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Atomic motion in magneto-optical double-well potentials: A testing ground for quantum chaos
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~Received 6 February 2001; revised manuscript received 25 June 2001; published 24 October 2001!

We have identified ultracold atoms in magneto-optical double-well potentials as a very clean setting in
which to study the quantum and classical dynamics of a nonlinear system with multiple degrees of freedom. In
this system, entanglement at the quantum level and chaos at the classical level arise from nonseparable
couplings between the atomic spin and its center of mass motion. The main features of the chaotic dynamics
are analyzed using action-angle variables and Poincare´ surfaces of section. We show that for the initial state
prepared in current experiments@D. J. Haycocket al., Phys. Rev. Lett.85, 3365~2000!#, classical and quantum
expectation values diverge after a finite time, and the observed experimental dynamics is consistent with
quantum-mechanical predictions. Furthermore, the motion corresponds to tunneling through a dynamical po-
tential barrier. The coupling between the spin and the motional subsystems, which are very different in nature
from one another, leads to interesting questions regarding the transition from regular quantum dynamics to
chaotic classical motion.

DOI: 10.1103/PhysRevE.64.056119 PACS number~s!: 05.60.Gg, 05.45.Mt, 32.80.Qk, 32.80.Pj
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I. INTRODUCTION

Systems with multiple degrees of freedom whose c
stituent parts are coupled are of fundamental interest for
purpose of exploring the correspondence limit. In such ca
the quantum system can explore an enormous collectio
generally entangled states with no classical description.
are just beginning to characterize these entangled state
the fundamental level and realize their capabilities for inf
mation processing@1#. This disparity between the state
available in the quantum and classical description is cen
to the mysteries of the correspondence limit. It is respons
for the distinct predictions of quantum coherent evoluti
and those of classical chaotic dynamics that arise in s
nonlinearly coupled systems@2#.

The study of quantum systems whose Hamiltonians g
erate classical chaos has a long history. Most studies fo
on static properties~‘‘quantum chaology’’@3#! such as sta-
tistics of the energy spectrum or ‘‘scars’’ in the ener
eigenstates@4#. As chaos is an intrinsically dynamical phe
nomenon, we are most interested here in understanding
time-dependentfeatures arising in these systems. A varie
of such studies have been carried out. Most notable is
phenomenon of ‘‘dynamical localization’’@5#, which appears
in periodically perturbed systems such as the ‘‘kicked roto
@4#. Differences between the quantum and classical pre
tions for the dynamics occur due to localization of the qu
tum Floquet states. Dynamical localization was seen in
experiments of Mooreet al. @6,7# who realized these dynam
ics using optical lattices—ultracold atoms in a standing wa
of light. The ability to observe this phenomenon in the lab
ratory is evidence that the atom/optical realization provide
very clean arena in which to study coherent quantum dyn
ics versus nonlinear classically chaotic motion.

We have identified another nonlinear paradigm associa
with trapped neutral atoms—dynamics in a magneto-opt
double potential@8#. In recent experiments by Haycocket al.
@9#, mesoscopic quantum coherence associated with
atomic dynamics has been observed. This system has s
1063-651X/2001/64~5!/056119~8!/$20.00 64 0561
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important features. Unlike the kicked rotor where the nonl
earity arises because of a time-dependent externalclassical
perturbation, in this system, the nonlinear dynamics ari
intrinsically from two coupledquantumdegrees of freedom
Here, classical chaos results from the coupling between
atomic magnetic moment and its motion in the lattice. At t
quantum level this leads to ‘‘entangled spinor wave pa
ets.’’

The nonlinear coupling of different degrees of freedom
often amenable to a Born-Oppenheimer approximat
whereby ‘‘fast’’ degrees of freedoms are slaved to t
‘‘slow.’’ Such an analysis leads to the identification of adi
batic potential surfaces. If the system strictly adheres to th
surfaces, one obtains regular dynamics. The comple
arises when these approximations break down, which ge
ally may occur near the anticrossings of the adiabatic po
tials @10#. This leads to a variety of interesting phenome
including chaos@11–13#, irreversible dissipation@14#, and
anomalous diffusion@15#. The latter was explored in a
coupled spin-lattice system not too dissimilar from t
magneto-optical potential discussed here. These anal
highlight the importance of the corrections to adiabaticity
complex dynamics. Our goal here, however, is to avoid
adiabatic approximation altogether, and instead compare
predictions of theexactclassical dynamics to theexactquan-
tum predictions. This approach is particularly useful wh
the system is not well described by Born-Openheimer, a
typically the case in optical lattices@16#.

This article, thus, investigates the nonclassical nature
our dynamical system. Motional and spin degrees of freed
are of a very different nature as seen in the topology of th
respective phase spaces~plane vs sphere! and reflected in
their respective Hilbert spaces~infinite vs finite dimen-
sional!. This may lead to a disparity in the relative size of\
in the two subsystems, raising interesting questions reg
ing the quantum to classical transition. In addition, for th
system of entangled internal and external degrees of f
dom, it is nontrivial to distinguish classically allowed from
classically forbidden motion, i.e., ‘‘tunneling.’’ The standa
©2001 The American Physical Society19-1
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definition in one dimension, i.e., motion through a poten
barrier, is not sufficient for systems with multiple degrees
freedom since the energy does not uniquely specify the c
sical trajectory. In this case, a phenomenon known as ‘‘
namical tunneling’’ may occur through classically forbidd
regions of phase space, which are not, however, separate
a potential barrier@17#.

We have analyzed the underlying classical chaotic
namics of our system and investigated distinct prediction
the classical versus quantum dynamics for an initial state
has been prepared in current experiments@9#. In Sec. II, the
physical system is briefly reviewed. Section III establish
the general predictions of the classical chaotic dynam
based on a physical picture of the primary nonlinear re
nances and numerical studies via Poincare´ surface of section
plots. In Sec. IV A, we employ the theory of quasiprobabil
distributions in the coupled phase space of spin and exte
motion to compare and contrast classical and quantum st
tics, and thereby show that the dynamics observed in
experiment are nonclassical in nature. The classical ev
tion diverges from the quantum dynamics much faster t
on the expected logarithmic time scale@2# and leads to a
violation of the positive semidefiniteness of the density m
trix @18#. Furthermore, we show that the experimentally o
served nonclassical motion corresponds to tunneling thro
a complex region of phase space where the kinetic energ
negative~Sec. IV B!. We conclude in Sec. V with a brie
discussion of further research in this area.

II. THE MAGNETO-OPTICAL DOUBLE-WELL
POTENTIAL

The physics of the magneto-optical double well has b
described in previous publications@8,19#, and we summarize
the salient points here. A one-dimensional optical lattice
formed by counterpropagating plane waves whose linear
larization vectors are offset at a relative angleQL . The re-
sulting field may be decomposed intos1 and s2 standing
waves whose nodes are separated byQL /k, wherek is the
laser wave number. Atoms whose angular momenta
aligned~antialigned! along the lattice axis are trapped by th
s1 (s2) field. A uniform magnetic-field transverse to th
axis would cause Larmor precession of the atom’s magn
moment, but due to the optical trap, the moment is correla
with motion of the atom between thes6 wells. This corre-
lation between spin precession and motion in the wells le
to entangled spinor wave packets.

For the case of an atom whose electronic angular mom
tum is J51/2, the combined effects of the far-off resonan
optical potential and an applied external transverse magn
field may be conveniently expressed in terms of a neteffec-
tive scalar plus magnetic interaction@8#,

Û5UJ~z!1̂2m̂•Beff~z!. ~1!

Here,UJ(z)52U0 cosQL cos(2kz) is a scalar potential inde
pendent of the atomic moment, whereU0 is a constant de-
pending on the atomic polarizability and field intensity. T
effective magnetic field,Beff(z)5Bxex1Bfict(z)ez , is the sum
05611
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of the transverse field plus a fictitious field associated w
the lattice,mBBfict52U0 sinQL sin(2kz)ez , wheremB is the
Bohr magneton. For the real alkali atoms used in exp
ments, the total atomic angular momentum is prepared
hyperfine ground state with quantum numberF. Under the
circumstance that the optical trap is detuned sufficiently
from resonance so that the excited hyperfine splitting is
resolved, the form of effective potential Eq.~1! is un-
changed, with the atomic magnetic moment now equa
m̂5\g F̂52mBF̂/F, whereg is the gyromagnetic ratio and
F̂ is the total angular momentum vector in units of\. We
consider here133Cs, withF54, the atom used in the Jesse
group experiments@9#. The eigenvalues of the potential as
function of position result in nine adiabatic potentials, t
lowest of which exhibits a lattice of double wells.

III. CHAOTIC CLASSICAL DYNAMICS

The Hamiltonian for the magneto-optical double well@Eq.
~1!# describes the motion of a magnetic moment in a s
tially inhomogeneous effective magnetic field. Generic s
tems of this sort have been studied in both classical
quantum circumstances, leading for example, to geome
forces @20#. An important aspect of this system is that th
Heisenberg equations of motion that couple the magn
moment to the center-of-mass dynamics are nonlinear.
corresponding classical motion is generallychaotic, as seen
in the positive Lyapunov exponent calculated in@19#, char-
acterizing the exponential sensitivity to initial conditions.
the spin-1/2 case and for harmonic wells, we recover
Jaynes-Cummings problem@21#, but without the rotating
wave approximation~RWA!. The classical chaotic equation
of motion have been studied in quantum optics in the con
of two-level atoms interacting with a single-mode electr
magnetic field@22#, and also in condensed-matter theory
the context of the small polaron problem@23#. Our system is
a generalization to higher spin with no possible approxim
tion of a single harmonic mode.

A closely related Hamiltonian was studied in the sem
classical regime by Kusnezov and coworkers@15#. Expressed
in our context, their system corresponds to a spin-1/2 part
with QL590°. Nonintegrable dynamics at the periodica
distributed anticrossings that leads to anomalous diffus
over multiple anticrossings was analyzed in@15#. For our
system, withQLÞ90°, one finds that adjacent anticrossin
have different energies resulting in a double-well struct
@Fig. 1~a!#. We focus on the dynamics localized to asingle-
lattice site~i.e., a single double well! with one anticrossing
bounded by high potential walls of the double well and ne
ligible tunneling or diffusion to neighboring sites.

We present here a more detailed analysis of the cha
dynamics that can occur in our system. For convenience
define m52mBn, so that n[ez cosu1sinu(ex cosf
1ey sinf) is the unit direction of the atom’s angular mome
tum, and the classical analog ofF̂/F. The classical equation
of motion are
9-2
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dz

dt
5

p

m
,

dp

dz
52

d

dz
„UJ~z!1mBn•Beff~z!…,

dn

dt
5g@n3Beff~z!#. ~2!

The dynamics takes place on a four-dimensional phase s
(z,p,u,f), which topologically is locally the tensor produc
of the phase plane~for the center-of-mass motion!, and unit
sphere~direction of the magnetic moment with fixed magn
tude!. This is equivalent to a system with two effective d
grees of freedom. Nonintegrability of these equations f
lows since there is only one constant of the motion,
energy. The RWA would add an additional constant of
motion to the system, making the problem integrable. W
out the RWA, the Hamiltonian may be made integrable u

FIG. 1. ~a! Adiabatic potentials corresponding to the integrab
Hamiltonian of Eq.~5! for different values ofa. The lowest poten-
tial corresponds toa50. The mean energy of the state prepared
experiments@9# is just greater than the lowest adiabatic poten
barrier energy~horizontal line!. The Poincare´ surface of section in
~b!, for p50 and dp/dt.0 using the parameters of@9#, with
E52186.8ER (ER /h52 kHz), shows the effects of the non
adiabatic perturbation term, which makes the full Hamiltonian@Eq.
~1!# nonintegrable.
05611
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der two simple physical circumstances: the case in wh
there is no transverse magnetic field@23#, and the case of a
sufficiently large transverse field so that the motion is ad
batic @24#. We consider each case separately below.

In the absence of a transverse field (Bx50), nz becomes
an additional constant of motion, which results in an in
grable Hamiltonian,

H05
p2

2m
1C cos~2kz1D !, ~3!

C5U0A4 cos2QL1nz
2 sin2 QL, D5arctan~nz tanQL/2!.

~3a!

This is the Hamiltonian for a simple pendulum whose amp
tude and phase depend on the constantz projection of the
atomic moment, as was pointed out in@15#. We present here
another approach to understanding the chaos in this sys
using action-angle variables. The action-angle variables
scribing the motion of a pendulum (J,c) are well known to
be functions of the complete elliptic integrals@25#. For ener-
gies close to the bottom of the sinusoidal potential, we m
expand the elliptic integrals in a power series, keeping o
the first few terms, and may therefore expressH0 as a func-
tion of J andmz /g, which we choose to be the other actio
The frequencies of precession of the corresponding an
variablesc and x may then be computed from Hamilton’
equations to be

v15ċ5
]H0

]J
5

p

2

v0

K~k!
, v25ẋ5g

]H0

]mz
5

]C

]nz

gH0

mBC
,

~4!

wherev05A4k2uCu/m is the oscillation frequency for a har
monic approximation to the sinusoidal potential, 2k251
1H0 /uCu, andK(k) is the complete elliptic integral of the
first kind. The frequencyv1 represents oscillation of the cen
ter of mass in the sinusoidal potential. A physical picture
the anglex may be understood as follows. The magne
moment precesses around thez direction but at a nonconstan
rate since the effective fieldBz is changing in time. By mov-
ing to a frame that oscillates with the atom, the time dep
dence in the field is removed, resulting in aconstantpreces-
sion frequencyv2 about thez axis. The precession angle i
this frame isx. The addition of a transverse magnetic field
a small perturbation to the integrable Hamiltonian coup
the oscillations of the two angles, giving rise to nonline
resonances. The primary resonances occur when the rat
the unperturbed frequencies is a rational number, and ma
calculated for our system using Eqs.~4!.

In the current experiments@9#, a large transverse magnet
field is applied, which cannot be treated as a perturbation
outlined above. We therefore turn to the regime where
motion is adiabatic, and treat the nonadiabatic coupling a
perturbation. This perturbation leads to a break down of
Born-Oppenheimer approximation for our system@16#. How-
ever, sufficiently far from the hyperbolic fixed points, th
system is near integrable, allowing us to determine the re

l
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SHOHINI GHOSE, PAUL M. ALSING, AND IVAN H. DEUTSCH PHYSICAL REVIEW E64 056119
nance conditions. The integrable adiabatic Hamiltonian
obtained by setting the anglea betweenm and Beff to be a
constant, so that

H05p2/2m1UJ~z!1mBuBeff~z!ucosa. ~5!

Whena50, we obtain the lowest adiabatic double-well p
tential @Fig. 1~a!#. Other fixed values ofa correspond to
other adiabatic surfaces. The component ofm along the di-
rection of the magnetic field is now a constant of motion a
serves as our action variable. The other action of the sys
is obtained in the standard way by integrating the momen
over a closed orbit in the double well for a given energy a
choice of the parametera. The precession frequenciesv1
andv2 , of the conjugate angle variables correspond, resp
tively, to the oscillation of the center of mass in the adiaba
double-well potential and precession of the magnetic m
ment about the local magnetic-field direction in a frame
cillating with the atom as described previously. Unlike t
previous case however, we cannot obtain analytical exp
sions for the frequencies and must resort to computing th
numerically.

For the experimental parameters given in@9#, Fig. 1~b!
shows a Poincare´ surface of section in thep50 plane and
with dp/dt.0, i.e., at turning points of the trajectories goin
from left to right. This represents a ‘‘mixed’’ phase spac
with stable islands of periodic motion and stochastic layer
the separatrices. The primary resonance atnz50.38 andf
50 corresponds to a ratio of the unperturbed adiabatic
quencies ofv2 /v154. The nonadiabatic perturbative co
pling is strong enough at these parameters to cause the
viously stable primary resonance atnz50.8 to bifurcate, and
secondary resonances to appear around the pointsnz50.38
andnz520.85. The secondary resonances result from c
pling between the motion around the primary islands to
unperturbed periodic motion. As the energy is increased,
primary resonances eventually disappear and global ch
sets in.

IV. NONCLASSICAL DYNAMICS

A. Nonclassical evolution of the quasiprobability distribution

Given the classical description of the dynamics discus
in Sec. III, we seek to determine whether the magnetiza
oscillations observed in@9# are truly quantum in nature. W
accomplish this by calculating the dynamical evolution
the mean magnetization in a purely classical descript
There are numerous approaches to a mixed quant
classical description that have been employed, primarily
physical chemists seeking efficient numerical algorithms
describing molecular dynamics. A good summary and co
parison of the various methods is discussed by Burant
Tully @26#. Here, we compute thefully classical evolution by
first representing the initial state prepared in the experim
as a distribution of classical initial conditions for trajectorie
In order to do so, we employ the theory of quasiprobabi
distributions on phase space for both the external and in
nal degrees of freedom~analogous to the slow and fast c
05611
is

d
m
m
d

c-
c
-
-

s-
m

,
at

-

re-

-
e
e
os

d
n

f
n.

-
y
r
-
d

nt
.

r-

ordinates in a Born-Oppenheimer treatment!, something not
typically employed in molecular dynamics@27,28#.

The state prepared att50 was an atomic wave packe
localized on one side of the double-well potential, with
mean energy slightly above the lowest Born-Oppenheim
potential barrier@Fig. 1~a!#. The relevant representations a
in terms of familiar coherent states for the motionua5z

1 ip&5D̂(a)u0&, which are translations of the harmonic
oscillator ground-stateu0&, and spin coherent-statesun&5uj
5ue2 if&5exp@(jĴ12j* Ĵ2)/2#u2J& for the magnetic mo-
ment, which are rotations of the spin-down state. These
resent a classical directionn of the moment on the Bloch
sphere@29#. General theories of quasiprobability distribu
tions on the Bloch sphere have been developed analogou
those in phase space@30#.

Given the initial quantum stater̂(0), we calculate the
Husimi or ‘‘Q’’ quasiprobability distributionQ(a,n,t50)
5^au^nur̂(0)un&ua&. We have employed theQ function as it
is everywhere positive and may be interpreted as a quasic
sical probability distribution. In addition, we will be inter
ested in first-order moments of observables, where issue
operator ordering that typically makeQ behave badly do no
come into play. Phase-space distributions on the exte
phase space for each internal component of a two-state
tem have been analyzed before in a semiclassical model@11–
13,27,28#. We compute a joint Husimi distribution over bot
external as well as the spin phase space in order to study
dynamics on the full phase space. This four-dimensional
tribution function is then evolvedclassically. This was ac-
complished by first sampling the initialQ distribution via a
Monte Carlo Metropolis algorithm@31#, and then propagat
ing each point in the sample according to the classical eq
tions of motion, Eq.~3!. The result gives a probability dis
tribution at a later time, which we denoteQclass(a,n;t). With
this function, we may compute the evolution of the me
magnetization, i.e., thez component of the mean angula
momentum, as given in@30#,

^F̂z&class~ t !52A~2F11!~F11!~2F12!!

32p2

3
*Qclass~a,n;t !cos~u!d2adV

*Qclass~a,n;t !d2adV
. ~6!

This result may then be compared with the quantu
mechanical prediction. The quantum and classical evoluti
were computed numerically using the exact Hamiltonian t
already implicitly contains all nonadiabatic coupling and e
fective gauge potential terms@32#. The distinction between
the quantum and classical dynamics are clearly shown in
2. Unlike the predictions of quantum mechanics, in the cl
sical model, the mean magnetization never becomes n
tive. Due to the correlation between the atomic moment a
its motion in the well, an oscillation of the mean magnetiz
tion between positive and negative values corresponds to
motion of the atom from one minimum of the double well
the other. Classical dynamics thus predicts that the mea
the distribution remains localized on one side of the dou
well. In contrast, the experimental data shows an oscillat
9-4
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ATOMIC MOTION IN MAGNETO-OPTICAL DOUBLE- . . . PHYSICAL REVIEW E 64 056119
between positive and negative values at a frequency
predicted by the quantum model. The only discrepancy w
the ideal quantum model is that the amplitude of the exp
mentally observed oscillations decay due to inhomogene
broadening in the sample@9#.

A closer look at the reduced classical distribution in t
phase space of position and momentum, obtained by tra
over the magnetic moment direction, shows that a part of
distribution does oscillate between wells, but the peak
mains localized in one well~Fig. 3!. This seems to indicate
that oscillation between the wells, while not classically fo
bidden, is instead improbable for this distribution of initi
conditions. This may been seen from the fact that the cla

FIG. 2. Predictions of mean magnetization dynamics. Id
quantum theory: two-level Rabi flopping~dashed dotted!; Ideal
classical theory: localized at positivêFz& ~solid!; Experimental:
~circles! with a damped sinusoid fit. The upper bound on the bre
time between quantum and classical dynamics ist\

.589ms ~see
text!.

FIG. 3. ReducedQ distribution in positionQ(z), at different
times in the quantum versus classical evolution. The quantum
tribution oscillates between wells, while the classical distribut
remains mostly on the left side, with a portion equilibrating b
tween the wells.
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cal description of the state involves adistribution of energy
consistent with the distribution of positions, momenta, a
spin directions in theQ function. High-energy portions o
this distribution are not classically forbidden from hoppin
between the left and right wells. Nonetheless, the experim
tally observed oscillations of the mean atomic magnetizat
are much better described by the prediction of the quan
dynamics than by the corresponding classical dynamics,
dicating a nonclassicalmotion of the atom between th
double wells. This is not surprising given the fact that for t
dynamical system and initial conditions at hand here,
actions of the system are on the order of\.

A break between the dynamical predictions of classi
and quantum theory is expected for nonlinear systems.
originally considered by Berry@2#, a Hamiltonian chaotic
system should exhibit observable nonclassical dynamics
time scalelogarithmic in \. This follows simply by noting
that in the chaotic system, the probability distributio
stretches exponentially fast~set by the local Lyapunov expo
nent L!, and develops coherence over large distances.
Liouville’s theorem, the momentum distribution in the co
jugate direction to the stretching is also squeezed at an
ponential rate, thereby making quantum corrections to
Poisson bracket generated classical dynamics important.
time at which the chaos-induced stretching of the pha
space distribution causes the dynamics to depart from c
sical behavior is bounded from above byth

.5L21 ln(I/\)
where I is a characteristic action. In the limit\→0, or
equivalentlyI /\→`, classical mechanics is preserved for
times. Using a calculated Lyapunov exponent characteri
of phase space for the experimental parameters in@9#, L
51.63104 s21 @33#, and the smallest characteristic action
the system~here the spin!, we find the time at which there is
a break between classical and quantum dynamics is boun
by tbreak,t\

.589ms. As seen in Fig. 2,t\
. is clearly an

upper bound for the break between classical and quan
dynamics, with the true break time occurring much earlier
more detailed analysis, identifying the scale over which
effective potential is nonlinear, is necessary to establish
time @34#.

In order to quantify the nonclassical nature of these
namics, we turn to a method recently presented by Ha
et al. in @18#. Given an initial stater̂(0), we maycompute
the Wigner function through the standard Weyl transform
tion @35#. If we evolve this quasiprobability function for a
time t according to the Poisson rather that Moyal bracket a
then perform the inverse Weyl transformation, we obtain
‘‘pseudodensity operator’’r̂class(t). An inverse Weyl trans-
formation on the classical propagator will not generally yie
a unitary operator, and may generate nonphysical nega
eigenvalues forr̂class(t). This violation of the positive
semidefiniteness of the pseudodensity matrix~rho-positivity!
implies that the classical evolution leads to a distribution t
is not a valid quantum state and has thus diverged from
quantum evolution. We have inverted the classically evolv
Q function to find the corresponding density matrix and n
merically calculated its eigenvalues. This was done by fi
deconvolving theQ function with Gaussian coherent stat
to find the Wigner function@36#, and then inverting the
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SHOHINI GHOSE, PAUL M. ALSING, AND IVAN H. DEUTSCH PHYSICAL REVIEW E64 056119
Wigner function to obtain the corresponding density matr
Figure 4 shows the classical eigenvalues att512.32ms. The
negative eigenvalues verify that the classical evolution d
violate rho positivity. The magnitude of the rho-positivi
violation is a measure of the importance of the quant
corrections to the classical evolution, and has implicatio
for whether or not the classical limit may be recovered
decoherence@18#.

B. Tunneling

A question that remains to be answered is whether or
the experimentally observed nonclassical oscillations
tween the wells may be defined as tunneling. The ambig
in the definition of tunneling in this system arises from t
high dimensionality of the problem@17#. In one dimension, a
classical trajectory is uniquely specified by the energy, an
the potential energy is greater than this energy at any p
along the trajectory, motion through this region is classica
forbidden. However, for nonseparable dynamics in hig
dimensions, this is no longer the case since there is no lo
one-to-one correspondence between energy and trajecto
In such circumstances, the phenomenon of dynamical tun
ing occurs if the phase space at a fixed energy has reg
bounded by separatrices. Motion between these region
classically forbidden, but quantum mechanically, the sys
may tunnel between them. The tunneling in this case is
defined by a potential barrier but by the classically forbidd
regions of phase space. The situation becomes even m
complex for nonintegrable systems, where the dynamics m
be chaotic. Tunneling between two regions of phase sp
separated by a region of chaos may occur at a greatly
hanced rate—an occurrence known as chaos-assisted tu
ing @17#.

In our system, the atomic spin is entangled with its m
tion, and thus, the atom effectively moves on a high
dimensional potential surface associated with both inte
and external degrees of freedom@19#. If the motion is adia-
batic, then tunneling occurs when the total energy is less t
the potential barrier between the adiabatic double we

FIG. 4. The eigenvalues of the classically evolved pseudod
sity matrix at t512.32ms. The negative eigenvalues indicate th
the classical evolution violates rho positivity and thus diverges fr
the quantum evolution.
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However, fornonadiabaticmotion, the potential barrier tha
defines the tunneling condition is not unique for a giv
energy, but depends on the trajectory of the atom on
higher-dimensional potential surface as described abo
Though oscillation between wells may represent quant
coherent motion, it is not obvious that this motion may
called ‘‘tunneling,’’ especially given the finite classical prob
ability for oscillation discussed above.

We examine first the question of adiabaticity in our sy
tem by comparing the exact energy-level structure of the
Hamiltonian with that in the adiabatic approximation. In a
dition to the usual Born-Oppenheimer~BO! potentials
$Vx(z)%, one must include the effect of ‘‘gauge potentials
arising due to geometric forces@32,37#. These give correc-
tions terms to the BO potentials in the form of an effecti
gauge vector and scalar field, but still within the confines
the adiabatic approximation. In the context of optical lattic
these were discussed first by Dum and Olshanii@38# and
measured by Dutta, Teo, and Raithel@39#. As discussed
there, for one-dimensional lattices, the vector potential v
ishes and the effective scalar gauge correction to the B
Oppenheimer potential is

Fx~z!52
\2

2m
^x~z!u]z

2ux~z!&, ~7!

whereux(z)& is the adiabatic eigenstate of the atom spin
positionz. We solve then for the energy levels as solutions

S 2
d2

dz2 1@Vx~z!1Fx~z!# Dcx~z!5Ecx~z!. ~8!

In Fig. 5, we plot the lowest BO potential and its gaug
corrected version. Superimposed are the energy levels as
tained from Eq.~8! and those obtained from the full Hami
tonian. It is clear that the adiabatic approximation is ve
coarse and does not accurately reflect the true spectrum
the resulting dynamics. For example, the energy splitting

n-
t

FIG. 5. Lowest adiabatic potential with~dashed dotted! and
without ~solid! the scalar gauge potential correction. Superimpo
are the lowest two energy levels as obtained from Eq.~8! ~dotted!
compared to those obtained from the full Hamiltonian~dashed!. The
large difference between the dashed and dotted energy levels
plies that the adiabatic approximation is not valid in the regi
being considered in the experiment.
9-6
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the ground doublet in the exact solution is 1.7ER whereas the
BO1gauge potential approximate gives 3.6ER . This calcu-
lation shows that the dynamics of our system does not fol
the lowest adiabatic potential, even if we allow for gaug
potential corrections to the BO potentials. The problem th
is to define a tunneling condition for the nonadiabatic m
tion.

An unambiguous definition of tunneling is that it corr
sponds to motion in a classically forbidden region of pha
space where the momentum must be imaginary, resultin
negative kinetic energy. In one dimension, the classical m
mentum at a given point ispclass(z)5A2m@E2V(z)#, al-
lowing us to examine the local kinetic energy. Here, we c
instead calculate the ‘‘kinetic-energy density,’’ so that t
mean kinetic energy at timet is ^T& t5*T(z,t)dz. The quan-
tum theory gives

^c~ t !uT̂uc~ t !&5^c~ t !u~Ĥ2V̂!uc~ t !&

5^E&2E dz(
x

Vx~z!ucx~z,t !u2, ~9!

where we have expanded the wave function in the comp
set ofadiabaticeigenstates,

uc~z,t !&5(
x

cx~z,t !ux~z!&. ~10!

Thus,

T~z,t !5(
x

@^E&2Vx~z!#Px~z,t !, ~11!

wherePx(z,t) are the time-dependent populations in the B
potentials Vx(z). The state prepared in the experime
mostly populates the lowest adiabatic potential, but at tim
corresponding to a Schro¨dinger catlike superposition in th
two wells, there is a small component in the second low
potential due to a breakdown of the BO approximation. T
mean energŷE& of this state is higher than the lowest BO
potential barrier but much lower than the next adiabatic
tential ~Fig. 6!. Thus the nonzero population in the seco
adiabatic state causes the kinetic-energy density to be n
tive. The atom tunnels through a population weighted av
age of the two lowest BO-potential barriers. The nonad
batic transitions of the internal state thus cause the tunne
barrier to be dynamical in nature.

V. SUMMARY AND DISCUSSION

Atoms in optical lattices provide a very clean setting
which to study dynamics arising from nonseparable c
plings between two quantum subsystems that are very di
ent in nature from one another. We have studied the cha
dynamics for such a system and given a physical interpr
tion of the primary resonances. The theory of quasiproba
ity distributions on the tensor product of spin and motion
phase space was used in order to compare the quantum
classical phase-space dynamics. Our results showed tha
experimental data for the atomic dynamics are best descr
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by the prediction of quantum mechanics. Furthermore,
have clarified that this nonclassical oscillation between
wells does correspond to tunneling through a potential b
rier where the kinetic-energy density is negative. The imp
tant difference between tunneling in this system versus t
neling in a standard one-dimensional double well is that
barrier is not static, but depends on the evolution of the s

Given the disparity between the classical and quant
phase-space dynamics, one may ask under what circ
stances classical dynamics is recovered. One possibility
introduce decoherence into the system. A break between
predictions of quantum and classical dynamics occurs du
rapid stretching of the chaotic phase-space distribution.
coherence acts to limit the exponential squeezing in the
mentum distribution and thus diffuses the momentum unc
tainty @34#. The balancing of stretching by chaos an
diffusion by the environment limits the coherence length t
steady-state value ofDxcoh5Dxres(L/G)1/2, whereDxres is
the minimum localization length induced by the reservoir,L
is the Lyapunov spreading rate, andG is the damping rate.
Quantum corrections to the classical Poisson bracket ge
ated dynamics may be neglected if the wave function
spatial coherence much less than the characteristic dist
in which the potential is nonlinear,DxNL , thereby recovering
classical dynamics@40#. However, it has been shown that
systems that show a large violation of rho positivity, dec
herence does not succeed in recovering classical dyna
@18#. In future work we plan to explore this issue in ou
system through realistic models of decoherence occurring
spontaneous photon scattering. As discussed above, an
intriguing aspect of our system is the intrinsic coupling b
tween the system’s internal degrees of freedom with its
ternal motion. In some sense, the ‘‘size’’ of\ for these two
subsystems can be quite different. One consequence of

FIG. 6. Kinetic-energy densityT(z) ~solid curve! at ~a! t50 and
~b! t558 ms shown superposed on the lowest two adiabatic po
tials ~dashed-dotted!. The mean energy of the wave function^E& lies
just above the lowest adiabatic potentialV1(z), but well below the
second adiabatic potentialV2(z). Populations in these adiabati
states are shown in~c! and~d! at times corresponding to~a! and~b!.
Most of the population lies inV1(z), but the small population
P2(z) in the second adiabatic state as shown in~d! causesT(z) to
be negative, indicating tunneling between the wells.
9-7
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disparity is that decoherence may act to reduce the coher
length below the nonlinear length scale associated with
subsystem but not the other. Because these systems ar
tangled, an interesting question is whether the resulting
namics may be described classically or not.

Decoherence may lead to classical behavior formean val-
ues of observables@41#. However, it does not succeed
extracting localized ‘‘trajectories’’ from the quantum dy
namics. Such trajectories are crucial for quantifying the
istence of chaos both theoretically and in experime
through the quantitative measure of the Lyapunov expone
One may recover trajectories from the quantum dynam
through the process of continuous measurements when
record is retained. Ehrenfest’s theorem then guarantees
well-localized quantum systems effectively obey classi
mechanics. The quantum ‘‘trajectories’’ possess the sa
Lyapunov exponents as the corresponding classical sys
@42#. The ability of a quantum measurement scheme to
,

si-

n-
d

ica

r

s.
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cover the classical dynamics increases with the size of
system action. A study of how the ratio of the internal to t
external action affects the quantum-classical transition un
continuous measurement of position, is currently in progre
The atom/optical system presented here provides a clean
bed in which these issues may be explored both theoretic
and in the laboratory.
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