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Statistical and dynamical study of disease propagation in a small world network
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Statistical properties and dynamical disease propagation have been studied numerically using a percolation
model in a one dimensional small world network. The parameters chosen correspond to a realistic network of
school age children. It has been found that percolation threshold decreases as a power law as the shortcut
fluctuations increase. It has also been found that the number of infected sites grows exponentially with time
and its rate depends logarithmically on the density of susceptibles. This behavior provides an interesting way
to estimate the serology for a given population from the measurement of the disease growing rate during an
epidemic phase. The case in which the infection probability of nearest neighbors is different from that of short
cuts has also been examined. A double diffusion behavior with a slower diffusion between the characteristic
times has been found.
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I. INTRODUCTION

To model disease propagation, it is necessary to define
corresponding social network connecting any two individ
als in the world. The expected properties of such a netw
should be both the clustering~which excludes models of dis
order such as the random graphs@1#!, and to allow a connec
tion between any two individuals within a finite number
steps~which excludes the regular networks with only near
neighbor connections!. Indeed, for the latter feature Milgram
showed in 1967 that the average number of steps conne
any two individuals is six~also called six degrees of separ
tion! @2#. This behavior recently led Watts and Strogatz
propose the model of small world network~SWN! @3,4#.
They considered a low dimensional network with period
boundary conditions for convenience~a ring, for example!
where they rewired some bonds with a probabilityf to a
new site randomly chosen from the network. For small v
ues off, this still corresponds to a regular network but wi
few long range connections called shortcuts~SC!. A more
recent work on the SWN was proposed by Newman a
Watts @5#, where the numberk of nearest neighbors~NN! is
conserved but instead of rewiring, they added an aver
densityf of new bonds from each sitei to other randomly
chosen nodes~except its nearest neighbors!. A review of
these models and their application to various fields and
ticularly epidemics can be found in Refs.@3,6#. In these net-
works the percolation threshold was extensively investiga
and its dependence to the NN and SC was found to sa
the following equation@5,7#:

f5
~12pc!

k/2

pc
. ~1!

This threshold corresponds in epidemics to the smallest c
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centration of susceptibles leading to the outbreak@5#. How-
ever, the statistical behavior of percolative SWN networks
different from that of regular systems@8#. In particular, at the
percolation threshold, there is no diverging cluster for t
SWN because a SC between the two ends of the system
a finite probability to occur for any nonvanishing number
these bonds. On the other hand, the characteristic le
scale in such networks~which corresponds to the correlatio
length in regular lattices! behaves asf21/d at the percolation
threshold,d being the euclidean dimension of the system@7#.
It is then obvious that this characteristic length does not
verge for such networks. Therefore, a further investigation
the cluster statistics and the phase transition around this
colation threshold for such networks seems to be necess

Let us now consider the application of this model to e
demics, which seems to be one of its main aims. From
large amount of works using SWN, there is no direct co
parison with the existing data, may be due to the complex
of the diseases features~infection and latent periods, birth
and death rates, etc.!. Furthermore, the parameters us
~mainly f) are very small and do not simulate the real co
nections between individuals. They use also commonly
erage values of the NN and the SC while these quanti
strongly fluctuate in the real life~the number of contacts
friends, family members, etc., varies from 0 to few ten!,
which can influence sensitively the results on the density
susceptibles at the percolation threshold~epidemic outbreak!.
On the other hand, it is impossible in practice to measure
density of susceptibles systematically~it needs an extensive
serological investigation in the epidemic phase!. Generally,
for large population samples epidemiologists measure
evolution with time of the number of cases for a given d
ease. It is then necessary to study the dynamical behavio
the propagation of the disease and relate it to the densit
susceptibles. There are only few works that examined~only
qualitatively! the dynamical behavior of the disease on soc
networks@9–11#. The aim of these works was to show ho
the density of infected behaves in the endemic and epide
phases.
©2001 The American Physical Society15-1
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In this paper, we use a site percolation on a SWN w
parameters (k and f) representing a sample of school a
children to study the effect of the fluctuations of NN and S
on the percolation threshold. Furthermore, in order to p
pose a formula for determining the serology of the sam
from the rate of increase of the number of cases, we inv
tigate also extensively the dynamical behavior of an inf
tious disease as well as its effect on the density of sus
tibles below and above the percolation threshold.
‘‘superdiffusion’’ is found above the percolation thresho
when the cluster is initially infected by one or a small nu
ber of infectious sites and its characteristic time depende
on the density of susceptibles is determined. We exami
also the case where the infection probability of the NN
different from that of SC, showing a double diffusion wi
two characteristic times. In the next section we describe
model and then present the results on the cluster stati
and the percolation threshold. The results on the dynam
behavior of the disease are presented in Sec. IV.

II. MODEL DESCRIPTION

We consider the one dimensional SWN described
Newman and Watts@5# but f represents the total number o
SC generated for each site uniformly from all the other s
of the network. In the case wherek andf are not fixed they
are generated randomly within a normal distribution cente
at their average values with fluctuationsdk anddf, respec-
tively. The coordination number is the total number of bon
to a given site (z5k1f). We study in this network a site
percolation problem@8# by assuming each susceptible sitej
~occupied! contracts the disease if it is connected with an
site i ~occupied also!. The occupied sites~susceptibles! are
randomly generated with a concentrationp while the empty
sites correspond to refracted individuals. Fork andf fixed,
the percolation thresholdpc is related tok andf by Eq. ~1!
@7#. This threshold corresponds to a transition from the
demic phase belowpc to the epidemic one above this poi
@10#. In SWN networks,pc is the minimum concentration o
occupied sites above which the average largest cluster sj
of the occupied sites becomes power-law increasing with
concentration@j5(p2pc)

x#, while it diverges in a regular
network @8# ~note here that the exponentx is positive!. By
analogy with the regular lattices@8#, we will check the uni-
versality of the exponentx.

We are interested in the application of such a model t
childhood disease like measles. In such diseases, epide
logical investigations on school age children can be ea
controlled and provide data with a minimum bias. W
choose parameter values corresponding to such a disea
taking k52 to be the average number of brothers, siste
and neighbors, whilef530 represents the average numb
of children one can meet at the school. These parame
should correspond to a topology closer to that encountere
a real social network. Regarding the dynamical study,
assume the major contribution to the epidemics provided
the largest cluster. We restrict ourselves then to this clu
and start the infection with one or few infectious sites at ti
0. These sites will infect all the connected sites in the n
05611
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step ~after a timeDt), which themselves infect their con
nected sites after 2Dt and so on. We assume the latent a
infection periods to be smaller thanDt, which is taken in the
rest of this paper as a unit time. The number of infected s
in each step is averaged by varying the initial infectious s
position through the whole cluster.

III. PERCOLATION THRESHOLD AND CLUSTER
DISTRIBUTION

In this section, we realize 100 configurations of the n
work described in the previous section with a size fixed
100 000 sites. We examine the effects off and its fluctua-
tions on the average cluster sizes,pc and x. Finally, we in-
vestigate the cluster size distribution aroundpc in order to
determine the main contribution to the propagation of
disease.

In Fig. 1~a! we show the variation of the cluster size wi
the concentration of occupied sites for three different cas
f56,30 ~fixed values! and fork andf randomly generated
with a normal distribution centered at 2 and 30, respective
with a fluctuation of 2 and 15, respectively. We see clea
from this figure that in all cases the cluster sizes vary a
power law of (p2pc) abovepc . For fixedk andf the value
of pc is in good agreement with the analytical predictions
Newman and Watts@7# @Eq. ~1!#. However, in the case o

FIG. 1. ~a! Cluster size~number of sites in the cluster! versus
concentration of the occupied sites for three cases:f56 ~solid
curve!, f530 ~dotted curve!, andf530 with fluctuationsdk52,
df515 ~dash-dotted curve!. ~b! pc versusdf ~sites! for f530
sites. The solid line is a fit of the data.
5-2
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fluctuations ofk and f, this threshold decreases sensitive
@about 50% in the case shown in Fig. 1~a!# as the fluctuations
increase. Therefore, the average values ofk and f are not
sufficient to characterize an epidemic outbreak. The SC fl
tuationsdf decreasepc as a power law with an exponent 0
@as shown in Fig. 1~b!#, indicating a sensitive participation o
the larger values off to built the largest cluster. Therefore
the percolation threshold behaves as

pc.f21df20.1. ~2!

From this behavior, we can estimate the percolation thre
old in a real sample of school age children to be in the ra
2.3% to 2.8%.

Now let us restrict ourselves to the case of fixedk52 and
f56 in order to examine the statistical behavior of the cl
ters aroundpc ~without loss of generality, these values a
chosen only becausepc is large enough to enable sufficie
cluster statistics for such a sample size!. We found that the
cluster size fluctuations are maximum at this threshold@see
Fig. 2~a!# implying a divergence of this quantity atpc ,
which seems to be the signature of a phase transition.
cluster size distribution@see Fig. 2~b!# confirms this diver-
gence since it decreases exponentially belowpc while it is
power-law decreasing at this threshold~this power-law be-
havior is in agreement with the results of Castellanoet al.
@12# on other systems!. Indeed, atpc this corresponds to a
Lévy distribution @13# with an exponent of 2.13 indicating
the divergence of all its moments. We notice here that o
the higher sizes~rare events! contribute to the outbreak atpc
~as expected in such distributions!. Above pc the small size
clusters areabsorbedby the largest one and we have aga
an exponentially decreasing distribution for small clust
while there is only one very large cluster@not shown in Fig.
2~b!#.

Since the cluster size does not diverge atpc , it is obvious
that x is not universal~because it is not a critical exponent!,
but it is interesting to know how it depends onf in such
lattices. In Fig. 2~c!, the exponentx seems to vary only lin-
early for larger values off but with a very small slope
~about 5.631023). It is difficult to predict its behavior for
very small values off because in this case the network ten
to a regular one and the cluster size becomes very larg
that the sample sizes considered here do not allow u
measure this exponent accurately.

However, even if the parameters chosen in this model
close to those of a real social network, it seems imposs
for epidemiologists to check these results. Indeed, as
plained below, they cannot measure the density of sus
tibles, except if they investigate systematically the serolo
of a sufficiently large sample of school age children~e.g., for
a city sample!. Therefore, the behavior ofpc should be
checked for measurable quantities. In the case of dise
propagation, the time dependence of the number of cases
be directly measured by epidemiological techniques. We
investigate this dynamical behavior in the following sectio
05611
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FIG. 2. ~a! Cluster size fluctuations~sites! versus the occupied
sites concentration (f56 sites!. The solid curve is a guide for the
eyes.~b! Distribution of the cluster size~sites! for fixed (k52, f
56) in a semilog plot atpc ~solid curve! and p51% ~dotted
curve!. The dotted line is a linear fit of the data belowpc . The inset
is a log-log plot of the distribution atpc with a linear fit.~c! Varia-
tion of the exponentx with the number of short cutsf ~sites!. The
solid line is a linear fit of the data to 5.631023.
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IV. DYNAMICAL STUDY OF THE PROPAGATION
OF A DISEASE

In this section we restrict ourselves to the fixed values
k and f ~2 and 30, respectively! to simulate a sample o
school age children. From the results of Fig. 2~b!, we assume
that the main growing effect of the infection comes from t
largest cluster and estimate the propagation time of the
demics only from this cluster. We determine the evoluti
with time of the number of cases for both phases ende
(p,pc) and epidemic (p>pc). As shown in Fig. 2~a! the
cluster size atpc strongly fluctuates and, therefore, the tim
behavior of the number of cases also fluctuates. The va
tion of the number of cases with time is shown in Fig. 3~a!
for three cases~just below pc , at pc , and abovepc! with
only one initial infectious site. In both cases, the number
cases increases up to a maximum and then decrease be
the number of susceptibles decreases. In the endemic p
the number of connections between occupied sites in
cluster is mostly one and does not allow a significant
crease of the number of cases~the behavior in this case i
underestimated since all the clusters should contribute to
increase!. For susceptible densities aroundpc this situation
persists for a long time and the number of cases incre
linearly with time showing a normal diffusion of the diseas
In the epidemic phase the increase becomes exponentia
dicating a ‘‘superdiffusion’’ @13,14# of the disease, due
mainly to the increasing number of connections in the clus
@as shown in Fig. 3~b!#. This exponential growth is also ob
served for SIR models@15#, where the rate is proportional t
the basic reproduction rateR0, which correponds in our cas
to the average number of connections in the cluster. We h
also performed a Monte-Carlo simulation to the meas
propagation in a more realistic sample~births, deaths, infec-
tion, and latent periods, etc.!, where the average infections
two for each infectious individual and found also an exp
nential growth of the infected cases@16#. Therefore, this ex-
ponential growth does not seem to depend on the topolog
the sample but the rate is sensitive to the geometry of
network. Note in the present work that in the case of m
than one initial infectious site@see Fig. 3~c!# the exponential
growth behavior does not change but the growing rate fl
tuates due to the fluctuating number of connections. The
erage rate of the exponential growthg ~corresponding to the
characteristic time of the epidemics! is shown in Fig. 4 to
increase asLn(p) abovepc , while the period of this epi-
demic behavior decreases. From this figure we can conc
that when the characteristic time decreases below five~or g
increases above 0.2!, the epidemic behavior takes over. Th
behavior seems to have a direct application in epidemiol
since it provides a method for the estimation of the serolo
cal situation~density of susceptibles! from the characteristic
time that is easily measurable. Therefore, this result stim
lates a proposal for a serological examination for a giv
childhood disease in a sample of school age children,
during an epidemic period to compare a realistic behav
with that obtained in this paper.

Now let us examine the case of adding different infect
probabilities to this system. We consider that a sitei infects
05611
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ranother sitej with a probabilitypn if j is a neighbor ofi and
psc if it is a shortcut. The motivation of this investigation
that a susceptible child has a different probability to be
fected by his brothers~or sisters! than by the other children

FIG. 3. ~a! Number of cases versus time for three differe
cases:p53.5% ~solid curve!, p54.5% ~dashed curve!, and p
58% ~dotted curve!. Inset: log-log plot with a power-law fit ofp
54.5% and an exponential fit ofp58%. ~b! Distribution of the
number of connections~acquaintances! in the largest cluster forp
53.5% ~solid curve!, p55% ~dashed curve!, andp510% ~dotted
curve!. ~c! The rate of the exponential growth~in arbitrary units!
versus number of initial infectious sites. The horizontal line is t
average rate.
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meeting him at the school. We see clearly a double diffus
behavior in Fig. 5~for pn50.1 andpsc50.9), where the
number of infected starts growing exponentially up to t
characteristic time (1/g), then it increases as a power law u
to a new characteristic time from which it grows again e
ponentially with the same rate. The slow diffusion is due
the small contact probability for the neighbors (pn50.1) and
has been observed in other fields@17#. This slow diffusion
appears very short because the number of NN is very s
(k52). It should be interesting to investigate this doub
diffusion for largerk ~which is the case of animal disease!.

V. CONCLUSION

We have investigated in this paper, the statistics of
cluster sizes in a one dimensional SWN by taking into
count the NN and SC fluctuations. We found that these fl
tuations decreasepc as a power law with a small expone
leading to an expression for the percolation threshold.
found also that cluster size fluctuations is the quantity g
erning the phase transition in such a network. On the o
hand, in order to apply our results to the measured quant
in epidemiology, we have studied the dynamics of the d
ease propagation in such clusters. We found in epide

FIG. 4. The rate of the exponential growth versusp. The solid
line is a fit of the curve linearly withLn(p).
,
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phases a ‘‘superdiffusion’’ with an exponentially growin
number of infected sites, while atpc this number increases a
a power law. The growing characteristic time is larger th
five in the endemic situation and decreases linearly w
Ln(p) in the epidemic phase. This result provides a way
estimate the density of susceptibles in the epidemic ph
We propose then a serological investigation in epidemic s
ations to check this behavior. Finally, we examined the c
where the infection probability is very small in theNN com-
pared to the SC. The dynamical behavior of infected ca
shows a double diffusion with two characteristic times, an
power-law increase~deceleration! between them. We think
that this effect is useful for samples with large NN a
shows a way to stop the propagation of the epidemic
other diseases.
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FIG. 5. The number of infected cases versus time~in arbitrary
units! for one initial infectious site and an infection probability on
~solid curve!, and the probabilities of infection:pn50.1 andpsc

50.9 ~dotted curve!. The dashed curve is a power-law fit of th
second data in the region of the double diffusion.
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