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Non-Hamiltonian equations of motion with a conserved energy
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In 1980 Andersen introduced the use of ‘‘extended system’’ as a means of exploring by molecular dynamics
simulation the phase space of a physical model according to a desired ensemble distribution different from the
standard microcanonical function. Following his original work on constant pressure-constant enthalpy a large
number of different equations of motion, not directly derivable from a Hamiltonian, have been proposed in
recent years, the most notable of which is the so-called Nose´-Hoover formulation for ‘‘canonical’’ molecular
dynamics simulation. Using a generalization of the symplectic form of the Hamilton equations of motion we
show here that there is a unique general structure that underlies most, if not all the equations of motion for
‘‘extended systems.’’ We establish a unifying formalism that allows one to identify and separately control the
conserved quantity, usually known as the ‘‘total energy’’ of the system, and the phase-space compressibility.
Moreover, we define a standard procedure to construct conservative non-Hamiltonian flows that sample the
phase space according to a chosen distribution function@Tuckermanet al., Europhys. Lett.45, 149~1999!#. To
illustrate the formalism we derive new equations of motion for two example cases. First we modify the
equations of motion of the Nose´-Hoover thermostat applied to a one-dimensional harmonic oscillator, and we
show how to overcome the ergodicity problem and obtain a canonical sampling of phase space without making
recourse to additional degrees of freedom. Finally we recast an idea recently put forward by Marchi and
Ballone @J. Chem. Phys.110, 3697 ~1999!# and derive a dynamical scheme for sampling phase space with
arbitrary statistical biases, showing as an explicit application a demixing transition in a simple Lennard-Jones
binary mixture.
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I. INTRODUCTION

A major impulse to the molecular dynamics compu
tional approach has certainly come from the 1980 introd
tion by Andersen of constant pressure molecular dynam
~MD! simulation using the ‘‘extended system’’ dynami
@1#. The ability of controlling the choice of the ensemble
a modification of the way the MD trajectory samples d
namically the phase space, with the addition ofad hocdy-
namical variables opportunely coupled to the system of
terest, has allowed the gain of a great insight into
behavior of condensed matter systems under various the
dynamical conditions@1–3#. Extended systems are characte
ized by a non-Hamiltonian dynamics@4# that, however,
maintains a well defined conserved energy, taking the p
of the Hamiltonian, in the extended phase space. Dyna
cally the system explores a constant energy hypersurface
corresponds to a microcanonical-like distribution function
the extended phase space. This becomes, when contract
averaging on the extended variables, the desired ense
distribution in the phase space of the physical system
interest.

There is not a unique method to derive extended syst
dynamics. As a matter of fact there are two principal rout
One is to start with the equations of motion in canoni
form of a suitable Hamiltonian system and then to appl
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noncanonical transformation to phase space coordinates@1#
and on the time@2#; the other one is just to postulate from
scratch equations of motion, largely on intuitive grounds@3#.
Moreover, different equations of motion can lead to the sa
distribution function in the phase space@6,7#. An effective
theoretical approach to non-Hamiltonian extended syste
should allow both to formulate new equations of motion a
to control the statistical weight in phase space. This wo
give the flexibility needed to control the thermodynami
conditions and might open new routes to overcome the li
tations inherent within dynamical sampling of the pha
space in the presence of well separated length or time sc
in the physical problem.

In this work we introduce a general mathematical stru
ture for non-Hamiltonian conservative equations of motio
As it will be shown, the conserved dynamical quantity, t
‘‘extended energy,’’ is involved in the specification of th
phase space flow and from now on it will be referred
simply as the Hamiltonian, to distinguish it from the ener
of the physically meaningful system of interest, even if th
term is not, mathematically, precise.

It turns out from the general structure of the equations
motion that for a given fixed expression of the~conserved!
Hamiltonian one has still much freedom left to select t
compressibility of the phase space and with it the cor
sponding ensemble distribution for the physical system
interest. As it has been recently shown@8#, the compressibil-
ity is the key ingredient to build the invariant measure
phase space in the case of non-Hamiltonian dynamics. In
present work we try to clarify the relation between the co
©2001 The American Physical Society25-1
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ALESSANDRO SERGI AND MAURO FERRARIO PHYSICAL REVIEW E64 056125
served Hamiltonian, the equations of motion, and the co
pressibility. In particular, we exploit the features of the ge
eral formalism to devise some dynamical flows havi
special statistical weights on the phase space. Furthermo
should be mentioned that the possibility to derive gene
phase space dynamics with a conserved Hamiltonian h
technical interest by itself. As a matter of fact the conser
tion law for the Hamiltonian is the first, if not most impo
tant, check that is applied to assess the accuracy of the
merical integration.

In Sec. II we introduce the mathematical formalism f
non-Hamiltonian conservative equations of motion. T
theory is a simple generalization of Hamiltonian equations
motion written in symplectic form@9–11#. In Sec. III we
show that some well-known extended systems phase s
flows, such as the Nose´-Andersen constant pressure-const
temperature dynamics and the constant temperature N´-
Hoover chain, share the general structure given in Sec. I
Sec. IV we present a set of original equations of motion
constant temperature simulations, that are a simple gene
zation of the ones for the Nose´-Hoover thermostat, and w
outline for the one-dimensional harmonic oscillator the co
ditions that numerically lead to an ergodic sampling of ph
space without having to recourse to the addition of ex
dynamical variables. In Sec. V we illustrate an extended s
tem that produces a biased sampling of phase space.
biased dynamics is dynamically achieved by means ofad
hoc accelerations that steer the system to special region
phase space. We apply the scheme to a binary Lennard-J
mixture and by means of a selective term we obtain a ph
separation while keeping constant the Hamiltonian of
system. We show that also in this case an explicit ph
space distribution function can be formulated that, if desir
can be unbiased to collect standard averages over the ca
cal ensemble. The last section is devoted to our comm
and conclusions.

II. NON-HAMILTONIAN DYNAMICS

In this section we introduce a general formalism to wr
equations of motion in phase space that conserve a ch
time-independent HamiltonianH. In order to keep notation
simple the point in phase space, including both generali
coordinates and momenta, will be written asx5(q,p). Intro-
ducing the antisymmetric matrix

Bi j
T 52Bji , i , j 51,2N, ~1!

which has the same dimensions 2N as the phase space,
general form of the equations of motion is readily establish
as @9#

ẋi5(
j 51

2N

Bi j

]H
]xj

, i 51,2N. ~2!

For the particular definition of the matrix of Eq.~2!, in block
form
05612
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B(c)5S 0 1

21 0D
one has simply obtained a rewriting of the canonical eq
tions of motion for a Hamiltonian system@9#. The canonical
matrix B(c) is invariant under canonical transformations
phase space@9#. When one applies a noncanonical transfo
mation of the phase space coordinates, the form of Eq.~2! is
conserved, the matrixB remains antisymmetric but loses i
canonical form@10#. Now the elementsB can be complicated
functions of the phase space pointx. Flux in the phase spac
remains Hamiltonian@10# if B satisfies for any given choice
of the indexi , j ,k the equation

(
n51

2N

Bin

]Bjk

]xn
1Bkn

]Bi j

]xn
1Bjn

]Bki

]xn
50. ~3!

If Eqs. ~1! and ~3! hold then Eq.~2! determines what is
known as a noncanonical Hamiltonian flow in phase sp
@10,11#. An example of noncanonical Hamiltonian dynami
is given by the well-known Andersen constant press
equations of motion@1#.

We suggest that it is possible to generally define cons
vative non-Hamiltonian flows in phase space by using
structure of Eq.~2!. In practice the definition of a non
Hamiltonian flow can be done by independently choosing
antisymmetric matrixB, with elements that are functions o
the phase space pointx, and a conserved HamiltonianH. In
this respect it is no longer necessary to derive the formB by
means of coordinate transformations on the symplectic fo
B(c). It is to be noted that with an arbitraryB, not derived
from a noncanonical transformation of phase space, the p
erty of Eq.~3! will not hold in general. For example, it ca
be easily verified that in the case of the Nose´-Hoover equa-
tions of motion Eq.~3! is not satisfied. This is not surprisin
at all because the Nose´-Hoover equations of motion, written
in real time, involve a scaling of the proper time variab
along the phase space trajectory. The final result is that
real time variable is no longer integrable and depends on
trajectory in phase space. It can be checked that the relat
~3! hold if the Nose´-Hoover equations are expressed in v
tual time, i.e., without performing the time scaling along t
trajectory. Thus according to Refs.@10,11# the Nose´-Hoover
thermostat equations in virtual time describe a noncanon
Hamiltonian flow. In the general case, when the property
Eq. ~3! does not hold, the phase space flow is no
Hamiltonian.

The important fact to be noted is that, by definition, due
the antisymmetry ofB, Eq. ~2! conserves the Hamiltonian
function H regardless of relations~3! being satisfied or not.
This is easily verified by taking the total time derivative ofH

dH
dt

5(
i 51

2N
]H
]xi

ẋi5(
i 51

2N

(
j 51

2N
]H
]xi

Bi j

]H
]xj

50. ~4!

The total time derivative ofH vanishes because, in the en
we take the trace of the product of the antisymmetric ma
Bi j with the symmetric one]H/]xi]H/]xj . Equation ~4!
5-2
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NON-HAMILTONIAN EQUATIONS OF MOTION WITH A . . . PHYSICAL REVIEW E64 056125
establishes that in order to define a non-Hamiltonian fl
with a conserved energy, one needs only the antisymmetr
an otherwise completely general matrixB. It is interesting to
note that a time-independent HamiltonianH will always be
conserved, even whenB is an explicitly time-dependent an
tisymmetric matrix as long as Eq.~4! remains valid for flows
described by Eq.~2!. This could suggest how to generaliz
conservative phase space flows to the case of nonequilib
systems, as it was the case for some equations of motion
nonequilibrium molecular dynamics proposed in Ref.@12#,
which had a conserved quantity if time-dependent bound
conditions were not used. In fact, it can be easily shown
the equations of Ref.@13# share the general structure give
by Eq. ~2!. In the following, we restrict our discussion t
time-independentB and thus to the dynamics of system
equilibrium.

As we already notedH and B can be chosen indepen
dently but together they determine the equations of mo
for the system. In general the equations of motion will le
to a nonzero compressibility

k~x!5(
i 51

2N
] ẋi

]xi
5(

i 51

2N

(
j 51

2N
]Bi j

]xi

]H
]xj

, ~5!

which means that the phase space will not be sampled
formly by the dynamics. Under the hypothesis of ergodic
the corresponding weight in the phase space can be expli
determined, for example, by means of the approach to st
tical mechanics of non-Hamiltonian systems proposed
Ref. @8#. The structure of Eq.~2! is useful, because it allow
us to choose the form of the conserved HamiltonianH; then
a particular phase space compressibilityk can be obtained by
exploiting the freedom in choosing the the matrix eleme
Bi j . This amounts to the possibility of designing conserv
tive non-Hamiltonian equations of motion with a controlle
statistical weight of the phase space. We expect that
approach will open the route to the formulation of nov
non-Hamiltonian dynamics with statistical constraints. Ho
ever, it must be recognized that an arbitrary non-Hamilton
flow could modify the dynamical properties of the syste
@13#. Thus, care is required in the calculation of correlati
functions as their physical meaning must be assessed in
case. To address general features of non-Hamiltonian
namics we will restrict the following discussion to stat
equilibrium properties. Within these bounds one could
sign equations of motion to force the system to explore
gions in phase space that would be otherwise visited v
infrequently or not at all. In the present work, Sec. V, w
will show a simple example of a demixing transition in
binary fluid.

III. EXTENDED SYSTEM DYNAMICS

It is remarkable that the structure of Eq.~2! underlies
most, if not all the equations of motion of extended syste
used up to now in molecular dynamics simulations. In t
section we give two explicit examples: the equations
Nosé-Hoover chain@5# thermostat and those for consta
05612
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pressure constant-temperature dynamics@14#.
In order to keep the tensorial notation to a minimum w

limit the chain to only two thermostat variables. This allow
us both to write fully the matrixB with all elements explic-
itly shown and to delay a block matrix notation to later o
For a one-dimensional system coupled to a Nose´-Hoover
chain thermostat the phase space is six-dimensional an
points are denoted byx5(q,h1 ,h2 ,p,ph1

,ph2
). The Hamil-

tonian is

H85
p2

2m
1

ph1

2

2Mh1

1
ph2

2

2Mh2

1F~q!1gkBT~h11h2!,

~6!

whereh1 andh2 are the two thermostat variables with co
jugated momentaph1

and ph2
; the number of degrees o

freedomg51 is fixed to get the canonical distribution func
tion, kB is the Boltzmann constant, andT is the thermostat
temperature. The equations of motion are given by@5#

q̇5
p

m
, ~7!

ḣ15
ph1

Mh1

, ~8!

ḣ25
ph2

Mh2

, ~9!

ṗ52
]F

]q
2

ph1

Mh1

p, ~10!

ṗh1
5

p2

m
2gkBT2ph1

ph2

Mh2

, ~11!

ṗh2
5

ph1

2

Mh1

2gkBT. ~12!

By exploiting Eq.~2! and computing explicitly]H8/]x, it
is possible to find the matrixBNHC that allows us to rewrite
Eqs.~7!–~12! in tensorial form
5-3
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ALESSANDRO SERGI AND MAURO FERRARIO PHYSICAL REVIEW E64 056125
S q̇

ḣ1

ḣ2

ṗ

ṗh1

ṗh2

D 5S 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

21 0 0 0 2p 0

0 21 0 p 0 2ph1

0 0 21 0 ph1 0

D
31

]F

]q

gkBT

gkBT

p

m

ph1

Mh1

ph2

Mh2

2 . ~13!

Equation~13! shows how the Nose´-Hoover chain equations
of motion satisfy the structure of non-Hamiltonian conser
tive phase space flow given in Eq.~2!.

For the other case of constant pressure and tempera
dynamics we choose the one@14# out of many possible set
of equations of motion, which is more familiar to us havin
recently derived for it a time reversible integration algorith
@16#, following the lines of the RESPA approach@15#. In
this case the phase-space point is denoted byx
5(q,V,h,p,PV ,ph) and the Hamiltonian is

H5(
i 51

N pi
2

2mi
1F~$q%N,V!1

ph
2

2Mh
1gkBTh1

PV
2

2MV
1PextV,

~14!

where the thermostat variables areh and ph , V is the vol-
ume of the MD box andPV the barostat momentum wit
Pext the external pressure;N is the number of particles in th
system and the number of degrees of freedom is set ag
53(N21)11 to take into account also the other conserv
quantity, which is related to the total momentum of the p
ticles:

q̇i5
pi

m
1qi

PV

3VMV
, ~15!

ḣ5
ph

Mh
, ~16!

V̇5
PV

MV
, ~17!
05612
-

re

d
-

ṗi52
]F

]qi
2pi

PV

3VMV
2pi

ph

Mh
, ~18!

ṗh5(
i 51

N pi
2

m
1

PV
2

MV
2gkBT, ~19!

ṖV5
1

3V F(
i 51

N pi
2

mi
2

]F

]qi
qi G2

]M

]V
2PV

ph

Mh
. ~20!

Again from the computation of the gradient of the conserv
Hamiltonian in Eq.~14! we can easily find the matrixBNPT
that recasts Eqs.~15!–~20! in the form of Eq. ~2!. Using
block matrix notation

S q̇i

V̇

ḣ

ṗi

ṖV

ṗh

D 51
0 0 0 1 0

qi

3V

0 0 0 0 1 0

0 0 0 0 0 1

21 0 0 0 2pi 2
pi

3V

0 21 0 pi 0 PV

2
qi

3V
0 21

pi

3V
2PV 0

2
31

]F

]qi

]M

]V

gkBT

pi /m

PV /MV

ph /Mh

2 . ~21!

Equations~13! and~21! show in two particular cases~but
the check can easily be done along the lines shown for all
other cases! that the generalized structure given in Eq.~2! is
hidden in extended system equations of motion alre
known and commonly used in practical applications.

IV. MODIFIED NOSÉ THERMOSTAT

In this section we introduce yet another set of no
Hamiltonian equations of motion for constant temperat
dynamics. By using Eq.~2! we modify the original equations
of the Nose´-Hoover ~NH! thermostat @2,3# in order to
achieve the canonical sampling of the phase space, als
those cases where they have been showed to fail. In fact
now well known that for stiff harmonic systems the sampli
obtained by means of the Nose´-Hoover thermostat@2,3# ap-
pears not to be ergodic@5#. A solution to this problem has
been given and it is the so called Nose´-Hoover chain~NHC!
thermostat@5# we have introduced in the the preceding se
tion. We believe this is a good case to show the capabili
of the present approach with a relatively simple system.
us remind also that a more complex continuous dynam
5-4
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NON-HAMILTONIAN EQUATIONS OF MOTION WITH A . . . PHYSICAL REVIEW E64 056125
method to generate the canonical ensemble has been rec
proposed@17#.

The smart idea behind the Nose´-Hoover chain method is
to obtain a canonical sampling of phase space by augmen
the dimensionality of the extended system using additio
chained thermostat variables. This has the effect of enh
ing the fluctuations of the Nose´ variable that realizes the
thermostat of the physical degrees of freedom. We exp
the structure of Eq.~2! to show how a similar effect on th
fluctuations of the Nose´ variable can be obtained following
different route, without augmenting the dimensionality
phase space. By inspection of Eq.~13! one realizes that a
disposal there are many null elements in the antisymme
matrix B that can be modified without changing the com
pressibility of the phase space and thus the statistical di
bution.

Following Ref.@5# we consider the one-dimensional ha
monic oscillator choosing, as a conserved energy, the Ha
tonian of the Nose´-Hoover thermostat

H5
p2

2m
1

ph
2

2Mh
1F~q!1kBTh. ~22!

The coordinate and the momentum of the particle to be th
mostatted areq and p, respectively,m is the particle mass
andF(q)5 1

2 kq2 is, in this case, the quadratic harmonic p
tential energy;h is the Nose´ variable with its momentumph
and inertial factorMh . The phase space point is (q,h,p,ph).
With this definition it is very easy to write a matrixB leading
to equations of motion that generalize the Nose´-Hoover ones.
Let

B5S 0 0 1 tp/m

0 0 0 1

21 0 0 2p

2tp/m 21 p 0

D , ~23!

where we introduced the~time! dimensional parametert. In
particular, whent is set to zero the standard Nose´-Hoover
equations of motion are recovered. The compressibility
still given byk52ph /Mh . Thus one can straightforwardl
build the invariant measure of phase space@8# and check that
the canonical phase-space distribution function is obtain
With tÞ0 we obtain the new equations

q̇5
p

m S 11t
ph

Mh
D , ~24!

ḣ5
ph

Mh
, ~25!

ṗ52
]F

]q
2p

ph

Mh
, ~26!

ṗh5
p2

m
2kBT2t

p

m

]F

]q
. ~27!
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Two new nonzero elementsB4152B14 contribute to
driving the dynamics of the Nose´ variableh. By inspection
of Eq ~27! it is recognized that the fluctuations ofph is
influenced, through the coupling parametert, by the term
tp/m]F/]q. If Eq. ~24! were canonical the driving term
could be considered as the powerdF/dt dissipated by the
particle along its trajectory, and we will refer to them as t
Nosé-Hoover power~NHP! thermostat. Above a threshol
value t50.5, in scaled units, the system becomes cha
and Eqs.~24!–~27! sample ergodically the phase space (q,p)
of the oscillator. Also the NHC equation~13! reduces to the
standard Nose´-Hoover ones for large values of the couplin
inertia Mh2

. WhenMh2
becomes large, the driving term i

the equation forph1
becomes negligible and the sampling

no longer canonical. Anyway, a glance at Eq.~24! reveals
that the NHP thermostat couples the thermostat momen
ph directly to the physical velocities of the particles. Th
modifies significantly the dynamical properties of the syst
and as a result NHP thermostat can be used only to s
static equilibrium properties in the canonical ensemble.

Both NHC and NHP equations of motion require som
care in the numerical integration compared to the No´-
Hoover equations. If the same accuracy as the NH cas
desired, a higher order algorithm should be used. Our ex
rience is that Eq.~13! appears to be slightly simpler to inte
grate than Eqs.~24!–~27!, using a reversible reference sy
tem propagator algorithm~RESPA! @15,18# in so far as it is
enough to apply a multiple time step~MTS! approach with a
smaller time step to the propagators involving velocities@18#
while we found more satisfactory in the NHP case to appl
global higher order scheme treating on the same level boq
andp that are coupled to the fast variableph . In particular in
the tests we report below we desired a very high accur
~energy is conserved within 1 part over 109! and we obtained
that using the lowestDt4 Yoshida approach@19# ~of order
three!, which is after all very simple to apply and, whe
applied globally, gives results that are, to our experience,
superior than an MTS approach with comparable compu
time cost.

Following our previous work@16# we have used a simpli
fied decomposition of the propagator deriving from Eq
~24!–~27!:

L̂15S p

m
1t

p

m

ph

Mh
D ]

]q
, ~28!

L̂25S 2
]F

]q D ]

]p
, ~29!

L̂35S 2p
ph

Mh
D ]

]p
, ~30!

L̂45S ph

Mh
D ]

]h
, ~31!

L̂55S 2t
p

m

]F

]q
1

p2

m
2kBTextD ]

]ph
. ~32!

We use Yoshida’s prescription withny53 and weights
5-5
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w15
1

4241/3
, w25122w1 , w35w1 . ~33!

The following higher order propagator is obtained:

Ĝ~dt !5 )
y51

ny

expS dt

2

wy

ny
L̂5DexpS dt

2

wy

ny
L̂4DexpS dt

2

wy

ny
L̂3D

3expS dt

2

wy

ny
L̂2DexpS dt

wy

ny
L̂1DexpS dt

2

wy

ny
L̂2D

3expS dt

2

wy

ny
L̂3DexpS dt

2

wy

ny
L̂4DexpS dt

2

wy

ny
L̂5D .

~34!

The use of the higher order propagator~34! allows a very
stable numerical integration in conjunction with a canoni
sampling of theq-p space of the oscillator. In Figs. 1–3 w
show on theq-p plane the sampling of phase space obtain
with a trajectory ofM550 millions steps withDt50.0025
for three different cases: a standard Nose´-Hoover thermostat
~Fig. 1!, NHC thermostat~Fig. 2!, NHP thermostat~Fig. 3!.

The kind of phase-space sampling is shown by compu
the histogram of the probability distribution as a function
bothq andp by dividing theq-p plane in 12 sectors with an
angular width of 30° using polar coordinates. In fact form
5k51

FIG. 1. Normalized probability distributionP in the q-p plane
for the harmonic oscillator with the NH thermostat. The integra
value along the radial coordinater is reported. Full thick line, the-
oretical prediction; circles, histogram average over all 30° sect
dashed lines, individual histogram over each of the 12 30° sec
In the inset the trajectory in theq-p plane is a shown as a collectio
of points.q, p, andr are in scaled units.
05612
l

d

g
f

e2bH5expF2S p2

2
1

q2

2 D Y ~kBT!G
5e2r 2/(2kBT), ~35!

where r 25q21p2. The theoretical value over each sect
does not depend on the angle and is given, in general, by
integral

d

s;
rs.

FIG. 2. Same as Fig. 1 for the harmonic oscillator with the NH
thermostat.

FIG. 3. Same as Fig. 1 for the harmonic oscillator with the NH
thermostat.
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E
a1

a2
dfE

r 1

r 2
drre2r 2/(2kBT)

5~a22a1!~e2r 1
2/(2kBT)2e2r 2

2/(2kBT)!. ~36!

The full thick line on the graphs shows the theoretical va
compared to the histogram values averaged over all sec
represented by the points. To give an idea of the behavio
each sector the results for all 12 sectors are individually p
ted as dashed lines. There is a striking evidence of no dif
ence between the NHC and the NHP thermostat, within b
cases a very small fluctuation of the individual curves arou
the average. The NH thermostat samples the phase spa
an irregular way, strongly dependent upon the initial con
tions. There are clearly different results in the various sec
as it is also made evident in the inset where the trajectory
the q-p plane is shown. The trajectories in the NHC a
NHP cases, also shown as insets in Figs. 2 and 3, on
contrary sample isotropically the two-dimensional pha
space.

V. BIASED MOLECULAR DYNAMICS

Recently a method has been proposed to move into
cial regions of the phase space by means of molecular
namics techniques. In particular the authors of Ref.@20# have
used a dynamical scheme where the Hamiltonian is a
mented with a time-dependent potentialFb . The potential is
chosen in order to obtain a bias on the sampling of the s
tem configurations so that infrequent regions of phase sp
can be explored. If the biasing potential can be made a s
perturbation slowly evolving in time it is possible to mov
on a constant-energy surface. In other words the sum of
kinetic energy and of the interaction potential between p
ticles is approximately a constant of motion. A drawback
the method presented in Ref.@20# is that the statistical dis
tribution in phase space cannot be determined.

In the present work we formulate a scheme for statist
biased molecular dynamics within the framework of no
Hamiltonian extended systems with conservative n
Hamiltonian equations of motion. By exploiting again th
matrix B in Eq. ~2! a bias that is not explicitly dependent o
time can be introduced. To this end we define an exten
system that for zero bias reduces to the standard N´-
Hoover equations of motion. For checking the statisti
properties of the scheme it is useful to derive the bias fro
potential-likeFb($r%N) function of the particle coordinate
in the system. As it will be shown here below, this featu
allows to determine easily the statistical weight associa
with the dynamical trajectory in phase space. The conser
Hamiltonian is the same as in the Nose´-Hoover case

H5(
i

N pi
2

m
1(

i , j
F~r i j !1

ph
2

Mh
1gkBTh5HT1gkBTh

~37!

and it is not modified by the presence of the bias in
equations of motion.N is the number of particles in the sys
tems and accordinglyg5dN, whered is the dimensionality
05612
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rs,
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of the geometrical space. At variance with Ref.@20# in our
case the Hamiltonian of Eq.~37! is an exact constant o
motion even if the perturbation is nonadiabatic. In practi
terms, depending on the nature of the biasing potential
numerical integration of the equations of motion could b
come a delicate issue.

The statistical weight of the biased dynamics can on
more be established by employing the formalism of Ref.@8#.
It can be shown that the constant surface in phase space
which the system moves is determined by the Hamiltonian
Eq. ~37!. Each point of this surface is visited with a statistic
weight depending from the compressibility of phase spac

To define the proper extended system we calculate
phase-space gradient of the Hamiltonian

]H

]xi
5F]F

]r i
,gkBT,

pi

m
,

ph

Mh
G , ~38!

we define the biasing force

Fi
b52

1

gkBT

]Fb

]r i
, i 51,3N, ~39!

whereFb(r ) is an arbitrary function of the particle coord
natesr that does not explicitly depend on time, and fina
we choose the matrixB and write the equations of motion i
block matrix form

F ṙ i

ḣ

ṗi

ṗh

G5F 0 0 1 0

0 0 2Fi
b 1

21 Fi
b 0 2pi

0 21 pi 0

G 3
]F

]r i

gkBT

pi

m

ph

Mh

4 . ~40!

In the more usual form, with the explicit expression of t
biasing force, the equations of motion are

ṙ i5
pi

m
, ~41!

ḣ5
ph

Mh
1

1

gkBT (
i

pi

m

]Fb

]r i
, ~42!

ṗi52
]F

]r i
2p

ph

Mh
2

]Fb

]r i
, ~43!

ṗh5(
i

pi
2

m
2gkBT. ~44!

Equations~41!–~44! conserve the Hamiltonian of Eq.~37!.
The biasing potentialFb(r ) appears in the equation of mo
tion for particle momenta, as proposed in Ref.@20#.

The statistical weight can be expressed in terms of
function HT by using the formalism of Ref.@8#. It can be
easily shown that the distribution function is given by
5-7
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r5d~H2E!exp@2b~HT1Fb!#. ~45!

This can be proved by computing the compressibility fro
Eqs.~41!–~44!

k~ t !5(
i j

]Bi j

]xi

]H

]xj
52dN

ph

Mh
. ~46!

@A more careful derivation should take into account the c
servation law associated with the total impulse that will g
g5d(n21).# Then

dHT

dt
52(

i

pi

m

]Fb

]r i
2gkBT

ph

Mh
. ~47!

We thus obtain for the compressibility

k~ t !5b
dHT

dt
1b

dFb

dt
. ~48!

The compressibility can be integrated in time

E k~ t8!dt85HT1Fb . ~49!

This result allows one to easily find the distribution functi
given in Eq.~45!.

The distribution function of Eq.~45! ensures that the sta
tistical mechanics of the bias is under control. The bias
pears just as an extra weight in the distribution function.
integrating only the equations of motion forr and p and
neglecting the extra variablesh andph the conserved Hamil-
tonian would have beenH85H1Fb . The Hamiltonian dy-
namics would have given the distributiond„H82H8(0)… that
cannot be easily unbiased. Instead the complete set of
~41!–~44! gives the distribution of Eq.~45! that can be un-
biased to give a canonical ensemble average. For examp
standard canonical average of an arbitrary observa
O($r%N,$p%N) can be obtained from the integration by co
sidering the average of exp@bFb(r )#O(r ,p).

As a numerical example we have applied Eqs.~41!–~44!
to a simple two-dimensional Lennard-Jones binary mixt
composed ofN5216 particles. With regard to the interactio
potential the two components of the mixture are exactly
same. The particles are just tagged in the program in orde
belong to one component or to the other one. The syste
simulated in a square box using scaled units so that the m
of all the particles is 1, and the same holds for the parame
specifying the Lennard-Jones potential. The initial condit
has been set up in order to realize a homogenous mixtur
the two components. The configuration is equilibrated wit
constant temperature dynamics. In Fig. 4~a! we show the
configuration obtained at the end of the equilibration.

Then we have used Eqs.~41!–~44! to force a demixing
transition. The potentialFb has been chosen to be repulsi
between particles belonging to different components acc
ing to a simple inverse power law
05612
-
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y

qs.
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e

e
to
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rs

n
of
a

d-

Fb~r !51
a

~r !g
. ~50!

The potential of Eq.~50! is set to zero when the particle
belong to the same component;a is a numerical paramete
that has been put equal to 2 while different values ofg have
been tried. The results we show have been obtained witg
53 ~the smaller the value ofg the faster is the phase sep
ration!. The demixing is showed by the final configuration
Fig. 4~b!. The numerical integration of the equations of m
tion has been done with a time step of 0.0025~in scaled
units! using once more a simple decomposition of the Lio
ville operator along the lines given in@16#. At variance with
what was found in the case of the NHP thermostat in Sec
it is not necessary to use a higher order integration sche
In Fig. 5 we show the behavior of the Hamiltonian when t
law of evolution in time is given by Eqs.~41!–~44!, com-

FIG. 4. Initial ~a! and final~b! configurations for the LJ mixture
in XY ~coordinates in scaled units!. The two species are distin
guished using filled and empty circles. The size of the circles ha
physical meaning.

FIG. 5. Dynamical behavior of the HamiltonianH, potential
energyF, and biasing potentialFb . The scale on the right refers t
the Hamiltonian while the one on the left toF andFb . H, F, and
Fb are in scaled units.
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pared with the behavior of the potential energy in the sys
and with the biasing potential~note that a differenty scale is
used for the conserved energy!.

VI. CONCLUSION

In this work a general structure for non-Hamiltonian co
servative equations of motion suitable for application
equilibrium molecular dynamics simulations has been p
sented. Extended system equations of motion have b
shown to be a particular case of this more general struct
The formalism has been applied with success to make
Nosédynamics chaotic in phase space. The equations of
tion derived with the aid of the antisymmetric matrixB are
well suited to be integrated with standard reversible al
ys

et

.L

05612
m
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rithm based on the Trotter factorization of the propagat
Nevertheless it can be expected that a much more com
matrix B would require the use of higher order algorithms
get accurate numerical conservation of the Hamiltonian. T
recognition of the matrix structure of the equations of moti
is of great help when it is necessary to devise new equat
of motion having a specified statistical weight in pha
space. To this end we have introduced a general schem
obtain a biased sampling of phase space by means of a p
erly extended system. We have consistently used the st
tical mechanics of non-Hamiltonian system to check
weight in phase space of the dynamics proposed. We bel
that the ease gained in devising general conservative n
Hamiltonian flow gives interesting perspectives. We pl
further studies on more realistic applications.
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