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Statistical and dynamical study of disease propagation in a small world network
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Statistical properties and dynamical disease propagation have been studied numerically using a percolation
model in a one dimensional small world network. The parameters chosen correspond to a realistic network of
school age children. It has been found that percolation threshold decreases as a power law as the shortcut
fluctuations increase. It has also been found that the number of infected sites grows exponentially with time
and its rate depends logarithmically on the density of susceptibles. This behavior provides an interesting way
to estimate the serology for a given population from the measurement of the disease growing rate during an
epidemic phase. The case in which the infection probability of nearest neighbors is different from that of short
cuts has also been examined. A double diffusion behavior with a slower diffusion between the characteristic
times has been found.
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I. INTRODUCTION centration of susceptibles leading to the outbrgak How-
ever, the statistical behavior of percolative SWN networks is
To model disease propagation, it is necessary to define thdifferent from that of regular systen8]. In particular, at the

corresponding social network connecting any two individu-percolation threshold, there is no diverging cluster for the
als in the world. The expected properties of such a networlswN because a SC between the two ends of the system has
should be both the clusterif@hich excludes models of dis- a finite probability to occur for any nonvanishing number of
order such as the random gragi$), and to allow a connec- these bonds. On the other hand, the characteristic length
tion between any two individuals within a finite number of scale in such networkisvhich corresponds to the correlation
steps(which excludes the regular networks with only nearestiength in regular latticosbehaves ag~ 2 at the percolation
neighbor connectionsindeed, for the latter feature Milgram thresholdd being the euclidean dimension of the sys{éth
showed in 1967 that the average number of steps connectingis then obvious that this characteristic length does not di-
any two individuals is siXalso called six degrees of separa- verge for such networks. Therefore, a further investigation of
tion) [2]. This behavior recently led Watts and Strogatz tothe cluster statistics and the phase transition around this per-
propose the model of small world netwofWN) [3,4].  colation threshold for such networks seems to be necessary.
They considered a low dimensional network with periodic et us now consider the application of this model to epi-
boundary conditions for convenienca ring, for example  demics, which seems to be one of its main aims. From the
where they rewired some bonds with a probabilifyto a  |arge amount of works using SWN, there is no direct com-
new site randomly chosen from the network. For small val-parison with the existing data, may be due to the complexity
ues of¢, this still corresponds to a regular network but with of the diseases featurémfection and latent periods, birth
few long range connections called shortc(8C). A more  and death rates, ejc.Furthermore, the parameters used
recent work on the SWN was proposed by Newman andmainly ¢) are very small and do not simulate the real con-
Watts[5], where the numbek of nearest neighbor@IN) is  nections between individuals. They use also commonly av-
conserved but instead of rewiring, they added an averagerage values of the NN and the SC while these quantities
density ¢ of new bonds from each siteto other randomly  strongly fluctuate in the real liféthe number of contacts,
chosen nodegexcept its nearest neighborsA review of  friends, family members, etc., varies from 0 to few tens
these models and their application to various fields and pafwhich can influence sensitively the results on the density of
ticularly epidemics can be found in Ref8,6]. In these net-  susceptibles at the percolation thresh@pidemic outbreak
works the percolation threshold was extensively investigatedn the other hand, it is impossible in practice to measure the
and its dependence to the NN and SC was found to satisfyensity of susceptibles systematicalifneeds an extensive

the following equatiori5,7]: serological investigation in the epidemic phasBenerally,
W2 for large population samples epidemiologists measure the
~(1-pe) 0 evolution with time of the number of cases for a given dis-
¢= Pe ' ease. It is then necessary to study the dynamical behavior of

the propagation of the disease and relate it to the density of
This threshold corresponds in epidemics to the smallest corsusceptibles. There are only few works that examifuedy
qualitatively the dynamical behavior of the disease on social
networks[9—-11]. The aim of these works was to show how
*Email address: zekri@mail.univ-usto.dz the density of infected behaves in the endemic and epidemic
"Email address: clair@iusti.univ-mrs.fr phases.
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In this paper, we use a site percolation on a SWN with 20000 | T ' T
parametersK and ¢) representing a sample of school age
children to study the effect of the fluctuations of NN and SC 16000
on the percolation threshold. Furthermore, in order to pro-,
pose a formula for determining the serology of the samplet 12000
from the rate of increase of the number of cases, we inves$
tigate also extensively the dynamical behavior of an infec-5
tious disease as well as its effect on the density of suscep 4000
tibles below and above the percolation threshold. A

8000

“superdiffusion” is found above the percolation threshold 0 """‘"f"'""" . , , , .

when the cluster is initially infected by one or a small num- 0 5 10 15 20
ber of infectious sites and its characteristic time dependenct
on the density of susceptibles is determined. We examinec
also the case where the infection probability of the NN is ) T T T
different from that of SC, showing a double diffusion with sk ® Present data i
two characteristic times. In the next section we describe the —— fit (p_od¢-0.1)
model and then present the results on the cluster statistic <
and the percolation threshold. The results on the dynamica

behavior of the disease are presented in Sec. IV.

Concentration of occupied sites (%)

P, (%)

Il. MODEL DESCRIPTION

We consider the one dimensional SWN described by
Newman and Wattg5] but ¢ represents the total number of
SC generated for each site uniformly from all the other sites 2 . L : ' : L .
of the network. In the case whekeand ¢ are not fixed they s _1° 1% 2
are generated randomly within a normal distribution centered % (sites)
at their average values with fluctuatiodk and ¢, respec- FIG. 1. (a) Cluster size(number of sites in the clusteversus
tively. The coordination number is the total number of bondsyoncentration of the occupied sites for three casgs:6 (solid
to a given site £=k+ ¢). We study in this network a site ¢cyryg, ¢=30 (dotted curve, and ¢ =30 with fluctuationssk=2,

percolation problen8] by assuming each susceptible gite s¢=15 (dash-dotted curye (b) p, versuss¢ (sites for ¢=30
(occupied contracts the disease if it is connected with an ill sites. The solid line is a fit of the data.

site i (occupied alsp The occupied sitegsusceptiblesare

randomly generated with a concentratipnvhile the empty  step (after a timeAt), which themselves infect their con-
sites correspond to refracted individuals. kaand ¢ fixed,  nected sites after £t and so on. We assume the latent and
the percolation threshold, is related tok and ¢ by Eq. (1) infection periods to be smaller thakt, which is taken in the
[7]. This threshold corresponds to a transition from the enrest of this paper as a unit time. The number of infected sites
demic phase below, to the epidemic one above this point in each step is averaged by varying the initial infectious site
[10]. In SWN networksp, is the minimum concentration of position through the whole cluster.

occupied sites above which the average largest clustegsize

of the occu_pied sites becomes _pov_verjlaw incr_easing withthe ||| PERCOLATION THRESHOLD AND CLUSTER
concentration £=(p—p.)*], while it diverges in a regular

c : L DISTRIBUTION
network [8] (note here that the exponentis positive. By
analogy with the regular latticd8], we will check the uni- In this section, we realize 100 configurations of the net-
versality of the exponemnt. work described in the previous section with a size fixed at

We are interested in the application of such a model to 400000 sites. We examine the effects¢pfand its fluctua-
childhood disease like measles. In such diseases, epidemitiens on the average cluster sizgg,andx. Finally, we in-
logical investigations on school age children can be easilyestigate the cluster size distribution aroundin order to
controlled and provide data with a minimum bias. We determine the main contribution to the propagation of the
choose parameter values corresponding to such a disease digease.
taking k=2 to be the average number of brothers, sisters, In Fig. 1(a) we show the variation of the cluster size with
and neighbors, whiles=30 represents the average numberthe concentration of occupied sites for three different cases:
of children one can meet at the school. These parameteks= 6,30 (fixed value$ and fork and ¢» randomly generated
should correspond to a topology closer to that encountered iwith a normal distribution centered at 2 and 30, respectively,
a real social network. Regarding the dynamical study, wewith a fluctuation of 2 and 15, respectively. We see clearly
assume the major contribution to the epidemics provided byrom this figure that in all cases the cluster sizes vary as a
the largest cluster. We restrict ourselves then to this clustgpower law of 0 —p.) abovep. . For fixedk and ¢ the value
and start the infection with one or few infectious sites at timeof p. is in good agreement with the analytical predictions of
0. These sites will infect all the connected sites in the nextNewman and Watt$7] [Eq. (1)]. However, in the case of
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fluctuations ofk and ¢, this threshold decreases sensitively 800 T T T - -
[about 50% in the case shown in Figal as the fluctuations ~ @ ®
increase. Therefore, the average valuek @hd ¢ are not .8 geol i
sufficient to characterize an epidemic outbreak. The SC fluc-§
tuationsé¢ decrease, as a power law with an exponent 0.1 §
[as shown in Fig. ()], indicating a sensitive participation of ﬁ 400 i
the larger values o to built the largest cluster. Therefore, N
the percolation threshold behaves as g 200 | .
2
pe=¢ 8¢ 0L 2 e
Occupied sites concentration (%)
From this behavior, we can estimate the percolation thresh- 10000 ¢ . . .
old in a real sample of school age children to be in the range E (b)

2.3% to 2.8%.

Now let us restrict ourselves to the case of fikeg2 and
¢ =6 in order to examine the statistical behavior of the clus- 1000 ¢
ters aroundp. (without loss of generality, these values are
chosen only becauseg, is large enough to enable sufficient
cluster statistics for such a sample $iz2&/e found that the
cluster size fluctuations are maximum at this threshekk
Fig. 2@] implying a divergence of this quantity gi.,
which seems to be the signature of a phase transition. The I
cluster size distributiorisee Fig. 2b)] confirms this diver- 10 L
gence since it decreases exponentially befwwhile it is :
power-law decreasing at this threshdttiis power-law be- i P
havior is in agreement with the results of Castellaial. -

100 |

Occurrence

[12] on other systems Indeed, atp. this corresponds to a 1 T T T
Lévy distribution [13] with an exponent of 2.13 indicating 5 10 15 20
the divergence of all its moments. We notice here that only Cluster size (sites)

the higher sizegrare eventscontribute to the outbreak at,

(as expected in such distribution#\bove p. the small size ' ' ' T ' '
clusters areabsorbedby the largest one and we have again g8 (0 . T
an exponentially decreasing distribution for small clusters I
while there is only one very large clustgrot shown in Fig. g 84 1
2(b)]. T .

Since the cluster size does not diverg@at it is obvious > 80f .
thatx is not universalbecause it is not a critical expongnt E
but it is interesting to know how it depends @hin such §_ 76 - . " g
lattices. In Fig. 2c), the exponenk seems to vary only lin- % |
early for larger values ofp but with a very small slope 72 F J
(about 5.6<10 ). It is difficult to predict its behavior for I
very small values ofb because in this case the network tends o 5 10 B 20 25 30 35
to a regular one and the cluster size becomes very large s o (sites)

that the sample sizes considered here do not allow us to
measure this exponent accurately.

However, even if the parameters chosen in this model are
close to those of a real social network, it seems impossible
for epidemiologists to check these results. Indeed, as ex-

plained below, they cannot measure the density of suscep- gig 2. (a) Cluster size fluctuationssites versus the occupied
tibles, except if they investigate systematically the serologyites concentrationd=6 sites. The solid curve is a guide for the
of a sufficiently large sample of school age childferg., for  eyes (b) Distribution of the cluster sizésites for fixed (k=2, ¢

a city sample¢ Therefore, the behavior op. should be —g) in a semilog plot atp, (solid curvé and p=1% (dotted
checked for measurable quantities. In the case of diseas@rve. The dotted line is a linear fit of the data belpw. The inset
propagation, the time dependence of the number of cases c&na log-log plot of the distribution gt with a linear fit.(c) Varia-
be directly measured by epidemiological techniques. We wilkion of the exponent with the number of short cutg (siteg. The
investigate this dynamical behavior in the following section.solid line is a linear fit of the data to 5610 2.
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IV. DYNAMICAL STUDY OF THE PROPAGATION 7 T T T
OF A DISEASE 600 - (a) .

In this section we restrict ourselves to the fixed values of
k and ¢ (2 and 30, respectivelyto simulate a sample of 400 -
school age children. From the results of Fi¢)2we assume
that the main growing effect of the infection comes from the
largest cluster and estimate the propagation time of the epi
demics only from this cluster. We determine the evolution
with time of the number of cases for both phases endemic
(p<p.) and epidemic f=p.). As shown in Fig. 2a) the ; .:
cluster size ap. strongly fluctuates and, therefore, the time i A I p=4.5% (p )
behavior of the number of cases also fluctuates. The varia ; nEr p8%
. . . . . . 20 P ] -
tion of the number of cases with time is shown in Figa)3 ; .
for three casegjust belowp., at p., and abovep.) with v DN
only one initial infectious site. In both cases, the number of Vi e ST
cases increases up to a maximum and then decrease becal 0 10 20 30 40 50
the number of susceptibles decreases. In the endemic phas Time (arbitrary units)
the number of connections between occupied sites in the
cluster is mostly one and does not allow a significant in-
crease of the number of cas@be behavior in this case is !
underestimated since all the clusters should contribute to thic pffgf,/
increasg For susceptible densities aroupd this situation o .| "
persists for a long time and the number of cases increase s a4 ) i
linearly with time showing a normal diffusion of the disease. §
In the epidemic phase the increase becomes exponential ir§
dicating a “superdiffusion” [13,14] of the disease, due
mainly to the increasing number of connections in the cluster
[as shown in Fig. ®)]. This exponential growth is also ob-
served for SIR modelgl5], where the rate is proportional to
the basic reproduction rate,, which correponds in our case
to the average number of connections in the cluster. We hawvi
also performed a Monte-Carlo simulation to the measles
propagation in a more realistic samplgrths, deaths, infec- % A i
tion, and latent periods, ejcwhere the average infections is [ i
two for each infectious individual and found also an expo-
nential growth of the infected casgkb]. Therefore, this ex-
ponential growth does not seem to depend on the topology o
the sample but the rate is sensitive to the geometry of the
network. Note in the present work that in the case of more
than one initial infectious sitesee Fig. &)] the exponential
growth behavior does not change but the growing rate fluc- . _ . _ . _ . _ ,
tuates due to the fluctuating number of connections. The av- 2 4 6 8 10
erage rate of the exponential growgh(corresponding to the Number of initial infectious sites
characteristic time of the epidemjcs shown in Fig. 4 to

increase ad.n(p) abovep., while the period of this epi- FIG. 3. (8 Number of cases versus time for three different

demic behavior decreases. From this figure we can ConC|Udceases:p=3.5% (solid curve, p=4.5% (dashed curve and p
that when the characteristic time decreases below(fivey —8% (dotted curve Inset: log-log plot with a power-law fit of

increases above 0,2he epidemic behavior takes over. This _ 4 504 and an exponential fit gi=8%. (b) Distribution of the

behavior seems to have a direct application in epidemiology,ymber of connectiongacquaintancesin the largest cluster fop
since it provides a method for the estimation of the serologi-— 3 59 (solid curve, p=5% (dashed curve andp=10% (dotted

cal situation(density of susceptibl¢drom the characteristic curve. (c) The rate of the exponential growtin arbitrary units

time that is easily measurable. Therefore, this result stimuversus number of initial infectious sites. The horizontal line is the

lates a proposal for a serological examination for a giveraverage rate.

childhood disease in a sample of school age children, but

during an epidemic period to compare a realistic behavioanother sitg with a probabilityp, if j is a neighbor of and

with that obtained in this paper. Psc if it is a shortcut. The motivation of this investigation is
Now let us examine the case of adding different infectionthat a susceptible child has a different probability to be in-

probabilities to this system. We consider that a sitefects  fected by his brother¢or sister$ than by the other children

200
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u><.' 0 . ) . 1 . 1 o0 1 N I N 1 . I N

5 10 15 20 5 10 15 20 25

Concentration p (%) Time (arbitrary units)
FIG. 4. The rate of the exponential growth vergusThe solid FIG. 5. The number of infected cases versus tiimearbitrary

line is a fit of the curve linearly with.n(p). units) for one initial infectious site and an infection probability one

(solid curve, and the probabilities of infectiorp,=0.1 andps.
=0.9 (dotted curve The dashed curve is a power-law fit of the

meeting him at the school. We see clearly a double diffusiorfécond data in the region of the double diffusion.
behavior in Fig. 5(for p,=0.1 andps.=0.9), where the

number of infected starts growing exponentially up to thephases a “superdiffusion” with an exponentially growing
characteristic time (3/), then it increases as a power law Up number of infected sites, while gt this number increases as
to a new characteristic time from which it grows again ex-a power law. The growing characteristic time is larger than
ponentially with the same rate. The slow diffusion is due tofive in the endemic situation and decreases linearly with
the small contact probability for the neighbors,&0.1) and  Ln(p) in the epidemic phase. This result provides a way to
has been observed in other fields7]. This slow diffusion  estimate the density of susceptibles in the epidemic phase.
appears very short because the number of NN is very smallVe propose then a serological investigation in epidemic situ-
(k=2). It should be interesting to investigate this doubleations to check this behavior. Finally, we examined the case
diffusion for largerk (which is the case of animal diseases Where the infection probability is very small in theN com-
pared to the SC. The dynamical behavior of infected cases
shows a double diffusion with two characteristic times, and a
V. CONCLUSION power-law increasédeceleration between them. We think
We have investigated in this paper, the statistics of théhat this effect is useful for samplgs with Iarge. NN.and
cluster sizes in a one dimensional SWN by taking into ac-ShOWS a way to stop the propagation of the epidemic for
count the NN and SC fluctuations. We found that these flucpther diseases.
tuations decreasp. as a power law with a small exponent
leading to an expression for the percolation threshold. We
found also that cluster size fluctuations is the quantity gov- One of the authorg$N.Z.) would like to thank the Arab
erning the phase transition in such a network. On the otheFund for Economic and Social Development for financial
hand, in order to apply our results to the measured quantitiesupport. We thank Professor M. Barkby for fruitful dis-
in epidemiology, we have studied the dynamics of the discussions and Professor A. M. Dykhne for drawing our atten-
ease propagation in such clusters. We found in epidemition to the double diffusion behavior.
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