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Non-Hamiltonian equations of motion with a conserved energy

Alessandro Serdf and Mauro Ferrarfo
‘Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Canada ON M5S 3H6
2Istituto Nazionale per la Fisica della Materia (INFM) and Universitegli Studi di Modena e Reggio Emilia, Dipartimento di Fisica,
Via Campi 213 A, 41100 Modena, Italy
(Received 12 June 2001; published 25 October 2001

In 1980 Andersen introduced the use of “extended system” as a means of exploring by molecular dynamics
simulation the phase space of a physical model according to a desired ensemble distribution different from the
standard microcanonical function. Following his original work on constant pressure-constant enthalpy a large
number of different equations of motion, not directly derivable from a Hamiltonian, have been proposed in
recent years, the most notable of which is the so-called #tusmrer formulation for “canonical” molecular
dynamics simulation. Using a generalization of the symplectic form of the Hamilton equations of motion we
show here that there is a unique general structure that underlies most, if not all the equations of motion for
“extended systems.” We establish a unifying formalism that allows one to identify and separately control the
conserved quantity, usually known as the “total energy” of the system, and the phase-space compressibility.
Moreover, we define a standard procedure to construct conservative non-Hamiltonian flows that sample the
phase space according to a chosen distribution fungfiankermaret al,, Europhys. Lett45, 149(1999]. To
illustrate the formalism we derive new equations of motion for two example cases. First we modify the
equations of motion of the Nodéoover thermostat applied to a one-dimensional harmonic oscillator, and we
show how to overcome the ergodicity problem and obtain a canonical sampling of phase space without making
recourse to additional degrees of freedom. Finally we recast an idea recently put forward by Marchi and
Ballone[J. Chem. Phys110 3697 (1999] and derive a dynamical scheme for sampling phase space with
arbitrary statistical biases, showing as an explicit application a demixing transition in a simple Lennard-Jones
binary mixture.
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[. INTRODUCTION noncanonical transformation to phase space coordiriaies
and on the timg2]; the other one is just to postulate from
A major impulse to the molecular dynamics computa-scratch equations of motion, largely on intuitive group@lls
tional approach has certainly come from the 1980 introducMoreover, different equations of motion can lead to the same
tion by Andersen of constant pressure molecular dynamicdistribution function in the phase spaf®7]. An effective
(MD) simulation using the “extended system” dynamics theoretical approach to non-Hamiltonian extended systems
[1]. The ability of controlling the choice of the ensemble by should allow both to formulate new equations of motion and
a modification of the way the MD trajectory samples dy-to control the statistical weight in phase space. This would
namically the phase space, with the additionadf hocdy-  give the flexibility needed to control the thermodynamics
namical variables opportunely coupled to the system of inconditions and might open new routes to overcome the limi-
terest, has allowed the gain of a great insight into theations inherent within dynamical sampling of the phase
behavior of condensed matter systems under various thermgpace in the presence of well separated length or time scales
dynamical condition§1—3]. Extended systems are character-in the physical problem.
ized by a non-Hamiltonian dynamicit] that, however, In this work we introduce a general mathematical struc-
maintains a well defined conserved energy, taking the plactire for non-Hamiltonian conservative equations of motion.
of the Hamiltonian, in the extended phase space. DynamiAs it will be shown, the conserved dynamical quantity, the
cally the system explores a constant energy hypersurface thééxtended energy,” is involved in the specification of the
corresponds to a microcanonical-like distribution function inphase space flow and from now on it will be referred to
the extended phase space. This becomes, when contracteddisnply as the Hamiltonian, to distinguish it from the energy
averaging on the extended variables, the desired ensembi¢ the physically meaningful system of interest, even if this
distribution in the phase space of the physical system oferm is not, mathematically, precise.
interest. It turns out from the general structure of the equations of
There is not a unique method to derive extended systemsiotion that for a given fixed expression of theonservejl
dynamics. As a matter of fact there are two principal routesHamiltonian one has still much freedom left to select the
One is to start with the equations of motion in canonicalcompressibility of the phase space and with it the corre-
form of a suitable Hamiltonian system and then to apply asponding ensemble distribution for the physical system of
interest. As it has been recently sho{@j, the compressibil-
ity is the key ingredient to build the invariant measure of
*Corresponding author. phase space in the case of nhon-Hamiltonian dynamics. In the
Email address: asergi@alchemy.chem.utoronto.ca present work we try to clarify the relation between the con-
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served Hamiltonian, the equations of motion, and the com-
pressibility. In particular, we exploit the features of the gen- B(©) =
eral formalism to devise some dynamical flows having
special statistical weights on the phase space. Furthermorea,f'
i

should be ment|one(_1 tha’g the possibility to de_nve_ 9€NeT&ions of motion for a Hamiltonian systef®]. The canonical
phase space dynamics with a conserved Hamiltonian has flatrix B is invariant under canonical transformations of

technical interest by itself. As a matter of fact the conserva- . .
tion law for the Hamiltonian is the first, if not most impor- phase spacg9]. When one applies a noncanonical transfor

. . mation of the phase space coordinates, the form of Bds
trﬁgzc(:r?r?tkeﬂr];[i:; applied to assess the accuracy of the r1%E)nserved, the matriB remains antisymmetric but loses its
9 L . . canonical forn{10]. Now the elementB can be complicated
In Sec. Il we introduce the mathematical formalism for . . )
functions of the phase space pointFlux in the phase space

non-Hamiltonian conservative equations of motion. The emains Hamiltoniafil0] if B satisfies for any given choice
theory is a simple generalization of Hamiltonian equations of Y9

motion written in symplectic forn{9-11]. In Sec. lll we of the indexi, j k the equation

1
-1 0

Ee has simply obtained a rewriting of the canonical equa-

show that some well-known extended systems phase space 2N JB JB JB
flows, such as the Nos&ndersen constant pressure-constant Bi, ik " I B, Ki_o. 3)
temperature dynamics and the constant temperaturé-Nose n=1 IXn IXn I ax,

Hoover chain, share the general structure given in Sec. Il. In
Sec. IV we present a set of original equations of motion fordf Egs. (1) and (3) hold then Eq.(2) determines what is
constant temperature simulations, that are a simple generafnown as a noncanonical Hamiltonian flow in phase space
zation of the ones for the Nog¢oover thermostat, and we [10,11. An example of noncanonical Hamiltonian dynamics
outline for the one-dimensional harmonic oscillator the conds given by the well-known Andersen constant pressure
ditions that numerically lead to an ergodic sampling of phas@quations of motio1].
space without having to recourse to the addition of extra We suggest that it is possible to generally define conser-
dynamical variables. In Sec. V we illustrate an extended sysvative non-Hamiltonian flows in phase space by using the
tem that produces a biased sampling of phase space. Tl&ucture of Eq.(2). In practice the definition of a non-
biased dynamics is dynamically achieved by meansf Hamiltonian flow can be done by independently choosing an
hoc accelerations that steer the system to special regions @ntisymmetric matrixB, with elements that are functions of
phase space. We apply the scheme to a binary Lennard-Jorni&€ phase space poirf and a conserved Hamiltonid. In
mixture and by means of a selective term we obtain a phaséis respect it is no longer necessary to derive the fBrhy
separation while keeping constant the Hamiltonian of themeans of coordinate transformations on the symplectic form
system. We show that also in this case an explicit phasB(®. It is to be noted that with an arbitra§, not derived
space distribution function can be formulated that, if desiredfrom a noncanonical transformation of phase space, the prop-
can be unbiased to collect standard averages over the canogity of Eq.(3) will not hold in general. For example, it can
cal ensemble. The last section is devoted to our commente easily verified that in the case of the Né$eover equa-
and conclusions. tions of motion Eq(3) is not satisfied. This is not surprising
at all because the Nog¢oover equations of motion, written
in real time, involve a scaling of the proper time variable
Il. NON-HAMILTONIAN DYNAMICS along the phase space trajectory. The final result is that the
In this section we introduce a general formalism to write"®2l time variable is no longer integrable and depends on the
equations of motion in phase space that conserve a chos&gI€ctory in phase space. It can be checked that the relations
time-independent Hamiltoniafv. In order to keep notation (3) hold if the NoseHoover equations are expressed in vir-
simple the point in phase space, including both generalizeHJal time, i.e., without performing the time scaling along the

coordinates and momenta, will be writtenxas (q,p). Intro-  trajectory. Thus according to Refsl0,11] the NoseHoover
ducing the antisymmetric matrix thermostat equations in virtual time describe a honcanonical

Hamiltonian flow. In the general case, when the property of
- o Eq. (3) does not hold, the phase space flow is non-
Bij=—Bji, 1LJ=12N, (D Hamiltonian.
The important fact to be noted is that, by definition, due to
which has the same dimension®l 2as the phase space, a the antisymmetry oB, Eq. (2) conserves the Hamiltonian
general form of the equations of motion is readily establishedunction{ regardless of relationé3) being satisfied or not.

as[9] This is easily verified by taking the total time derivativelof
2N 2N 2N
2N dH IH. OH _ IH
: IH Y oy = B —=
Xj= 2 B i=1,2N. (2) dt .21 ﬁxix' ;1 ;1 IX; Bij 9X; “)

. i gx.
j=1 &X]

The total time derivative o# vanishes because, in the end,
For the particular definition of the matrix of E(), in block  we take the trace of the product of the antisymmetric matrix
form Bi; with the symmetric one/H/dx;dH/dx;. Equation(4)
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establishes that in order to define a non-Hamiltonian flowpressure constant-temperature dynarfict.
with a conserved energy, one needs only the antisymmetry of In order to keep the tensorial notation to a minimum we
an otherwise completely general matBx It is interesting to  limit the chain to only two thermostat variables. This allows
note that a time-independent Hamiltoniahwill always be  us both to write fully the matri¥B with all elements explic-
conserved, even wheB is an explicitly time-dependent an- itly shown and to delay a block matrix notation to later on.
tisymmetric matrix as long as E¢4) remains valid for flows For a one-dimensional system coupled to a Ndsever
described by Eq(2). This could suggest how to generalize chain thermostat the phase space is six-dimensional and its
conservative phase space flows to the case of nonequilibriupoints are denoted by=(q, 71, 72,p,p,,,p,,). The Hamil-
systems, as it was the case for some equations of motion f@gnian is
nonequilibrium molecular dynamics proposed in Réf2],
which had a conserved quantity if time-dependent boundary
conditions were not used. In fact, it can be easily shown that
the equations of Ref13] share the general structure given p2 pfh 372
by Eq. (2). In the following, we restrict our discussion to ~ H'= om T + +@(q)+gksT(71+ 72),
2= . m 2M 2M
time-independenB and thus to the dynamics of system at N 72
equilibrium. ©)

As we already noted? and B can be chosen indepen-
dently but together they determine the equations of motioRyhere 5, and 7, are the two thermostat variables with con-
for the system. In general the equations of motion will leadjygated momenta,, and p,,; the number of degrees of

to a nonzero compressibility freedomg=1 is fixed to get the canonical distribution func-
tion, kg is the Boltzmann constant, afdis the thermostat
2N 2N temperature. The equations of motion are giver] By

2N .
. (9Xi _ &B” oH
0= 52 2w, O

which means that the phase space will not be sampled uni- -
formly by the dynamics. Under the hypothesis of ergodicity, q=
the corresponding weight in the phase space can be explicitly

determined, for example, by means of the approach to statis-

tical mechanics of non-Hamiltonian systems proposed in

Ref.[8]. The structure of Eq(2) is useful, because it allows _ Py,

us to choose the form of the conserved Hamiltorfgrthen M=y (8)
a particular phase space compressibilitgan be obtained by K

exploiting the freedom in choosing the the matrix elements

Bjj . This amounts to the possibility of designing conserva-

tive non-Hamiltonian equations of motion with a controlled

statistical weight of the phase space. We expect that this o _ T2 9)
approach will open the route to the formulation of novel 72
non-Hamiltonian dynamics with statistical constraints. How-
ever, it must be recognized that an arbitrary non-Hamiltonian
flow could modify the dynamical properties of the system
[13]. Thus, care is required in the calculation of correlation _ b Py
functions as their physical meaning must be assessed in each p=——-—
case. To address general features of non-Hamiltonian dy-
namics we will restrict the following discussion to static
equilibrium properties. Within these bounds one could de-
sign equations of motion to force the system to explore re-
gions in phase space that would be otherwise visited very : p? Py,

infrequently or not at all. In the present work, Sec. V, we Py =1y ~ KT =Py 1D
will show a simple example of a demixing transition in a 72

binary fluid.

p
o (7)

(10

2

Ill. EXTENDED SYSTEM DYNAMICS b,]z: M —gkgT. (12

It is remarkable that the structure of E(R) underlies "
most, if not all the equations of motion of extended systems
used up to now in molecular dynamics simulations. In this By exploiting Eq.(2) and computing explicithgH'/dx, it
section we give two explicit examples: the equations foris possible to find the matriByyc that allows us to rewrite

NoseHoover chain[5] thermostat and those for constant Egs.(7)—(12) in tensorial form
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. D P p
q o 0 0 1 0 __ 9 Py v L
pl 0')ql pl 3VM pl M ( 8)
71 0 0 0 O 0
: 0 0 0 0 1 : PP Py
7 pn=2 —+ M——ngT (19
p -1 0 0 0 —-p 0
P, 0 -1 0 p 0 —Py 5 p? @q_ M o Py 20
5 0 0 -100Pp, O st.lm. aq | v VM,
72
Again from the computation of the gradient of the conserved
@ Hamiltonian in Eq.(14) we can easily find the matriBypt
Jq that recasts Eq9.15)—(20) in the form of Eq.(2). Using
block matrix notation
gkgT
gkeT , o 0 0 1 0 ;—\'/
P Qi
X m |- (13 v 0 0 0 O 1 0
Py, ; 0 0 0O O 0 1
M . = Pi
. m pi -1 0 0 0 —Pi — W
72 Py 0 -1 0 p 0 Py
M, .
Py Qi Pi -p 0
v SV \%
Equation(13) shows how the Noskloover chain equations 3V 3V
of motion satisfy the structure of non-Hamiltonian conserva- 9
tive phase space flow given in E@). e
For the other case of constant pressure and temperature q
dynamics we choose the oh#&4] out of many possible sets M
of equations of motion, which is more familiar to us having N
recently derived for it a time reversible integration algorithm X T (21)
[16], following the lines of the RESPA approag¢h5]. In 9Ks
this case the phase-space point is denoted >y pi /m
=(q,V,7,p,Py,p,) and the Hamiltonian is Py /My
N 2 P2 pﬂ/M 7
Z p— +@({qiN,V)+ Py S+ PeyV, - - -
“~ om ({ar™ 2M,, 2M,, o Equations(13) and(21) show in two particular casgbut

(14)  thecheck can easily be done along the lines shown for all the
other casesthat the generalized structure given in E2). is
hidden in extended system equations of motion already

where the thermostat variables ayeandp,,, V is the vol- . . S
known and commonly used in practical applications.

ume of the MD box andP,, the barostat momentum with
Pyt the external pressurél is the number of partlclgs in the IV. MODIFIED NOSE THERMOSTAT

system and the number of degrees of freedom is saj as

=3(N—1)+1 to take into account also the other conserved In this section we introduce yet another set of non-
quantity, which is related to the total momentum of the par-Hamiltonian equations of motion for constant temperature

ticles: dynamics. By using Eq2) we modify the original equations
of the NoseHoover (NH) thermostat[2,3] in order to
P Py achieve the canonical sampling of the phase space, also in
di iI3VM (15  those cases where they have been showed to fail. In fact it is

now well known that for stiff harmonic systems the sampling
obtained by means of the Noestover thermostafi2,3] ap-
pears not to be ergodi&]. A solution to this problem has

n= M, 18 peen given and it is the so called Nedeover chaifNHC)
thermostaf{5] we have introduced in the the preceding sec-
p tion. We believe this is a good case to show the capabilities
V=" 1 of the present approach with a relatively simple system. Let
: (17) _ : .
My us remind also that a more complex continuous dynamical
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method to generate the canonical ensemble has been recentlyTwo new nonzero elementB,;=—B;, contribute to

proposed 17].

driving the dynamics of the Noseariable 7. By inspection

The smart idea behind the Nes®over chain method is of Eq (27) it is recognized that the fluctuations @f, is
to obtain a canonical sampling of phase space by augmentirigfluenced, through the coupling parameterby the term
the dimensionality of the extended system using additionalyp/mo®/aq. If Eq. (24) were canonical the driving term
chained thermostat variables. This has the effect of enhaneould be considered as the powdb/dt dissipated by the
ing the fluctuations of the Noseariable that realizes the particle along its trajectory, and we will refer to them as the
thermostat of the physical degrees of freedom. We exploiNoseHoover power(NHP) thermostat. Above a threshold
the structure of Eq(2) to show how a similar effect on the value 7=0.5, in scaled units, the system becomes chaotic
fluctuations of the Noseariable can be obtained following a and Eqs(24)—(27) sample ergodically the phase spaqgep)
different route, without augmenting the dimensionality of of the oscillator. Also the NHC equatidi3) reduces to the
phase space. By inspection of E43) one realizes that at standard Nosé¢loover ones for large values of the coupling
disposal there are many null elements in the antisymmetrimertiaan_ WhenM,yz becomes large, the driving term in

matrix B that can be modified without changing the com- the equation fo'pnl becomes negligible and the sampling is

pressibility of the phase space and thus the statistical distri-

bution.

Following Ref.[5] we consider the one-dimensional har-
monic oscillator choosing, as a conserved energy,

tonian of the NosdHoover thermostat

2
e B

2m ' 2Mm,

+®(q)+kgT7.

the HamiP 7

(22

no longer canonical. Anyway, a glance at E84) reveals
that the NHP thermostat couples the thermostat momentum
directly to the physical velocities of the particles. This
modifies significantly the dynamical properties of the system
and as a result NHP thermostat can be used only to study
static equilibrium properties in the canonical ensemble.

Both NHC and NHP equations of motion require some
care in the numerical integration compared to the Nose
Hoover equations. If the same accuracy as the NH case is

The coordinate and the momentum of the particle to be thergesired, a higher order algorithm should be used. Our expe-

mostatted are and p, respectivelym is the particle mass,

rience is that Eq(13) appears to be slightly simpler to inte-

and®(q)=3kg? is, in this case, the quadratic harmonic po- grate than Eqs(24)—(27), using a reversible reference sys-
tential energy;y is the Nosevariable with its momenturp,

and inertial factoM ,,. The phase space point ig,,p,p,,)-

With this definition it is very easy to write a matri&leading
to equations of motion that generalize the Néssover ones.

Let

0
-1

—7p/m

1
0
0

p

Tp/m
1
-p
0

(23

where we introduced th@ime) dimensional parameter. In

particular, whenr is set to zero the standard Neleover

tem propagator algorithfRESPA [15,18 in so far as it is
enough to apply a multiple time stépITS) approach with a
smaller time step to the propagators involving velocifig]
while we found more satisfactory in the NHP case to apply a
global higher order scheme treating on the same level §oth
andp that are coupled to the fast varialglg . In particular in
the tests we report below we desired a very high accuracy
(energy is conserved within 1 part over’”1@nd we obtained
that using the lowesAt* Yoshida approactil9] (of order
three, which is after all very simple to apply and, when
applied globally, gives results that are, to our experience, far
superior than an MTS approach with comparable computer
time cost.

Following our previous work16] we have used a simpli-

equations of motion are recovered. The compressibility ified decomposition of the propagator deriving from Egs.
still given by k= —p,, /M ,. Thus one can straightforwardly (24—(27):

build the invariant measure of phase spg&leand check that
the canonical phase-space distribution function is obtained. L,=

With 7#0 we obtain the new equations

9= m

1+T&

M,

’

p
P==5g P,
p? p o
e ]

(24

(25

(26)

(27)

P PPy 7
m+TmM,,) 7q" (28
L= - 22)2 29
27— % %1 ( )
. P, d
L =<—P—)—, (30)
3 M,/ dp
[ = P22
L4_( 77)(?7], (31)
Ls= p 7P p° ke Tort] — 32
5=\ ""mag T m  KeTex P, (32

We use Yoshida’s prescription with,=3 and weights
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0.015 T T L ™ T T ! 0.008 T T L ™ Y T
0.006
0.01
P
P 0.004
0.005
0.002
0 0
0 1 2 3 4 5 6
r r
FIG. 1. Normalized probability distributioR in the g-p plane FIG. 2. Same as Fig. 1 for the harmonic oscillator with the NHC

for the harmonic oscillator with the NH thermostat. The integratedthermostat.
value along the radial coordinates reported. Full thick line, the-

oretical prediction; circles, histogram average over all 30° sectors; p2 q2
dashed lines, individual histogram over each of the 12 30° sectors. e 3H—exp{ |\ + > / (kBT)}
In the inset the trajectory in the-p plane is a shown as a collection
of points.q, p, andr are in scaled units. _e,rz,(ZKBT), (35)
1 .
W= o Wo=1-2wi,  Wa=w;. (33) wherer?=g?+p? The theoretical value over each sector
4—4 does not depend on the angle and is given, in general, by the
integral
The following higher order propagator is obtained:
0.008 T T L =T i T
. my St wy St wy
G(ot)=]] ex ——L5 expg — — L4 exp = — Lj
Wy o ot wy o
Xexp = — St— L, |ex > L, 0.006
Ny Ny Ny
W ot w ot wy .
y y y P
X == —= — — Ls|.
ex;{ Lg)ex > n, L4)ex4 5 LS)
(34) 0.004 |

The use of the higher order propagat8d) allows a very

stable numerical integration in conjunction with a canonical
sampling of theg-p space of the oscillator. In Figs. 1-3 we g.002
show on theg-p plane the sampling of phase space obtained
with a trajectory ofM =50 millions steps withAt=0.0025

for three different cases: a standard Nésmover thermostat

(Fig. 1), NHC thermostatFig. 2), NHP thermostatFig. 3).

The kind of phase-space sampling is shown by computing  ©
the histogram of the probability distribution as a function of
bothq andp by dividing theqg-p plane in 12 sectors with an
angular width of 30° using polar coordinates. In fact for FIG. 3. Same as Fig. 1 for the harmonic oscillator with the NHP
=k=1 thermostat.
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@y r 22k of the geometrical space. At variance with Rg#0] in our

f d¢f drre 8 case the Hamiltonian of Eq37) is an exact constant of
“ 1 motion even if the perturbation is nonadiabatic. In practical
ri/(szT)_efrgl(ZkBT))_ (36) terms, depending on the nature of the biasing potential the
numerical integration of the equations of motion could be-

The full thick line on the graphs shows the theoretical valuecome a delicate issue. _ _

compared to the histogram values averaged over all sectors, The statistical weight of the biased dynamics can once
represented by the points. To give an idea of the behavior ifiore be established by employing the formalism of Re¥.

each sector the resullts for all 12 sectors are individually plotlt can be shown that the constant surface in phase space upon
ted as dashed lines. There is a striking evidence of no differhich the system moves is determined by the Hamiltonian of
ence between the NHC and the NHP thermostat, within botfd- (37). Each point of this surface is visited with a statistical
cases a very small fluctuation of the individual curves aroundveight depending from the compressibility of phase space.
the average. The NH thermostat samples the phase space in 10 define the proper extended system we calculate the
an irregular way, strongly dependent upon the initial condi-Phase-space gradient of the Hamiltonian

tions. There are clearly different results in the various sectors

=(ay—ay)(e”

as it is also made evident in the inset where the trajectory on ﬁz @,ngT,&,& ’ (38)

the g-p plane is shown. The trajectories in the NHC and IXi | dr; m'M,

NHP cases, also shown as insets in Figs. 2 and 3, on the defi he biasing f

contrary sample isotropically the two-dimensional phaséVe define the biasing force

P o 1 Mgy 39
i ngT a_rii 1=1, 1 ( )

V. BIASED MOLECULAR DYNAMICS

Recently a method has been proposed to move into Spg\_/heretbb(r) is an arbitrary .function of the particle coc_)rdi-
cial regions of the phase space by means of molecular d)patesr that does not explicitly depend on time, and finally
namics techniques. In particular the authors of k2] have W€ choose the matriB® and write the equations of motion in
used a dynamical scheme where the Hamiltonian is augP!ock matrix form
mented with a time-dependent potenda] . The potential is

chosen in order to obtain a bias on the sampling of the sys- @

tem configurations so that infrequent regions of phase space r 0 0 1 0 i

can be explored. If the biasing potential can be made a small _ b gksT
perturbation slowly evolving in time it is possible to move 7| 0 0 -K 1

on a constant-energy surface. In other words the sum of the D, -1 P 0 -—p Pi |- (40
kinetic energy and of the interaction potential between par- o m

ticles is approximately a constant of motion. A drawback of P, 0 -1 p 0 p

the method presented in R¢R0] is that the statistical dis- M—”
tribution in phase space cannot be determined. L7

_In the present work we formulate a scheme for statistical,, the more usual form, with the explicit expression of the
biased molecular dynamics within the framework of non-piasing force, the equations of motion are

Hamiltonian extended systems with conservative non-
Hamiltonian equations of motion. By exploiting again the B o]
matrix B in Eq. (2) a bias that is not explicitly dependent on = (41)
time can be introduced. To this end we define an extended

system that for zero bias reduces to the standard -Nose . p 1 pi 0D,

Hoover equations of motion. For checking the statistical =74 ——, (42
properties of the scheme it is useful to derive the bias from a n i
potential-like ®,({r}") function of the particle coordinates

in the system. As it will be shown here below, this feature p=———pL— 7=b (43)
allows to determine easily the statistical weight associated ar; M, ar’

with the dynamical trajectory in phase space. The conserved

Hamiltonian is the same as in the Nedeover case - Pi
p,=> ——0kgT. (44)

N 2 2
Pi P
H:Z Eﬂ; (rij)+ M_n+ngT77:HT+ngT77 Equations(41)—(44) conserve the Hamiltonian of E¢37).
(37) The biasing potentiadb,(r) appears in the equation of mo-
tion for particle momenta, as proposed in R&0].
and it is not modified by the presence of the bias in the The statistical weight can be expressed in terms of the
equations of motionN is the number of particles in the sys- function H; by using the formalism of Ref.8]. It can be
tems and accordinglg=dN, whered is the dimensionality easily shown that the distribution function is given by
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p=58(H—E)exd — B(Ht+dp)]. (45) (a) )

This can be proved by computing the compressibility from | A
Egs. (41)—(44) 0% O Qg0 e

oe 0Lo2 000
00 _ 09 00,01 |O0- 0
T 20ge @00 00| [C O S0P 000
JBjj oH Py Yol @2 082 o 0ol Y| 00200 00% o
o 0 ese 0% [0 tudts
L . MK/ 1T o0 [ 3
[A more careful derivation should take into account the con- .O.OO.O ...O o .008... ® .. 0 ®
servation law associated with the total impulse that will give *[29.0@® O | Q 1 [e®"e @ 9 |
-6 -4 -2 ] 2 4 8 -6 -4 -2 ) 2 4 6
g=d(n—1).] Then
X X
dHt p; oDy P, FIG. 4. Initial (a) and final(b) configurations for the LJ mixture
ot % moar -9 BTM_- (47)  in XY (coordinates in scaled unjtsThe two species are distin-
I

guished using filled and empty circles. The size of the circles has no

. - physical meaning.
We thus obtain for the compressibility

dH;  dd, By(r)=+ — . 50
K(t)—ﬂwﬁ‘ﬂw. (48) b( ) (r)” ( )
The potential of Eq(50) is set to zero when the particles
belong to the same component;is a numerical parameter
that has been put equal to 2 while different valuey dfave

f k(t")dt' =H+ Dy, . (49  been tried. The results we show have been obtained yith
=3 (the smaller the value of the faster is the phase sepa-
ration). The demixing is showed by the final configuration in

This result allows one to easily find the distribution function Fig. 4(b). The numerical integration of the equations of mo-
given in Eq.(45). tion has been done with a time step of 0.00@% scaled
The distribution function of Eq(45) ensures that the sta- units) using once more a Simp]e decomposition of the Liou-
tistical mechanics of the bias is under control. The bias aPyille Operator a|0ng the lines given [[16] At variance with
pears just as an extra weight in the distribution function. Byyyhat was found in the case of the NHP thermostat in Sec. IV
integrating only the equations of motion forand p and it is not necessary to use a higher order integration scheme.
neglecting the extra variablesandp,, the conserved Hamil-  |n Fig. 5 we show the behavior of the Hamiltonian when the

tonian would have beeH’=H+®,,. The Hamiltonian dy- |aw of evolution in time is given by Eqg41)—(44), com-
namics would have given the distributiéiH’ —H’(0)) that

cannot be easily unbiased. Instead the complete set of Eqs. 0.7 T . T . 1.35
(41)—(44) gives the distribution of Eq(45) that can be un- I |
biased to give a canonical ensemble average. For example, a
standard canonical average of an arbitrary observable
o({rN,{p}") can be obtained from the integration by con-
sidering the average of e}gd,(r)]0(r,p).

As a numerical example we have applied E@s)—(44)
to a simple two-dimensional Lennard-Jones binary mixture
composed oN =216 particles. With regard to the interaction H
potential the two components of the mixture are exactly the
same. The particles are just tagged in the program in order to
belong to one component or to the other one. The system is
simulated in a square box using scaled units so that the mass
of all the particles is 1, and the same holds for the parameters
specifying the Lennard-Jones potential. The initial condition
has been set up in order to realize a homogenous mixture of
the two components. The configuration is equilibrated with a 0 - S0 950 Bl
constant temperature dynamics. In Figa)dwe show the
configuration obtained at the end of the equilibration. t

Then we have used Eq&t1)—(44) to force a demixing FIG. 5. Dynamical behavior of the Hamiltonia, potential
transition. The potentiaby, has been chosen to be repulsive energyd, and biasing potentiab, . The scale on the right refers to

between particles belonging to different components accortthe Hamiltonian while the one on the left @ and®,,. H, ®, and
ing to a simple inverse power law ®,, are in scaled units.

The compressibility can be integrated in time

D

0.6 I

(Db
1.25

}W'wwvlmwmmwwﬂWWmWWM /iy

056125-8



NON-HAMILTONIAN EQUATIONS OF MOTION WITH A ... PHYSICAL REVIEW E64 056125

pared with the behavior of the potential energy in the systemithm based on the Trotter factorization of the propagator.
and with the biasing potenti@hote that a differeny scale is  Nevertheless it can be expected that a much more complex

used for the conserved enejgy matrix B would require the use of higher order algorithms to
get accurate numerical conservation of the Hamiltonian. The
VI. CONCLUSION recognition of the matrix structure of the equations of motion

is of great help when it is necessary to devise new equations
In this work a general structure for non-Hamiltonian con-of motion having a specified statistical weight in phase
servative equations of motion suitable for application inspace. To this end we have introduced a general scheme to
equilibrium molecular dynamics simulations has been preobtain a biased sampling of phase space by means of a prop-
sented. Extended system equations of motion have beasrly extended system. We have consistently used the statis-
shown to be a particular case of this more general structurdéical mechanics of non-Hamiltonian system to check the
The formalism has been applied with success to make theeight in phase space of the dynamics proposed. We believe
Nosedynamics chaotic in phase space. The equations of mahat the ease gained in devising general conservative non-
tion derived with the aid of the antisymmetric matixare  Hamiltonian flow gives interesting perspectives. We plan
well suited to be integrated with standard reversible algofurther studies on more realistic applications.
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