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Multibaker map for shear flow and viscous heating
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A consistent description of shear flow and the accompanying viscous heating as well as the associated
entropy balance is given in the framework of a deterministic dynamical system. The laminar shear flow is
modeled by a Hamiltonian multibaker map which drives velocity and temperature fields. In the appropriate
macroscopic limit one recovers the Navier-Stokes and heat conduction equations along with the associated
entropy balance. This indicates that results of nonequilibrium thermodynamics can be described by means of
an abstract, sufficiently chaotic, and mixing dynamics. A thermostating algorithm can also be incorporated into
this framework.
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I. INTRODUCTION

Shear flows provide one of the paradigms of transp
processes@1–5#. The importance of chaos in the equatio
underlying macroscopic shearing has recently been
dressed by various numerical studies@6–9#, which to some
extent were supported by kinetic theory@3,9# and rigorous
mathematical work@7,10#. In contrast, however, a simple
exactly solvable model based on a low-dimensional cha
dynamics—whose mixing property would be the cause
irreversibility—has not yet been established. For mate
and heat transport such types of model have helped to un
stand the physical content of thermostating schemes use
numerical simulations@11–14# ~see, however,@15# for open
questions!. In the present article we introduce a simil
model for shear flows in the hope that it can also serve s
a purpose. The approach will be based on multibaker m
Previous work in this spirit described the phenomena of
fusion @16–18#, conduction in an external field@19–22#,
chemical reactions@23#, thermal conduction@24#, and cross
effects due to the simultaneous presence of an external
and heat conduction@25,26#. These models are based on
abstract dynamics, rather than on microscopic particle tra
tories. The appropriate definition of heat is therefore still n
settled. In the present model for shear flow, however,
temperature has a source, which follows from the conse
tion laws of the dynamics, and can naturally be called v
cous heating.

Our aim is to model a sheared fluid confined between
parallel walls at the coordinatesx50 andx5L ~Fig. 1!. The
flow is assumed to be two dimensional in the (x,y) plane.
Shear is induced by prescribing differenty components of
the average velocitiesv of particles close to the respectiv
walls. In order to make the calculations more transparent,
confine the discussion to cases where the driving is su
ciently weak to induce only a laminar flow, i.e., to cas
where the velocity of particles is always directed in the v
tical direction such thatv5„0,v(x)…. For this system we es
tablish a local entropy balance that covers time depend
effects and does not rely on the implementation of bound
conditions.
1063-651X/2001/64~5!/056106~11!/$20.00 64 0561
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Three different boundary conditions for dealing with th
dissipated heat are considered.~i! In the simplest case the
system is isolated. A stationary linear velocity profi
emerges in that case, and the temperature becomes uni
No steady state is reached, however, due to a constan
crease of temperature in response to the viscous heatin
addition, we consider systems where~ii ! there is a bulk ther-
mostat uniformly taking out the viscous heat, and~iii ! the
temperature is fixed to the same value at both boundarie
that the asymptotic temperature profile is stationary, but
longer uniform.

The paper is organized as follows. In Sec. II we rec
basic notions of irreversible thermodynamics that are to
recovered in a suitable continuum limit of the multibak
dynamics. In Sec. III we introduce the model, and estab
the evolution equations for the velocity and the temperat
field. This allows us to address the entropy dynamics and
balance equation~Sec. IV!. Subsequently, in Sec. V the mac
roscopic limit of the resulting equations is worked out. T
global behavior at different boundary conditions is compa

FIG. 1. Graphical illustration of the shear flow. The system
confined between two walls at positionsx50 and L. The walls
move relative to each other in they direction, thus inducing a ve-
locity profile v(x) indicated by vertical arrows. For a fixed tem
perature at the walls this leads to an accompanying heat flow in
x direction ~gray arrows!.
©2001 The American Physical Society06-1
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to irreversible thermodynamics in Sec. VII, and conclusio
are drawn in Sec. VIII.

II. IRREVERSIBLE THERMODYNAMICS

In this section we recall the thermodynamic description
shear flows accompanied by viscous heating. The pictur
simplified by considering an incompressible fluid at const
pressure.

A. Transport equations

For a system with constant density and pressure the t
peratureT is the only relevant state variable, and for a co
plete description one also has to specify the velocity fielv
of the fluid @1,2#. The thermodynamic state variables are t
velocity fieldv and the temperatureT @2#. Mass conservation
is expressed by a continuity equation. For incompress
fluids the uniform mass densityr implies that the flow is
divergence-free, i.e.,

] iv i50. ~1!

Herei 5x,y labels the components of the local flow veloci
v[(vx ,vy), and we adopted the Einstein convention, i.
summation over repeated indices. The equation of motion
the velocity components is given by the Navier-Stokes eq
tion. For the case of a negligible pressure gradient it rea

d

dt
v i5n] j] jv i , ~2!

wheren is the kinematic viscosity, andd/dt is the total time
derivative.

The system of equations is closed@2# by the equation

d

dt
T5

l

rcV
] i] iT1

1

2

n

cV
~]kv l1] lvk!~]kv l1] lvk! ~3!

for the temperature evolution. Here,cV is the specific heat a
constant volume, andl is the thermal conductivity.

B. Entropy balance

The balance equation of the entropy densitys is

] ts5s ( irr )1F, ~4!

F52] i j i
(s)1F (th), ~5!

wheres ( irr ) is the irreversible entropy production reflectin
the viscous heating of the flow,F the entropy flux, andj (s)

the entropy-current density. The termF (th) models an en-
tropy flux let into a heat bath. It takes nonvanishing valu
wherever there is a flux into the environment~i.e., for in-
stance, at the boundaries when there is a heat flux thro
the walls!. We call a system athermodynamic bulk system
when the termF (th) vanishes. On the other hand, it is co
venient to consider also cases with a nonvanishingF (th) in
the bulk. We say that a system is subjected to anideal ther-
mostatwhen the dissipated heat is directly let into the h
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bath. In that case the entropy current vanishes in the ste
state,j i

(s)50, while F (th) is nonzero in the bulk, and coun
terbalances the steady-state entropy production.

For an incompressible fluid in local equilibrium the Gibb
relation ds5du/T applies locally. The evolution equation
can be used to evaluate the terms in Eq.~4!. A straightfor-
ward calculation yields for the rate of irreversible entro
production„cf. for instance@1, Chap. XII. Eq.~23!#…

s ( irr )5l
~] iT!~] iT!

T2
1

nr

2T
~] jvk1]kv j !~] jvk1]kv j !.

~6!

The associated entropy current takes the form@1, Chap. XII.
Eqs.~22! and ~24!#

j i
(s)52l

] iT

T
. ~7!

It depends only on the local temperature and its gradient.
flow velocity v does not enter.

C. Laminar flow

For a laminar flow driven by prescribed nontrivialy com-
ponents of the velocity at the two walls, the velocity field
any position (x,y) takes the formv[„0,v(x)… ~see Fig. 1!.
The x component of the velocity vanishes, and the profile
translationally invariant in they direction ~parallel to the
walls!. We restrict our investigation to cases where the sa
holds for the temperature such thatT5T(x). Consequently,
for laminar flow the transport equations take the form

] tv5n ]x
2v, ~8a!

] tT5
l

rcV
]x

2T1
n

cV
~]xv !2, ~8b!

while the rate of irreversible entropy productions ( irr ) and
the entropy currentj (s) can be written as

s ( irr )5lS ]xT

T D 2

1
nr

T
~]xv !2, ~9a!

j (s)52l
]xT

T
. ~9b!

The scalar currentj (s) denotes thex component of the en-
tropy current, and an analogous convention is adopted fo
currents. They components of the currents vanish in th
setting considered.

III. THE MULTIBAKER MAP

In order to model the laminar flow we divide the plan
into square cells of sizea3a that are large enough, on th
one hand, to admit thermodynamically meaningful averag
but, on the other hand, sufficiently small to neglect gradie
across cells. The cells are considered as the regions us
irreversible thermodynamics to define local equilibrium va
6-2
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ables. The system shown in Fig. 1 is represented by a r
angular array ofN[L/a cells in the horizontal direction, an
an infinite number of cells vertically@Fig. 2~a!#. Cells are
labeled by the indicesmx50, . . . ,N11, and my5
2`, . . . ,̀ . All cells have the same dynamics except t
outermost ones where it is modified to implement bound
conditions.

A. Action of the mapping in the „x,y… plane

After each time unitt every cell is divided into five col-
umns@Fig. 2~b!#. The rightmost~R! and leftmost~L! columns
have widthag. They are mapped onto a strip of heightag in
cell (mx11,my) and cell (mx21,my), respectively. The left
column ~U! of widths au is mapped upward onto a strip o
heightau in cell (mx ,my11), and the right one labeled b
~D! downward into (mx ,my21), respectively. RegionS
stays within the cell. In all cases the area of the strips
preserved.

This dynamics is driving two fields. Denoting the com
posite index (mx ,my) asm, these fields are~i! the velocity
field vm describing the mean flow velocityv(x,y) in cell m;

FIG. 2. Graphical illustration of the action of the multibak
map on its phase space (x,y). The indices labeling the columns an
rows are given on the lower and left margins, respectively, wh
their width is indicated at the upper and right margins.~a! The
mapping is defined on a domain ofN12 identical columns of
square cells of sizea3a that are labeled by the indicesmx

50, . . . ,N11 andmy52`, . . . ,̀ . Boundary conditions on the
flow are implemented in the shaded cellsmx50 andN11. ~b! The
action of the map on regions that are mapped into cell (mx ,my).
The contraction and expansion for these regions is indicated by
deformation of the tags (R,U,S,D,L) in the different branches o
the map.
05610
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~ii ! an energy fieldwm that represents the kinetic energy
peculiar kinetic energy!.

The dynamics on this two-dimensional lattice can be c
sidered as a model of the velocity and energy transport in
configuration space. In order to obtain a faithful represen
tion of the entropy balance, however, one has to consider
phase-space dynamics. To define the dynamics in the an
of a m space, we take into account the translation invaria
of the problem. The velocity and energy fields can take
different values in the columnsmx50, . . . ,N11 of Fig.
2~a!, but the fields have to be uniform within every colum
In this respect it is not necessary to follow the dynamics
the y direction, and one achieves a quasi-one-dimensio
dynamics in an (x,p) space, wherep represents a momen
tumlike variable of the model.

B. Action of the mapping in the „x,p… space

The domain of the multibaker representation in the (x,p)
space is shown in Fig. 3~a!. It comprises a chain ofN12
cells of sizea3b that for sake of more condensed notati
are labeled by the indexm ~instead ofmx). The middleN
cells represent the bulk, and two additional ones are use
implement boundary conditions~cf. Sec. VI!. The parameter
b sets the momentum scale. It will not play any role in the
modynamic considerations.

In order to maintain the same dynamics in the transp
direction in the two representations of the flow, each cel
divided into three columns of sizeag, aŝ, andag, whereg is
the same as above andŝ5122g. The left and right columns
of cell m are mapped into a strip of heightag in cell m11
and cell m21, respectively, as shown in Fig. 3~b!. The
middle column of sizeaŝ is squeezed and stretched onto
strip of heightbŝ and remains in the same cell.

This multibaker dynamics drives the velocity and ener
fields. Their values might depend on the phase-space coo
nate. Hence, we are dealing with a bivariate distribution
the velocity v(x,p) and peculiar kinetic energyw(x,p)
within each cellm. Only the cell averagesvm andwm appear

e

he

FIG. 3. Graphical illustration of the (x,p) multibaker represen-
tation of the laminar flow.~a! Domain of the map. The outermos
cells ~indicated as dark gray boxes! are again used to implemen
boundary conditions.~b! Action in the bulk. The average values o
the fieldsv(x,y) and w(x,y) in the cells@cf. Eqs. ~12! and ~18!#
and strips@cf. Eqs.~11! and ~19!# are given on the margins.
6-3
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in the transport equations. The dependence ofv(x,p) and
w(x,p) on the phase-space coordinates contributes es
tially to the entropy dynamics, however.

C. The dynamics of the velocity field

The mass densityrm is proportional to the average phas
space density%m in cell m, i.e.,

rm5Mb%m , ~10!

whereM is a constant of dimension mass. When interpret
the mass density or associated quantities from the poin
view of the two-dimensional flow,rm is to be understood a
a mass density in thex coordinate per unit length in they
direction. Hence,rmvm represents the preserved momentu
density~per unit length! of the hydrodynamic flow. Its evo
lution expresses momentum conservation. As a conseque
the updated values for the velocity on the strips (L,Ŝ,R)
after one time unit are@see the right side of Fig. 3~b!#

rm8 vm,l8 5rm11vm11 ,

rm8 vm,s8 5rmvm , ~11!

rm8 vm,r8 5rm21vm21 ,

where vm,l8 , vm,s8 , and vm,r8 stand for the velocities of the

flow in the regions (L,Ŝ,R) of cell m, respectively. The
prime indicates that the updated values of the field are c
sidered. The average momentumrmvm of the full cell is the
average of the contributions in the different strips, i.e.,

rmvm5~grm,rvm,r1 ŝrm,svm,s1grm,lvm,l ! ~12!

at any instant of time. If the velocity is initially uniform in
the full cell ~i.e., the values ofv in all strips agree!, then due
to Eqs.~12! and~11! the average velocity of cellm becomes
after one time step

rm8 vm8 5~122g!rmvm1grm21vm211grm11vm11 .
~13!

Observing that the mass densityr is uniform and constant in
time, the updated value of the cell velocityvm is found to be

vm8 5vm1g~vm211vm1122vm!. ~14!

This evolution can be written in the form of a discrete b
ance equation

vm8 2vm

t
52

j m11
(v) 2 j m

(v)

a
~15!

with the discrete current defined by

j m
(v)52

a2g

t

vm2vm21

a
. ~16!

In the boundary columnsm50 andN11 the dynamics will
be augmented by force terms~Sec. VI! in order to fix the
05610
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velocity to the constant valuesv0[vL and vN11[vR , re-
spectively, irrespective of the momentum flowing into the
cells.

D. The dynamics of the energy field

The full kinetic energyem of cell m is obtained by inte-
gratingem%m over the volumeab of the cell. At any instant
of time it is the spatial average of the energiesem,l , em,s ,
andem,r of the different strips,

em5gem,l1 ŝem,s1gem,r . ~17!

The difference between the energye and the translationa
specific kinetic energyMv2/2 of the flow defines the peculia
kinetic-energy densityw[e2Mv2/2, whose macroscopic
limit will be proportional to the local temperature. Therefor
on the stripi 5 l ,s,r in cell m one observes densitieswm,i of
the peculiar kinetic energy that satisfy

em,i5
M

2
vm,i

2 1wm,i ,

while at the same time the coarse-grained kinetic energyem
obeys

em5
M

2
vm

2 1wm .

Using these definitions and the averaging rule~17! for the
energy one finds

wm5gwm,l1 ŝwm,s1gwm,r1
M

2
@gvm,l

2 1 ŝvm,s
2 1gvm,r

2

2~gvm,l1 ŝvm,s1gvm,r !
2#. ~18!

This shows that the average kinetic energywm is not the
straightforward spatial average of the valueswm,i on the
strips. Rather, intracell variations of the velocity field~i.e., a
nontrivial distribution of thevm,i) also contribute towm .
This property is an immediate consequence of the conse
tion laws, and is therefore not restricted to multibaker mo
els.

For a thermally closed system the peculiar kinetic ene
w is advected by the flow. The values on the strips after o
time unit are then

wm,l8 5wm11 ,

wm,s8 5wm , ~19!

wm,r8 5wm21 .

From this and the update~11! of the velocities the updated
peculiar kinetic energy is found to be
6-4
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wm8 5wm1g~wm211wm1122wm!1
gM

2
@~vm212vm!2

1~vm112vm!2#2
M

2 Fa2g
~vm211vm1122vm!

a2 G 2

.

~20!

The first two terms account for a diffusive rearrangemen
the peculiar kinetic energyw. Therefore, we attribute the
terms proportional toM to the effect of viscous heating i
this discrete setting.

In order to model the action of a thermostat, which lea
to local changes of the peculiar kinetic energy due to a h
flux into the environment, an additionalthermostat heat
source qm is incorporated into the update ofwm by multiply-
ing the right-hand side of Eq.~20! by a factor@11tqm#,

wm8 5H wm1g~wm211wm1122wm!

1
gM

2
@~vm212vm!21~vm112vm!2#

2
M

2
g2@vm211vm1122vm#2J @11tqm#. ~21!

This equation can be rewritten as

wm8 2wm

t
5Qm1

a2g

t

wm1122wm1wm21

a2
~22!

with the full heat source

Qm5
qm

11tqm
wm8 1

a2g

t

M

2 F ~vm212vm!2

a2
1

~vm112vm!2

a2 G
2

t

2
MFa2g

t

~vm211vm1122vm!

a2 G 2

. ~23!

The equation for the update ofw can be rearranged into
balance equation for the heat per unit volume,

r

M

wm8 2wm

t
5

rQm

M m2
j m11
(w) 2 j m

(w)

a
, ~24!

which comprises the divergence of the discrete ‘‘heat’’ c
rent

j m
(w)52

a2g

t

r

M

wm2wm21

a
. ~25!

The first contribution toQm in Eq. ~23! reflects the action of
the thermostat, and the latter two the effect of viscous h
ing of the fluid. A steady state with a uniformw profile can
be found forQ50, which thus mimics an ideal thermosta
In contrast, in a bulk system in the sense of conventio
irreversible thermodynamicsqm50, andQm vanishes only
when the discrete velocity gradientsvm112vm and vm
2vm21 across the cell vanish.
05610
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Finally, we note that in this model the fieldsvm andwm
are passive in the sense that they do not influence the m
baker dynamics. Previous experience with a multibaker m
describing thermoelectric cross effects@25# suggests, how-
ever, that the present discussion is not affected by avm or
wm dependence of the parameterg.

IV. ENTROPIES AND THEIR TIME EVOLUTION

A. The coarse-grained and the Gibbs entropy

The Gibbs entropy for cellm of a multibaker system with
a density field %(x,p) and peculiar kinetic-energy field
w(x,p) takes the form@27#

Sm
(G)52kBE

cell m
dx dp %~x,p!lnF%~x,p!

%*
w~x,p!2gG

~26!

whereg is a free exponent. Since an initially uniform phas
space density%(x,p) is left invariant by the time evolution
one can identify the reference density%* with %(x,p) and
obtain

Sm
(G)5kBg

ar

M E
cell m

dx

a

dp

b
ln w~x,p!. ~27!

Here, we have already replaced the phase-space densi
the mass density~10!.

The coarse-grained entropy of cellm is based on the cell-
averaged coarse-grained valuewm of the kinetic energy
w(x,p). For the form~27! of the Gibbs entropy, one obtain

Sm5kBag
r

M
ln wm ~28!

as the coarse-grained entropy.
In order to discuss the thermodynamic time evolution

entropies, one conveniently starts with uniform densities
every cell @21,14#. In that case the coarse-grained and t
Gibbs entropies initially coincide. After one time step, ho
ever, they typically differ. The Gibbs entropy has chang
due to the fact that thew field takes different values on th
strips (R,Ŝ,L), leading to the new value

Sm
(G)5kBg%ab$g ln@wm21~11tqm!#

1~122g!ln@wm~11tqm!#1g ln@wm21~11tqm!#%

5kBg%abH ln@wm~11tqm!#1g ln
wm21

wm
2g ln

wm

wm11
J .

~29!

On the other hand, the coarse-grained entropy after one
step is

Sm8 52kBabg% ln wm8 . ~30!
6-5
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B. Entropy balance

The coarse-grained entropy depends only on the ave
kinetic-energy densitywm , and is therefore considered as t
multibaker analog of the thermodynamic entropy. Its tem
ral change can be decomposed as

DSm

abt
[

Sm8 2Sm

abt
5

~Sm82Sm
(G)8!2~Sm2Sm

(G)!

abt

1
Sm

(G)82Sm
(G)

abt
, ~31!

where information-theoretic arguments@20,21,25,14# lead
one to identify

D iSm

abt
[

~Sm82Sm
(G)8!2~Sm2Sm

(G)!

abt
~32a!

with the rate of entropy production, and

DeSm

abt
[

Sm
(G)82Sm

(G)

abt
~32b!

with the entropy flux. Note that the second term of the n
merator ofD iSm vanishes due to the initial condition of un
form fields in the cells.

Inserting the values forSm8 and Sm
(G)8 into the definition

~32a! yields

D iSm

at
5

kBgr

Mt F lnS wm8

wm
~11tqm!21D

2g ln
wm21

wm
2g ln

wm11

wm
G . ~33!

Remarkably, this expression for the entropy production d
not depend on the source termQm , but only on the values o
the coarse-grained fieldw in cell m and its neighbors. The
shear flow enters only indirectly through the updatewm8 of
wm .

Similarly to the other balance equations, the entropy fl
can be written as

DeSm

at
52

j m11
(s) 2 j m

(s)

a
1Fm

(th) , ~34!

where the discrete entropy currentj m
(s) takes the form

j m
(s)52kB

a g

t
g

r

M
ln

wm11

wm
, ~35a!

and

Fm
(th)5kBg

r

M
qm ~35b!

describes the direct flux into the thermostat. Such a flux
encountered whenever there is a nonvanishing source
05610
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qm . In view of Eq. ~23! this finding further supports the
interpretation ofqm andQm given at the end of Sec. III D.

V. THE MACROSCOPIC LIMIT

In this section we evaluate the expressions of the differ
quantities considered in Secs. III and IV, and identify con
tions for consistency with the thermodynamic results d
scribed in Sec. II.

A. Definition of the limit

For macroscopic systemsL@a ~i.e., N@1), so that the
spatial coordinate

x[am ~36!

is quasicontinuous. Moreover, the microscopic time scalt
is negligible as compared to the viscous relaxation ti
L2/n. Consequently, there is also a clear separation of typ
microscopic and macroscopic time scales such that the
can also be considered as a quasicontinuous variable.
denote the scaling limit, where all contributions to the tim
evolution that explicitly depend ona or t are neglected, as
the macroscopic limit. Formally, it can be evaluated as

a,t→0, ~37!

such that the kinematic viscosityn and the spatial coordinat
x[am are finite. As mentioned earlier, the fieldw is as-
sumed to go over into the local temperatureT(x) in the
macroscopic limit, i.e.,

wm→CkBT~x!, ~38!

whereC is a dimensionless constant.

B. The transport equations

The macroscopic form of the velocity current~16! be-
comes

j m
(v)52

a2g

t
]xv. ~39!

In order to achieve a meaningful thermodynamic result
ratio a2g/t has to be finite in the limit. Indeed, compariso
with Eq. ~8a! shows that

n[
a2g

t
~40!

is the kinematic viscosity.
Equations~39! and~40! imply that Eq.~14! is the discrete

form of the Navier-Stokes equation~8a! for the laminar flow.
Moreover, with this choice forg one obtains for the hea
current~25!

j (w)52
r

M
nCkB]xT. ~41!
6-6
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Hence, Fick’s law of heat conduction is recovered with t
heat conduction coefficient

l5
r

M
nCkB . ~42!

Due to Eq.~42!, the macroscopic limit of Eq.~21! reduces
to Eq. ~8b! for the temperature evolution:

] tT5
l

CkBr/M
]x

2T1
nM

CkB
~]xv !21qT. ~43!

Comparing the coefficients in this equation with the ones
Eq. ~8b!, one obtains

CkB5cVM . ~44!

The proportionality constantC introduced in Eq.~38! thus
corresponds to the specific heat at constant volume~mea-
sured in units ofkB).

C. The entropy balance

In the macroscopic limit the rate of irreversible entro
production~33! becomes

D iSm

at
→s ( irr )5kBgn

r

M S ]xT

T D 2

1
nr

T
~]xv !2. ~45!

It fully agrees with the thermodynamic form of the entro
production~9a! when the coefficientkBgnr/M in front of
the first term is the heat conductivity. In view of Eq.~42! we
thus conclude that in our modelg5C, i.e., the exponentg
appearing in the definition~26! of the entropy is proportiona
to the specific heat. Hence, the final form of the heat c
ductivity l can be settled to

l5
rgkBn

M
5rcVn. ~46!

Working out the expression~35a! for the entropy current
j m
(s) , one finds in the macroscopic limit

j (s)~x!52kBgn
r

M

]xT

T
52l

]xT

T
. ~47!

In view of Eq. ~46! this relation also fully agrees with it
thermodynamic counterpart~9b!.

VI. BOUNDARY CONDITIONS

In this section we demonstrate how boundary conditio
for the shear flow can be implemented in the multiba
dynamics.

A. Boundary conditions for the velocity field

The multibaker dynamics for cell 0 is shown in Fig.
~An analogous prescription holds in cellN11.! The action
of the strip mapped from cell 0 to 1 fully agrees with that
the corresponding strips in the bulk such that the dynam
of cell 1 agrees with the bulk dynamics of Fig. 3~b!. The
05610
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important differences about the dynamics at the boundary
that ~i! there is no column leaving cell 0 to the left, and~ii !
the momentum of the particles entering cell 0 is not p
served. Condition~i! reflects that no particles can penetra
the walls of the system, and~ii ! reflects that there is a forc
exerted by the boundary on the fluid. In stripL entering cell
0 ~and analogously stripR entering cellN11) the update of
the velocity consequently contains the contribution of t
external forcef 0 ( f N11), leading to

v0,l8 5v11
f 0t

gr
, ~48a!

vN11,r8 5vN1
f N11t

gr
. ~48b!

The update of the coarse-grained velocity of the leftmost
is

v085v01g~v12v0!1
f 0t

r
, ~49!

and an analogous relation holds for cellN11. A shear flow
with a prescribed shear rate is enforced by adjusting
forces in such a way thatv0 and vN11 take the respective
valuesvL andvR of the velocities at the walls at any time

In view of the time evolution ofvm , in a steady state@Eq.
~14! with vm8 5vm# the asymptotic velocity profile become
linear,

vm5vL1
m

N11
~vR2vL![vL1

m

N11
Dv, ~50!

irrespective of the temperature distribution in the system
As in the situation for heat transport decribed in@14, Sec.

8.1# one has to keep in mind that the implementation~49! of
the boundary conditions wrecks the time reversibility of t
dynamics. After all, the boundary conditions do not allo
reconstruction of the past velocity distribution of volume e
ements that entered the outermost cells. A thorough dis
sion of time reversibility in this model and its consequenc
on the probability distribution of fluctuations lie beyond th
scope of the present exposition, however.

B. Boundary conditions for the kinetic-energy density

The modification of the dynamics of the velocities at t
boundary also implies changes of the thermostat sou

FIG. 4. Implementation of the boundary condition in cell 0. T
indication of the width of strips, values of the fields on the strip
and action of the map follows the rules spelled out in Fig. 3.
6-7
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terms. Since the velocity in cell 0 is uniform by definitio
the update ofw0 can be found from Eq.~18! where the terms
containingwm,l and vm,l are not present since no particle
enter cell 0 from the left. Consequently,

w085@w01g~w12w0!#~11tq0!.

This leads to the discrete temporal change

w082w0

t
5

q0

11tq0
w081

1

a

a2g

t

w12w0

a
~51!

instead of Eq.~22!. For a steady statew082w0 vanishes, and
the equation implies@cf. Eq. ~25!#

aq052
a2g

t

~w12w0!/a

w01g~w12w0!
52

j 1
(w)

%@w01g~w12w0!#
.

~52!

The right-hand side of this expression is finite in the mac
scopic limit, where

aq0→2n
]xT

T U
x50

52
n j (T)~0!

lT~0!
. ~53!

Since, however,a→0 in the macroscopic limit, the thermo
stat heat sourceq0 cannot be interpreted as a density wh
there is a finite heat currentj (w)(0). Its integral over the cell,
aq0, however, stays finite. As a consequence, the heat
rent has to vanish in a steady state whenq05qN1150.

VII. DIFFERENT MACROSCOPIC FLOWS

We have seen that in the macroscopic limit the local m
mentum, energy, and entropy balances for the multiba
map coincide with their thermodynamic forms. This res
was achieved by inspecting the local time evolution of
densities without referring to particular boundary conditio
and it is not restricted to steady states. In order to under
these features, we discuss the global transport pictures
three different settings of transport. We emphasize that
considerations immediately generalize to arbitrary tim
dependent states although the particular calculations are
ried out for stationary coarse-grained velocity fields.

A. Isolated systems

In thermodynamics sheared systems are often consid
to be thermally isolated. In that caseqm identically vanishes
for all cells m50, . . . ,N11. Equation~51! implies for the
current~25!

j 1
(w)[2

a2g

t

r

M

w12w0

a
52

ar

M

w082w0

t
. ~54!

Assuming that the time derivative ofw0 is finite in the mac-
roscopic limit, the currentj 1

(w)→2a(r/M )CkB] tT(0) ap-
proaches zero asa→0. An analogous argument applies al
to j N11

(w) .
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Thus, for the asymptotic state, the boundary conditio
imply that w0 and wN11 essentially coincide withw1 and
wN , respectively. Moreover, the viscous heating termQm in
the bulk depends only on the square ofvm112vm . The heat-
ing is therefore spatially uniform in the long time limit. Wit
this input, one immediately verifies thatwm approaches a
spatially uniform valuew* . However, in view of the hea
sourceQm in Eq. ~23!, it constantly grows in time,

w* 82w*

t
5nM S Dv

a~N11! D
2

. ~55!

This temporalevolution ofw reflects the rise of temperatur
due to the entropy production in the system. After all,

D iSm

at
[

kBgr

tM
ln

w* 8

w*
5

kBgr

w*
nS Dv

a~N11! D
2

1O~t!

which in the macroscopic limit reduces to the thermod
namically expected value

s ( irr )~ t !5
rn

T* ~ t !
S Dv

L D 2

where T* (t)5const1(n/cV)(Dv/L)2t is the spatially uni-
form but temporally increasing asymptotic temperature d
tribution. Note that the fluxF (th) and the entropy curren
vanish in this setting, implying an ever increasing entrop

B. Systems subjected to an ideal„bulk … thermostat

In a system subjected to an ideal thermostat the visc
heating is instantaneously released into a heat bath. Acc
ingly, Qm vanishes for all cellsm51, . . . ,N such thatqm
can be determined from Eq.~23!.

Moreover, according to the results obtained in Sec. V
we are again dealing with a system with vanishing heat c
rents through its boundaries, i.e., for the asymptotic state
boundary conditions implyw05w1 and wN5wN11, and
there is no source termQ for the heat. Consequently,wm
approaches a spatially uniform statew* that isstationaryin
this case. Entropy production arises due to the nontriv
form of qm @cf. Eq. ~23! with Qm50#

qm[q* 52
nM @Dv/a~N11!#2

w* 1nMt @Dv/a~N11!#2

in the bulk@cf. the steady-state velocity profile~50!#. Hence,
the irreversible entropy change is

D iSm

at
[2

kBgb%

t
ln~11tq* !5

kBgr

Mw*
n

Dv2

a2~N11!2
1O~t!,

~56!

and in the macroscopic limit it reduces to the thermodyna
cally expected value
6-8
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sm
( irr )5

rn

T*
S Dv

L D 2

,

whereT* is the steady-state temperature. Also in this c
there is no entropy current in the steady state. Howeve
every location in the system there is a nonvanishing entr
flux into the thermostat, which can be formally identifie
with F (th) defined in Eq.~5!:

F (th)5kBgb%qm→2
rn

T*
S Dv

L D 2

. ~57!

It exactly compensatess ( irr ) such that the entropy indeed
stationary.

C. Thermostating at the walls

Finally, we discuss a steady state in a hydrodynamic b
system that generates heat flux into the walls due to the
scribed temperatures at the boundaries. There are no the
stat heat sources in the bulk, i.e.,qm50 for m51, . . . ,N.
On the other hand, there are source termsq0 andqN115q0
acting in the two outermost cells that fix the values ofw0 and
wN11 ~i.e., the temperature! to the same constant valuew0.
To this end the sources counterbalance a macroscopic
current releasing the viscous heat into the bath at the bo
aries @cf. Eq. ~52!#. In contrast to the previous cases, t
discrete heat current does not vanish at the boundarie
view of Eqs.~25! and ~51! the heat current through the le
boundary of the steady-state system is

j 1
(w)

r
[2n

w12w0

a
5

aq0

11tq0
w0 . ~58!

Since the dynamics is symmetrical andwN115w0, the cur-
rent at the right boundary takes the same value up t
change of the sign,

j N11
(w) 52 j 1

(w) .

In a steady state the cells in the bulk consequently satis

05r
wm8 2wm

t
5rn

Dv2

a2~N11!2
2

j m11
(w) 2 j m

(w)

a
,

leading to a linear profile of the heat current,

j m
(w)5aS m212

N

2 D rnS Dv
a~N11! D

2

. ~59!

In view of the definition Eq.~25! of j m
(w) , this implies a

parabolic profile ofw in the steady state,

wm* 5w02
am

2
a@m2~N11!#M S Dv

a~N11! D
2

, ~60!

as expected for the temperature profile in a shear flow s
jected to identical temperatures at the two ends.
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The entropy production in the bulk is related to the spa
variation of the steady-state distributionwm* @cf. Eq. ~33!#,

sm
( irr )[2

kBgr

tM Fg ln
wm21*

wm*
1g ln

wm11*

wm*
G

5
kBg

M F 1

wm*

j m11
(w) 2 j m

(w)

a
1

j m11
(w) 21 j m

(w)2

2rnwm*
2 G , ~61!

where the second equation was obtained by expanding
logarithms to second order in the differenceswm11* 2wm* ,
and rearranging terms. Using Eqs.~24!, ~23!, and ~59!, the
first term can be related to the applied shear rate, while
second one represents the contribution to the entropy pro
tion arising from the heat flow. Indeed, in the macrosco
limit one recovers in this case both contributions to Eq.~45!.
~For small shear rates the contribution from the tempera
change is, however, negligible.! Correspondingly, there is a
finite entropy currentj (s) at every point in the system, bu
only at the boundaries there is a flux into the thermos
According to Eq.~53! the macroscopic limit of the full en-
tropy flux through the boundaries becomes

aF (th)5kBgb%aq0→kBgn
r

M

]xT

T U
x50

. ~62!

Since the stationary temperature profile~the macroscopic
limit of wm* /CkB is obtained from Eq.~60! in the form of
T(x)5T(0)2@x(x2L)(M /2CkB)#(Dv/L)2, the derivative
at the origin is]xTux505ML(Dv/L)2/(2CkB). The contri-
bution at the right boundary is the same. Therefore we fi
for the integrated entropy flux

F (th,tot)52
rn

T0
LS Dv

L D 2

, ~63!

where we usedg5C. For weak shear this is essentially th
same as the integral of the constant flux~57! over the chain.
Thus, we conclude that for sufficiently small heat curre
thermostating in the bulk and at the boundaries can lea
the sameglobal behavior.

The work per unit time done by the external force den
ties f 0 and f N11 can be evaluated using their form Eq.~48!
and the value of the constant velocity gradient

a~ f 0vL1 f N11vR!5nr
~Dv !2

L
. ~64!

This expression is exactly2T0F (th,tot), such that in a steady
state the work done by the external forces equals the t
heat flux into the thermostat.

VIII. DISCUSSION

We have enlarged the family of multibaker maps by
model for momentum, energy, and entropy transport in v
cous hydrodynamic flows. Although the macroscopic pro
lem is of strongly dissipative nature, the proposed multiba
dynamics is area preserving~Hamiltonian!. This is to be con-
6-9
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trasted with previous multibaker models of electric transp
@20,21# and thermoelectric cross effects@25,26# where the
inclusion of a reversible dissipation mechanism was nec
sary in order to simulate the effect of thermostating on
particle dynamics. The form in which thermostating appe
in the present model is via a heat-source term in the mic
scopic energy dynamics~which was already present in th
model of cross effects@25#!. This term, however, does no
give rise to phase-space contraction.

The model has the following basic features.
~a! The time evolution of the system can be interpreted

that of weakly interacting particles. The resulting ‘‘mult
baker’’ gas obeys the classical ideal-gas equation of st
The particle and heat diffusion coefficients and the kinem
viscosity are proportional to each other, as in the kine
theory for classical ideal gases@28#.

~b! The distribution of a macroscopic velocity does n
enter the entropy explicitly. Rather, the shear rate appea
the entropy balance via its influence on the temperature
namics only.

~c! The connection to a thermodynamic description
transport is achieved by considering fields that are coa
grained in regions of small spatial extension. Their proper
are to be contrasted with those of the fields characterizing
microscopic evolution.

~d! Comparing these two levels of description allows us
identify all contributions to thelocal entropy balance, in full
consistency with thermodynamics. They apply to both s
tionary and transient states.

~e! A source term is implemented in the evolution equ
tion of the microscopic kinetic energy. It provides the pos
bility of implementing local irreversible cooling of the sys
tem, i.e., extraction of heat such that states which
permanently warmed up by viscous heating can become
tionary. In traditional thermodynamics these terms
present only at the boundaries, and they vanish in the b

~f! It is indicated how the velocity and the kinetic-ener
-
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dynamics can be implemented at the walls in order
achieve correspondence with different macroscopic bou
ary conditions.

~g! When source terms are present in the bulk, the lo
entropy balance of nonequilibrium thermodynamics is g
eralized by introducing at every location an instantane
flux of entropy~i.e., of heat! into a thermostat~the entropy
flux is then no longer the divergence of the entropy curre!.
The dynamics is in that case reminiscent of numerical al
rithms based on Gaussian thermostats.

~h! The global entropy balance was worked out, in ord
to demonstrate that the total heat flux into a thermosta
independent to a large extent of whether thermostating
applied in the bulk or at the walls.

The major interest of the present model lies in the ligh
sheds on the origin of viscous heating in deterministic m
els of transport. It was pointed out how fractal structur
emerge in multibaker models for a variety of physical s
tings of shear flow. In all cases the structures arise from
mixing of regions with different local temperatures and flo
velocities whose differences are exponentially proliferat
to smaller and smaller scales for a nonequilibrium syste
One can explicitly follow this redistribution of the kineti
energy, until it reaches the scale of the domains used
define local thermodynamic averages. Motion at that sc
has to be considered as contributing to the nondirectio
motion, and hence leading to viscous heating. It isonly due
to this coarse-graining mechanism that the macrosco
shear rate appears in the expression of the irreversible
tropy production.
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