X[ﬁ)sli|513ﬁs(t)]_€f;§fh(_Asﬂ[ﬁ)lsilsslﬁs(t)]} The Stelated term is
+{HC}H{= Gr i1(A2)[ P2y, Prap(1)] ISt (b PoP, (D) +1Si 17, (~ Ap)[PEPy,s(1)].
(A7)

—Giti (—A20)[ P12, Poipg(D)]} +{H.c} o .
P,P/ and PP, represent small corrections to the system’s

+{— gfefZ(Agz)[ Pas,Posps(t)] energy levels, which in the weak-coupling limit, also turn out
. to be negligible.
— Gt (—Ag)[Pos, Paops(t) 1} +{H.cl, (A1) Hence, from Eq(A1), the time evolution equation for any

operator(in the Heisenberg representationay be obtained,
and the germane results are provided in Sec. Il.
where{H.c} denotes the Hermitian conjugate of the expres-
sion in brackets that immediately precedes it. Equatish) APPENDIX B: COEEEICIENTS AT STEADY STATE
is valid independent of the nature of the baths as long as the
coupling is weak and the bath correlation functions decay The coefficients;; are the solution of a 44 system of

quickly. linear equations the coefficients of which depend @hthe
B The influence of the baths is included in the coefficientssystem energy structuréh) the couplingwith the fiel&, and
G, (c) the coupling with the baths, and\y,:
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P11= (C1g+ Crah o+ CioNE)/D, Coo= (Ap+ Nt Ne)Nehp+ 42Ny,
P22=(Ca0t CathcF Carh e+ Cooh A )/D, Cor=Nehn,
Pag= (Ca0+ Caih+ Cath g+ Caph 2+ Caph cho)/D, Co1=(ApHhetNe)(AptNe) +4€2,
Par=i(Ceot Cehe+Caihe)/D,  P=p3s,  (B1) C22=(AntXe),
where the denominatdD is C30= (M Aot Ne)Nehn+4€2Ny,
D=Cao+ Caih e+ Caahe+ Caoho+Caohche,  (B2) C31= (Ap+ Ao N Ap+ Aehp,

and thec coefficients are given by Ta1= (At Aot o) Nt 4e?
e e e '

Cao=(MnFAeT A {(Ap+ +Np) AT Aehp} +4€2(Ap+2)\p),

Cszzyh,
Ca1=(An+ Net Ne) AntAntAe) +(AntAp)NetNehn T N
32 e
+4¢€2, L L
o Cco=2€Ap(Ae— o),
Ca1=(An+AetAeg)2+8€2, _
Cc1™= _267\h,
Cq :)\h+rh+)\ s o _
’ ) Ce=2€(\n+ Ao o). (B3)
Caz=AntAet Ne, The coefficient®, B, andC of Eq. (3.5 may be expressed as
C]_O:()\h+ )\e‘i‘TQ))\hre‘i‘ 462)\h, A:462)\h)\C/D,
C11= (An+ et Ne) (Npthe) + Akt 4e?, B=4(Ap+Ac)(Ae—\e)/D,

C1o= (Ap+ o), C=ApAche(Ap+ Ao+ Nt Ao)/D. (B4)
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