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Atomic motion in magneto-optical double-well potentials: A testing ground for quantum chaos
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We have identified ultracold atoms in magneto-optical double-well potentials as a very clean setting in
which to study the quantum and classical dynamics of a nonlinear system with multiple degrees of freedom. In
this system, entanglement at the quantum level and chaos at the classical level arise from nonseparable
couplings between the atomic spin and its center of mass motion. The main features of the chaotic dynamics
are analyzed using action-angle variables and Poirmarfaces of section. We show that for the initial state
prepared in current experimerff3. J. Haycoclet al, Phys. Rev. Lett85, 3365(2000], classical and quantum
expectation values diverge after a finite time, and the observed experimental dynamics is consistent with
guantum-mechanical predictions. Furthermore, the motion corresponds to tunneling through a dynamical po-
tential barrier. The coupling between the spin and the motional subsystems, which are very different in nature
from one another, leads to interesting questions regarding the transition from regular quantum dynamics to
chaotic classical motion.
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I. INTRODUCTION important features. Unlike the kicked rotor where the nonlin-
earity arises because of a time-dependent extelasbical
Systems with multiple degrees of freedom whose conperturbation, in this system, the nonlinear dynamics arises
stituent parts are coupled are of fundamental interest for thatrinsically from two coupledquantumdegrees of freedom.
purpose of exploring the correspondence limit. In such caseldere, classical chaos results from the coupling between the
the quantum system can explore an enormous collection aftomic magnetic moment and its motion in the lattice. At the
generally entangled states with no classical description. Wguantum level this leads to “entangled spinor wave pack-
are just beginning to characterize these entangled states ets.”
the fundamental level and realize their capabilities for infor- The nonlinear coupling of different degrees of freedom is
mation processindl]. This disparity between the states often amenable to a Born-Oppenheimer approximation
available in the quantum and classical description is centravhereby “fast” degrees of freedoms are slaved to the
to the mysteries of the correspondence limit. It is responsibléslow.” Such an analysis leads to the identification of adia-
for the distinct predictions of quantum coherent evolutionbatic potential surfaces. If the system strictly adheres to these
and those of classical chaotic dynamics that arise in suchurfaces, one obtains regular dynamics. The complexity
nonlinearly coupled systenjg]. arises when these approximations break down, which gener-
The study of quantum systems whose Hamiltonians genally may occur near the anticrossings of the adiabatic poten-
erate classical chaos has a long history. Most studies focusals [10]. This leads to a variety of interesting phenomena
on static propertie$‘quantum chaology”[3]) such as sta- including chaog11-13, irreversible dissipatiori14], and
tistics of the energy spectrum or “scars” in the energyanomalous diffusion[15]. The latter was explored in a
eigenstate$4]. As chaos is an intrinsically dynamical phe- coupled spin-lattice system not too dissimilar from the
nomenon, we are most interested here in understanding threagneto-optical potential discussed here. These analyses
time-dependenteatures arising in these systems. A varietyhighlight the importance of the corrections to adiabaticity in
of such studies have been carried out. Most notable is theomplex dynamics. Our goal here, however, is to avoid the
phenomenon of “dynamical localization’5], which appears adiabatic approximation altogether, and instead compare the
in periodically perturbed systems such as the “kicked rotor” predictions of theexactclassical dynamics to thexactquan-
[4]. Differences between the quantum and classical prediccum predictions. This approach is particularly useful when
tions for the dynamics occur due to localization of the quanthe system is not well described by Born-Openheimer, as is
tum Floquet states. Dynamical localization was seen in théypically the case in optical latticd4.6].
experiments of Mooret al.[6,7] who realized these dynam- This article, thus, investigates the nonclassical nature of
ics using optical lattices—ultracold atoms in a standing waveour dynamical system. Motional and spin degrees of freedom
of light. The ability to observe this phenomenon in the labo-are of a very different nature as seen in the topology of their
ratory is evidence that the atom/optical realization provides @espective phase spac@sane vs sphejeand reflected in
very clean arena in which to study coherent quantum dynantheir respective Hilbert space@nfinite vs finite dimen-
ics versus nonlinear classically chaotic motion. siona). This may lead to a disparity in the relative sizefof
We have identified another nonlinear paradigm associateth the two subsystems, raising interesting questions regard-
with trapped neutral atoms—dynamics in a magneto-opticaing the quantum to classical transition. In addition, for this
double potential8]. In recent experiments by Haycoekal. = system of entangled internal and external degrees of free-
[9], mesoscopic quantum coherence associated with thgom, it is nontrivial to distinguish classically allowed from
atomic dynamics has been observed. This system has somkassically forbidden motion, i.e., “tunneling.” The standard
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definition in one dimension, i.e., motion through a potentialof the transverse field plus a fictitious field associated with
barrier, is not sufficient for systems with multiple degrees ofthe lattice,ugBj= — Uy Sin®, sin(k2e,, whereug is the
freedom since the energy does not uniquely specify the claBohr magneton. For the real alkali atoms used in experi-
sical trajectory. In this case, a phenomenon known as “dyments, the total atomic angular momentum is prepared in a
namical tunneling” may occur through classically forbidden hyperfine ground state with quantum numlerUnder the
regions of phase space, which are not, however, separated Bicumstance that the optical trap is detuned sufficiently far
a potential barrief17]. . _ _ from resonance so that the excited hyperfine splitting is not
We have analyzed the underlying classical chaotic dyiesolved, the form of effective potential Eql) is un-

namics of our system and investigated distinct predictions Of:hanged with the atomic magnetic moment now equal to
the classical versus quantum dynamics for an initial state that hy IA:’— u FIE wherey s the gyromagnetic ratio and
= — ugF/F,

has been prepared in current experimgfis In Sec. Il, the L . .
physical system is briefly reviewed. Section Il establishes': IS _the total gngular momentum veclor in l_JnltsfofWe
the general predictions of the classical chaotic dynamic§°nSider herlé Cs, withF =4, the atom used in the Jessen-
based on a physical picture of the primary nonlinear resod"oup experimentf9]. The eigenvalues of the potential as a
nances and numerical studies via Poincardace of section function of position result in nine adiabatic potentials, the
distributions in the coupled phase space of spin and external

motion to compare and contrast classical and quantum statis-

tics, and thereby show that the dynamics observed in the [ll. CHAOTIC CLASSICAL DYNAMICS

experiment are nonclassical in nature. The classical evolu-

tion diverges from the quantum dynamics much faster than The Ha_miltonian for _the magneto-optical double Y\[Eq‘
on the expected logarithmic time scd2] and leads to a (1)] describes the motion of a magnetic moment in a spa-

violation of the positive semidefiniteness of the density mafially inhomogeneous effective magnetic field. Generic sys-
trix [18]. Furthermore, we show that the experimentally ob-tems of this sort have been studied in both classical and
served nonclassical motion corresponds to tunneling througiuantum circumstances, leading for example, to geometric
a complex region of phase space where the kinetic energy #orces[20]. An important aspect of this system is that the

negative(Sec. IVB. We conclude in Sec. V with a brief Heisenberg equations of motion that couple the magnetic

discussion of further research in this area. moment to the center-of-mass dynamics are nonlinear. The
corresponding classical motion is generatlyaotic as seen
II. THE MAGNETO-OPTICAL DOUBLE-WELL in the pOSitive LyapUnOV eXponent CalCUlated[]l'g], char-
POTENTIAL acterizing the exponential sensitivity to initial conditions. In

the spin-1/2 case and for harmonic wells, we recover the
The physics of the magneto-optical double well has beeyaynes-Cummings problefi21], but without the rotating
described in previous publicatiof8,19], and we summarize \yaye approximatiofRWA). The classical chaotic equations
the salient points here. A one-dimensional optical lattice i)t motion have been studied in quantum optics in the context
formed by counterpropagating plane waves whose linear pGs¢ yyq_jevel atoms interacting with a single-mode electro-
larization vectors are offset at a relative angle. The re- magnetic field[22], and also in condensed-matter theory in

S e £ .
sulting f"ild may (E)e decompose? Indo kandg Slianoilr?g the context of the small polaron probld2B3]. Our system is

waves whose nodes are separatedyk, wherek is the a generalization to higher spin with no possible approxima-
laser wave number. Atoms whose angular momenta ar

aligned(antialigned along the lattice axis are trapped by the ﬁolocf|§szl|ng:ee|2$ém|42;q:g:-ea'n as studied in the semi-
ot (o7) field. A uniform magnetic-field transverse to the y ftonian w udied 1 !

axis would cause Larmor precession of the atom’s magnetis(fIaSSICaI regime by Kusnezov and coworkgis). E.xpressed.
moment, but due to the optical trap, the moment is correlatelf! 0Ur Context, their system corresponds to a spin-1/2 particle
with motion of the atom between the® wells. This corre-  With ® =90°. Nonintegrable dynamics at the periodically

lation between spin precession and motion in the wells leagdistributed anticrossings that leads to anomalous diffusion
to entangled spinor wave packets. over multiple anticrossings was analyzed|[itb]. For our
For the case of an atom whose electronic angular momerystem, with®, #90°, one finds that adjacent anticrossings
tum is J=1/2, the combined effects of the far-off resonancehave different energies resulting in a double-well structure
optical potential and an applied external transverse magnetl€ig. 1(@]. We focus on the dynamics localized tsimgle
field may be conveniently expressed in terms of agffgc-  lattice site(i.e., a single double wellwith one anticrossing

tive scalar plus magnetic interacti¢8], bounded by high potential walls of the double well and neg-
A ligible tunneling or diffusion to neighboring sites.
U=UJ(z)fL—;1~ Bei(2). ) We present here a more detailed analysis of the chaotic

dynamics that can occur in our system. For convenience we
Here,U,(z) =2U, cosO, cos(Xk2) is a scalar potential inde- define u=—pugn, so that n=e,cosf+sinH(e, cosd
pendent of the atomic moment, wheldg is a constant de- +€ Sing) is the unit direction of the atom’s angular momen-
pending on the atomic polarizability and field intensity. Thetum, and the classical analog BfF. The classical equations
effective magnetic fieldB¢(2) =B, e+ Biict(2) €, is the sum  of motion are
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(a) der two simple physical circumstances: the case in which
-20 : - : ; - there is no transverse magnetic fi¢kB], and the case of a
40} ] sufficiently large transverse field so that the motion is adia-

batic[24]. We consider each case separately below.

/VW In the absence of a transverse fieRl € 0), n, becomes
-80¢ 1 an additional constant of motion, which results in an inte-
_100W grable Hamiltonian,

U/Eg
p2
Hozﬁ‘FCCOS(ZkZ'FD), (3)
C=Ug\4cog®, +n>sif®,, D=arctarin,tan®,/2).
(3a)
kz This is the Hamiltonian for a simple pendulum whose ampli-
tude and phase depend on the constaptojection of the
(b) atomic moment, as was pointed out[kb]. We present here
1 ‘ ———— , another approach to understanding the chaos in this system
I ; using action-angle variables. The action-angle variables de-
scribing the motion of a pendulund () are well known to
0.5¢ be functions of the complete elliptic integrd®5]. For ener-
gies close to the bottom of the sinusoidal potential, we may
expand the elliptic integrals in a power series, keeping only
Y the first few terms, and may therefore expreksas a func-
tion of J and i,/ vy, which we choose to be the other action.
SED RS I The frequencies of precession of the corresponding angle
08¢ e ORI variablesy and y may then be computed from Hamilton’s
o= e equations to be
08 06 04 02 0 02 04 06 e &Ho_z wg L &H0_£ vHg
¢ (radians) DT T T IR YT X Y g, T an, sl
@

FIG. 1. (a) Adiabatic potentials corresponding to the integrable
Hamiltonian of Eq.(5) for different values ofx. The lowest poten- . I
tial corresponds ?@z:O. The mean energy of the state prgpared inWher_e“’Oz V4k_ |C|/m is the osc!llat|on freque”CY for2a har-
experimentg9] is just greater than the lowest adiabatic potential MONIC approximation to the sinusoidal potentials“2 1
barrier energy(horizontal lind. The Poincaresurface of section i+ Ho/|C|, andK(«) is the complete elliptic integral of the
(b), for p=0 and dp/dt>0 using the parameters ¢B], with first kind. The frequencw; represents oscillation of the cen-
E=-186.&x (Ex/h=2kHz), shows the effects of the non- ter of mass in the sinusoidal potential. A physical picture of
adiabatic perturbation term, which makes the full Hamiltorjiag.  the angley may be understood as follows. The magnetic

(1)] nonintegrable. moment precesses around theirection but at a nonconstant
rate since the effective fiel, is changing in time. By mov-
dz p dp d ing to a framg thafc oscillates with thg atom, the time depen-
Gom dz d—Z(UJ(z)+,uBn- Beri(2)), dence in the field is removed, resulting irtanstantpreces-

sion frequencyw, about thez axis. The precession angle in
this frame isy. The addition of a transverse magnetic field as
dn ; ; .
— = y[NXB(2)]. 2) a smalllpe_rturbatlon to the mtegrabl.e.Ham.ntonlan co_uples
dt the oscillations of the two angles, giving rise to nonlinear
resonances. The primary resonances occur when the ratio of
The dynamics takes place on a four-dimensional phase spatiee unperturbed frequencies is a rational number, and may be
(z,p, 0, ), which topologically is locally the tensor product calculated for our system using Edd).
of the phase plan&or the center-of-mass motignand unit In the current experimen{$], a large transverse magnetic
sphere(direction of the magnetic moment with fixed magni- field is applied, which cannot be treated as a perturbation as
tude. This is equivalent to a system with two effective de- outlined above. We therefore turn to the regime where the
grees of freedom. Nonintegrability of these equations fol-motion is adiabatic, and treat the nonadiabatic coupling as a
lows since there is only one constant of the motion, theperturbation. This perturbation leads to a break down of the
energy. The RWA would add an additional constant of theBorn-Oppenheimer approximation for our systgif|. How-
motion to the system, making the problem integrable. With-ever, sufficiently far from the hyperbolic fixed points, the
out the RWA, the Hamiltonian may be made integrable unssystem is near integrable, allowing us to determine the reso-
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nance conditions. The integrable adiabatic Hamiltonian iordinates in a Born-Oppenheimer treatmesbmething not
obtained by setting the angle betweenu andB., to be a  typically employed in molecular dynami¢g7,28.

constant, so that The state prepared at=0 was an atomic wave packet
localized on one side of the double-well potential, with a
Ho=p2/2m+U,(2) + ug|Bex(2)|coSa. (55 mean energy slightly above the lowest Born-Oppenheimer

potential barriefFig. 1(@)]. The relevant representations are

When a=0, we obtain the lowest adiabatic double-well po- |n_term§ of fam|||ar_coherent state§ for the mofife=2 .
tential [Fig. 1(a)]. Other fixed values ofx correspond to +ip)=D(a)|0), which are translations of the harmonic-
other adiabatic surfaces. The componenjuodlong the di-  ©Scillator ground-stat¢0), and spin coherent-statgs) = ¢
rection of the magnetic field is now a constant of motion and= 6e”'?y=exf (&), —£*J_)/2]| - J) for the magnetic mo-
serves as our action variable. The other action of the systefient, which are rotations of the spin-down state. These rep-
is obtained in the standard way by integrating the momenturfiesent a classical directiom of the moment on the Bloch
over a closed orbit in the double well for a given energy andsphere[29]. General theories of quasiprobability distribu-
choice of the parametex. The precession frequencies,  tions on the Bloch sphere have been developed analogous to
andw,, of the conjugate angle variables correspond, respedhose in phase spa¢a0].
tively, to the oscillation of the center of mass in the adiabatic Given the initial quantum statg(0), we calculate the
double-well potential and precession of the magnetic moHusimi or “Q" quasiprobability distributionQ(«,n,t=0)
ment about the local magnetic-field direction in a frame os-=(a|(n|p(0)|n)|a). We have employed th@ function as it
cillating with the atom as described previously. Unlike theis everywhere positive and may be interpreted as a quasiclas-
previous case however, we cannot obtain analytical expresical probability distribution. In addition, we will be inter-
sions for the frequencies and must resort to computing theristed in first-order moments of observables, where issues of
numerically. operator ordering that typically makg behave badly do not
For the experimental parameters given[®], Fig. 1)  come into play. Phase-space distributions on the external
shows a Poincarsurface of section in the=0 plane and Pphase space for each internal component of a two-state sys-
with dp/dt>0, i.e., at turning points of the trajectories going tem have been analyzed before in a semiclassical niadel
from left to right. This represents a “mixed” phase space,13,27,28. We compute a joint Husimi distribution over both
with stable islands of periodic motion and stochastic layers agxternal as well as the spin phase space in order to study the
the separatrices. The primary resonanceat0.38 and¢  dynamics on the full phase space. This four-dimensional dis-
=0 Corresponds to a ratio of the unperturbed adiabatic fret.l'ibution function is then evolvedlassically This was ac-
quencies ofw,/w;=4. The nonadiabatic perturbative cou- complished by first sampling the initi@ distribution via a
pling is strong enough at these parameters to cause the pr¥donte Carlo Metropolis algorithmi31], and then propagat-
viously stable primary resonancergt=0.8 to bifurcate, and ing €ach point in the sample according to the classical equa-
Secondary resonances to appear around the p01m©38 th.)nS.Of motion, Eq(3) The result gives a probablllty. dis-
andn,=—0.85. The secondary resonances result from coutribution at a later time, which we deno@as{ a,n;t). With
pling between the motion around the primary islands to thehis function, we may compute the evolution of the mean
unperturbed periodic motion. As the energy is increased, thExagnetization, i.e., the component of the mean angular
primary resonances eventually disappear and global chadgomentum, as given if80],

sets in.
2 (2F+1)(F+1)(2F+2)!
<Fz>clas§t): - \/ 32772
chIasgaan;t)COS( a)dzadQ
chIass(a,n;t)dzadQ

IV. NONCLASSICAL DYNAMICS

A. Nonclassical evolution of the quasiprobability distribution

(6)
Given the classical description of the dynamics discussed
in Sec. lll, we seek to determine whether the magnetizatiohis result may then be compared with the quantum-
oscillations observed if9] are truly quantum in nature. We mechanical prediction. The quantum and classical evolutions
accomplish this by calculating the dynamical evolution ofwere computed numerically using the exact Hamiltonian that
the mean magnetization in a purely classical descriptionalready implicitly contains all nonadiabatic coupling and ef-
There are numerous approaches to a mixed quantuniective gauge potential terni82]. The distinction between
classical description that have been employed, primarily byhe quantum and classical dynamics are clearly shown in Fig.
physical chemists seeking efficient numerical algorithms for2. Unlike the predictions of quantum mechanics, in the clas-
describing molecular dynamics. A good summary and comsical model, the mean magnetization never becomes nega-
parison of the various methods is discussed by Burant antive. Due to the correlation between the atomic moment and
Tully [26]. Here, we compute thiellly classical evolution by its motion in the well, an oscillation of the mean magnetiza-
first representing the initial state prepared in the experimenion between positive and negative values corresponds to the
as a distribution of classical initial conditions for trajectories. motion of the atom from one minimum of the double well to
In order to do so, we employ the theory of quasiprobabilitythe other. Classical dynamics thus predicts that the mean of
distributions on phase space for both the external and intethe distribution remains localized on one side of the double
nal degrees of freedorfanalogous to the slow and fast co- well. In contrast, the experimental data shows an oscillation
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cal description of the state involvesdéstribution of energy
consistent with the distribution of positions, momenta, and
spin directions in the&Q function. High-energy portions of
this distribution are not classically forbidden from hopping
between the left and right wells. Nonetheless, the experimen-
tally observed oscillations of the mean atomic magnetization
are much better described by the prediction of the quantum
dynamics than by the corresponding classical dynamics, in-
dicating anonclassicalmotion of the atom between the
1 double wells. This is not surprising given the fact that for the
dynamical system and initial conditions at hand here, the
3 . . T actions of the system are on the orderiof
0 100 200 300 400 500 A break between the dynamical predictions of classical
tlus) and quantum theory is expected for nonlinear systems. As
originally considered by Berry2], a Hamiltonian chaotic

FIG. 2. Predictions of mean magnetization dynamics. Ideal - . .
quantum theory: two-level Rabi floppinglashed dotted Ideal system should exhibit observable nonclassical dynamics on a

classical theory: localized at positié-,) (solid); Experimental: time scalelogarithmic in 7. This follows simply by noting

(circles with a damped sinusoid fit. The upper bound on the breaN@t in the chaotic system, the probability distribution

time between quantum and classical dynamics;is 89us (see  Stretches exponentially fagtet by the local Lyapunov expo-

text). nent A), and develops coherence over large distances. By
Liouville’s theorem, the momentum distribution in the con-

}Egate direction to the stretching is also squeezed at an ex-

between positive and negative values at a frequency Wel,noqvial rate, thereby making quantum corrections to the

predicted by the quantum model. The only discrepancy withhioq4n pracket generated classical dynamics important. The
the ideal quantum model is that the amplitude of the experig o 4t which the chaos-induced stretching of the phase-

mentally observed oscillations decay due to inhomogeneoug, ;e distribution causes the dynamics to depart from clas-

broadening in the samp[®]. ; A A1
. o sical behavior is bounded from above by=A"tIn(I/#)
A closer look at the reduced classical distribution in the """ 0" o2 cteristic action. In the limi—0. or

phase space of position and momentum, obtained by tracing . : o
. I quivalentlyl /#— <o, classical mechanics is preserved for all
over the magnetic moment direction, shows that a part of th

distribution does oscillate between wells, but the peak reﬁmes. Using a calculated Lyapunov exponent characteristic

mains localized in one wellFig. 3). This seems to indicate of phase space for the experimental parametergojn A

— —1 et ;
that oscillation between the wells, while not classically for- t;é.sxs%g n(sherEeStgg’easmji):rxesf?:]?jlItehset grr:]agz?svﬁgﬁ ;C;L%niSOf
bidden, is instead improbable for this distribution of initial bre};k between clas[;ical and quantum dvnamics is bounded
conditions. This may been seen from the fact that the classi- 4 y

Y threa<t; =89us. As seen in Fig. 2f; is clearly an
upper bound for the break between classical and quantum

Quantum Classical dynamics, with the true break time occurring much earlier. A
0.01 =0 0.01 =0 more detailed analysis, identifying the scale over which the
0.006 0.006 effective potential is nonlinear, is necessary to establish this
time [34].
0.002 0.002 In order to quantify the nonclassical nature of these dy-
-1.5-1-050 05715 -1.5-1-050 05115  namics, we turn to a method recently presented by Habib
0.01 t=5is 0.01 =515 etal.in [18]. Given an initial statep(0), we maycompute
the Wigner function through the standard Weyl transforma-
Q) 0.006 0.006 tion [35]. If we evolve this quasiprobability function for a
0.002 0.002) timet according to the Poisson rather that Moyal bracket and
151050 051 15 151050057 75 then perform_the inverse Weyl transfprmation, we obtain a
“pseudodensity operator'p..s{t). An inverse Weyl trans-
0.01 N 0.01 t=136ys formation on the classical propagator will not generally yield
a unitary operator, and may generate nonphysical negative
0.006 0.006 . ~ . . . .
eigenvalues forpg,sdt). This violation of the positive
0.002 0.002 semidefiniteness of the pseudodensity maftivo-positivity)
-15-1-0.5 Ezo.s T1.5 -15-1-05 Ezo.s 115 implies that the classical evolution leads to a distribution that

is not a valid quantum state and has thus diverged from the
FIG. 3. Reduced) distribution in positionQ(z), at different ~gquantum evolution. We have inverted the classically evolved
times in the quantum versus classical evolution. The quantum disQ function to find the corresponding density matrix and nu-
tribution oscillates between wells, while the classical distributionmerically calculated its eigenvalues. This was done by first
remains mostly on the left side, with a portion equilibrating be- deconvolving theQ function with Gaussian coherent states
tween the wells. to find the Wigner function36], and then inverting the
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FIG. 5. Lowest adiabatic potential witfdashed dottedand

FIG. 4. The eigenvalues of the classically evolved pseudodenyithout (solid) the scalar gauge potential correction. Superimposed
sity matrix att=12.32 us. The negative eigenvalues indicate that 5r¢ the lowest two energy levels as obtained from @By (dotted
the classical evolution violates rho positivity and thus diverges fromcompared to those obtained from the full Hamiltonidashed The
the quantum evolution. large difference between the dashed and dotted energy levels im-

plies that the adiabatic approximation is not valid in the regime
Wigner function to obtain the corresponding density matrix.being considered in the experiment.
Figure 4 shows the classical eigenvalues=al2.32us. The
negative eigenvalues verify that the classical evolution doeslowever, fornonadiabaticmotion, the potential barrier that
violate rho positivity. The magnitude of the rho-positivity defines the tunneling condition is not unique for a given
violation is a measure of the importance of the quanturrenergy, but depends on the trajectory of the atom on this
corrections to the classical evolution, and has implicationdiigher-dimensional potential surface as described above.
for whether or not the classical limit may be recovered viaThough oscillation between wells may represent quantum
decoherencégl8]. coherent motion, it is not obvious that this motion may be
called “tunneling,” especially given the finite classical prob-
ability for oscillation discussed above.

We examine first the question of adiabaticity in our sys-

A question that remains to be answered is whether or naiem by comparing the exact energy-level structure of the full
the experimentally observed nonclassical oscillations beHamiltonian with that in the adiabatic approximation. In ad-
tween the wells may be defined as tunneling. The ambiguitylition to the usual Born-OppenheimegBO) potentials
in the definition of tunneling in this system arises from the{V, (z)}, one must include the effect of “gauge potentials”
high dimensionality of the problefii7]. In one dimension, a arising due to geometric forcg82,37. These give correc-
classical trajectory is uniquely specified by the energy, and ifions terms to the BO potentials in the form of an effective
the potential energy is greater than this energy at any poirjauge vector and scalar field, but still within the confines of
along the trajectory, motion through this region is classicallythe adiabatic approximation. In the context of optical lattices,
forbidden. However, for nonseparable dynamics in highethese were discussed first by Dum and Olsh&8d] and
dimensions, this is no longer the case since there is no longeneasured by Dutta, Teo, and RaitH@9]. As discussed
one-to-one correspondence between energy and trajectoriglere, for one-dimensional lattices, the vector potential van-
In such circumstances, the phenomenon of dynamical tunneishes and the effective scalar gauge correction to the Born-
ing occurs if the phase space at a fixed energy has regior@ppenheimer potential is
bounded by separatrices. Motion between these regions is
classically forbidden, but quantum mechanically, the system
may tunnel between them. The tunneling in this case is not
defined by a potential barrier but by the classically forbidden
regions of phase space. The situation becomes even mowdere|x(z)) is the adiabatic eigenstate of the atom spin at
complex for nonintegrable systems, where the dynamics magositionz. We solve then for the energy levels as solutions to
be chaotic. Tunneling between two regions of phase space
separated by a region of chaos may occur at a greatly en-
hanced rate—an occurrence known as chaos-assisted tunnel-
ing [17].

In our system, the atomic spin is entangled with its mo-In Fig. 5, we plot the lowest BO potential and its gauge-
tion, and thus, the atom effectively moves on a higher-corrected version. Superimposed are the energy levels as ob-
dimensional potential surface associated with both internatiained from Eq(8) and those obtained from the full Hamil-
and external degrees of freedgd®]. If the motion is adia- tonian. It is clear that the adiabatic approximation is very
batic, then tunneling occurs when the total energy is less thaooarse and does not accurately reflect the true spectrum and
the potential barrier between the adiabatic double wellsthe resulting dynamics. For example, the energy splitting of

B. Tunneling

,}_LZ
©,(2)= = - (X2 x(2), ()

d2
— g2 TV D+, (D] )4 (2)=Ei(2). (8
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the ground doublet in the exact solution isBEgAvhereas the 15 @ 160 160
BO+gauge potential approximate gives B This calcu- =0 05t

lation shows that the dynamics of our system does not follow _ '/ " */\ ww /7 7% 44 70
the lowest adiabatic potential, even if we allow for gauge- =05 A I S - 80T
potential corrections to the BO potentials. The problem then — ! <Exl 190 01 AN W 190
is to define a tunneling condition for the nonadiabatic mo- | ~“ v@~. | 00 0% T cuer ST
tion. 151 05 ‘?Z 05 115 -15-1-05 l?z 05 1 15

An unambiguous definition of tunneling is that it corre-
sponds to motion in a classically forbidden region of phase o.14
space where the momentum must be imaginary, resulting in

(©)
@ =0 0.07

negative kinetic energy. In one dimension, the classical mo- = o 0.05

mentum at a given point iPy.s{2)=vV2mE—V(2)], al- 0.06 0.03

lowing us to examine the local kinetic energy. Here, we can  o.02 0.01

instead calculate the “kinetic-energy density,” so that the AFE 00T TS AT HE TS
mean kinetic energy at timds (T),= [T(z,t)dz. The quan- kz kz

tum theory gives FIG. 6. Kinetic-energy densit(z) (solid curve at(a) t=0 and

~ PN (b) t=58 us shown superposed on the lowest two adiabatic poten-
(PO[T[g(1) = (O (H=V)[(1)) tials (dashed-dotted The mean energy of the wave functi¢ lies
just above the lowest adiabatic potentigl(z), but well below the
=(E)— f dzz VX(Z)| ‘/’x(z-t)|2’ (9) second adiabatic potentid,(z). Populations in these adiabatic
X states are shown ift) and(d) at times corresponding @) and(b).

. Most of the population lies irV,(z), but the small population
where we have expanded the wave function in the completﬁz(z) in the second adiabatic state as showridncausesT(z) to

set ofadiabatic eigenstates, be negative, indicating tunneling between the wells.
lp(z,t)) =2, P (2,0)|x(2)). (100 by the prediction of quantum mechanics. Furthermore, we
X have clarified that this nonclassical oscillation between the
Thus wells does correspond to tunneling through a potential bar-

rier where the kinetic-energy density is negative. The impor-

tant difference between tunneling in this system versus tun-

T(z)=2 [(E)=V,(2)]P (1), (1) neling in a standard one-dimensional double well is that the
X barrier is not static, but depends on the evolution of the spin.

whereP,(z,t) are the time-dependent populations in the BO  Given the disparity between the classical and gquantum
potentials V,(z). The state prepared in the experimentPhase-space dynamics, one may ask under what circum-
mostly populates the lowest adiabatic potential, but at time§tances classical dynamlcs is recovered. One possibility is to
corresponding to a Schdimger catlike superposition in the mtrodupe decoherence into the system. A b_reak between the
two wells, there is a small component in the second lowesPredictions of quantum and classical dynamics occurs due to
potential due to a breakdown of the BO approximation. The'@pid stretching of the chaotic phase-space distribution. De-
mean energyE) of this state is higher than the lowest BO- coherence acts to limit the exponential squeezing in the mo-
potential barrier but much lower than the next adiabatic pomentum distribution and thus diffuses the momentum uncer-
tential (Fig. 6). Thus the nonzero population in the secondt@inty [34]. The balancing of stretching by chaos and
adiabatic state causes the kinetic-energy density to be neg@iffusion by the environment limits the coherence length to a
tive. The atom tunnels through a population weighted averSteady-state value afXcor=AxXdA/T)"? whereAxe is

age of the two lowest BO-potential barriers. The nonadiaihe minimum localization length induced by the reservair,

batic transitions of the internal state thus cause the tunneling the Lyapunov spreading rate, ahds the damping rate.
barrier to be dynamical in nature. uantum corrections to the classical Poisson bracket gener-

ated dynamics may be neglected if the wave function has
V. SUMMARY AND DISCUSSION _spatiql coherence .mu.ch Ies; than the characteristic d_istance
in which the potential is nonlineadxy, , thereby recovering
Atoms in optical lattices provide a very clean setting in classical dynamicf40]. However, it has been shown that in

which to study dynamics arising from nonseparable cousystems that show a large violation of rho positivity, deco-
plings between two quantum subsystems that are very diffelerence does not succeed in recovering classical dynamics
ent in nature from one another. We have studied the chaotid8]. In future work we plan to explore this issue in our
dynamics for such a system and given a physical interpretasystem through realistic models of decoherence occurring via
tion of the primary resonances. The theory of quasiprobabilspontaneous photon scattering. As discussed above, another
ity distributions on the tensor product of spin and motionalintriguing aspect of our system is the intrinsic coupling be-
phase space was used in order to compare the quantum atvweeen the system’s internal degrees of freedom with its ex-
classical phase-space dynamics. Our results showed that tternal motion. In some sense, the “size” bffor these two
experimental data for the atomic dynamics are best describeslibsystems can be quite different. One consequence of this
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disparity is that decoherence may act to reduce the coherencever the classical dynamics increases with the size of the
length below the nonlinear length scale associated with ongystem action. A study of how the ratio of the internal to the
subsystem but not the other. Because these systems are @xternal action affects the quantum-classical transition under
tangled, an interesting question is whether the resulting dycontinuous measurement of position, is currently in progress.
namics may be described classically or not. The atom/optical system presented here provides a clean test

Decoherence may lead to classical behaviomfiean val-  ped in which these issues may be explored both theoretically
ues of observabled41]. However, it does not succeed in and in the laboratory.

extracting localized “trajectories” from the quantum dy-

namics. Such trajectories are crucial for quantifying the ex-

istence of chaos b_oth theoretically and in experiments ACKNOWLEDGMENTS

through the quantitative measure of the Lyapunov exponents.
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