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Multibaker map for shear flow and viscous heating
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A consistent description of shear flow and the accompanying viscous heating as well as the associated
entropy balance is given in the framework of a deterministic dynamical system. The laminar shear flow is
modeled by a Hamiltonian multibaker map which drives velocity and temperature fields. In the appropriate
macroscopic limit one recovers the Navier-Stokes and heat conduction equations along with the associated
entropy balance. This indicates that results of nonequilibrium thermodynamics can be described by means of
an abstract, sufficiently chaotic, and mixing dynamics. A thermostating algorithm can also be incorporated into
this framework.
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[. INTRODUCTION Three different boundary conditions for dealing with the
dissipated heat are considerdd. In the simplest case the

Shear flows provide one of the paradigms of transporsystem is isolated. A stationary linear velocity profile
processe$1-5]. The importance of chaos in the equationsémerges in that case, and the temperature becomes uniform.
underlying macroscopic shearing has recently been adNo steady state is reached, however, due to a constant in-
dressed by various numerical stud[@s-9], which to some crease of temperature in response to the viscous heating. In
extent were supported by kinetic thedi§,9] and rigorous addition, we consider systems whéiig there is a bulk ther-
mathematical wor7,10]. In contrast, however, a simple, mostat uniformly taking out the viscous heat, aid) the
exactly solvable model based on a low-dimensional chaotit€mperature is fixed to the same value at both boundaries so
dynamics—whose mixing property would be the cause othat the asymptotic temperature profile is stationary, but no
irreversibility—has not yet been established. For materialonger uniform.
and heat transport such types of model have helped to under- The paper is organized as follows. In Sec. Il we recall
stand the physical content of thermostating schemes used h@sic notions of irreversible thermodynamics that are to be
numerical simulation§11-14 (see, however,15] for open  recovered in a suitable continuum limit of the multibaker
questions In the present article we introduce a similar dynamics. In Sec. Il we introduce the model, and establish
model for shear flows in the hope that it can also serve sucthe evolution equations for the velocity and the temperature
a purpose. The approach will be based on multibaker map§_6|d. This allows us to address the entropy dynamics and its
Previous work in this spirit described the phenomena of difbalance equatiofSec. V). Subsequently, in Sec. V the mac-
fusion [16—18, conduction in an external fieli19-23, roscopic limit of the resulting equations is worked out. The
chemical reaction§23], thermal conductioi24], and cross global behavior at different boundary conditions is compared
effects due to the simultaneous presence of an external field
and heat conductiof25,26. These models are based on an
abstract dynamics, rather than on microscopic particle trajec-
tories. The appropriate definition of heat is therefore still not

settled. In the present model for shear flow, however, the
temperature has a source, which follows from the conserva- 2 1 I
tion laws of the dynamics, and can naturally be called vis- velocity: v(x)

cous heating.
Our aim is to model a sheared fluid confined between two
parallel walls at the coordinates=0 andx=L (Fig. 1). The

flow is assumed to be two dimensional in they() plane. <heat > yt
Shear is induced by prescribing differeptcomponents of = =
the average velocitieg of particles close to the respective g 2

walls. In order to make the calculations more transparent, we

confine the discussion to cases where the driving is suffi- x=0 L

ciently weak to induce only a laminar flow, i.e., t0 cases g, 1. Graphical illustration of the shear flow. The system is
where the velocity of particles is always directed in the ver-confined between two walls at positions=0 and L. The walls
tical direction such that=(0,v(x)). For this system we es- move relative to each other in thedirection, thus inducing a ve-
tablish a local entropy balance that covers time dependemdcity profile v(x) indicated by vertical arrows. For a fixed tem-
effects and does not rely on the implementation of boundaryerature at the walls this leads to an accompanying heat flow in the
conditions. x direction (gray arrows.
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to irreversible thermodynamics in Sec. VII, and conclusionsbath. In that case the entropy current vanishes in the steady

are drawn in Sec. VIII. state,j®=0, while ®" is nonzero in the bulk, and coun-
terbalances the steady-state entropy production.
Il. IRREVERSIBLE THERMODYNAMICS For an incompressible fluid in local equilibrium the Gibbs

) ) ) o relationds=du/T applies locally. The evolution equations
In this section we recall the thermodynamic description of.o4 pe used to evaluate the terms in E4). A straightfor-

shear flows accompanied by viscous heating. The picture igarg calculation yields for the rate of irreversible entropy
simplified by considering an incompressible fluid at CO”Sta”broduction(cf. for instance[1, Chap. XII. Eq.(23)])

pressure.
\ (;T)(T) vp

O_(irr): +ﬁ(§jvk+(?kUj)(é’jUk'i‘O”kUj).

A. Transport equations T2
For a system with constant density and pressure the tem- (6)
peratureT is the only relevant state variable, and for a com- .
plete description one also has to specify the velocity field 'IE'he a;;ouaéeg‘lentropy current takes the fpIyChap. XII.
of the fluid[1,2]. The thermodynamic state variables are the gs.(22) and (24)]
velocity fieldv and the temperaturg[2]. Mass conservation T
is expressed by a continuity equation. For incompressible 'i(S):—)\'—_ (7)
fluids the uniform mass density implies that the flow is T

divergence-free, i.e., It depends only on the local temperature and its gradient. The

dv;=0. (1)  flow velocity v does not enter.

Herei=x,y labels the components of the local flow velocity C. Laminar flow

VE(UX’?.V)' and we a(tzlocpj)teg_the ﬁ]nsteln (i_onvefntlor:_, "ef" For a laminar flow driven by prescribed nontriviatom-
summation over repeated indices. the equation of motion °|50nents of the velocity at the two walls, the velocity field at
the velocity components is given by the Navier-Stokes equa

. - o any position &,y) takes the formv=(0v(x)) (see Fig. L
tion. For the case of a negligible pressure gradient it readsTheX component of the velocity vanishes, and the profile is

translationally invariant in they direction (parallel to the
i=vd;djvi, (2)  walls). We restrict our investigation to cases where the same
holds for the temperature such th&t T(x). Consequently,
for laminar flow the transport equations take the form

al}
wherev is the kinematic viscosity, and/dt is the total time

derivative. 2
v =v v, 8
The system of equations is closg2] by the equation TV AL (3

d A 1v athLaszt 2 (0,0)? (8h)
aT:E0i5iT+§a(5kv|+¢9lvk)(5kvl+5|vk) 3 pcy X oy X
while the rate of irreversible entropy productier’™ and

for the temperature evolution. Hem, is the specific heat at the entropy current® can be written as

constant volume, anil is the thermal conductivity.

(irr) T\ vp 2
B. Entropy balance oEN ) ?(&xv) : (93
The balance equation of the entropy densiig
_ ) Oy T
gs=olM+d, (4) j©@=—x ; : (9b)
=~ 3;jd+ >, (5)  The scalar curren}’® denotes thex component of the en-

o ) ) _ ~ tropy current, and an analogous convention is adopted for all
the viscous heating of the flowl? the entropy flux, and®  setting considered.

the entropy-current density. The terd@™ models an en-
tropy flux let into a heat bath. It takes nonvanishing values
wherever there is a flux into the environment., for in-
stance, at the boundaries when there is a heat flux through In order to model the laminar flow we divide the plane
the wallg. We call a system ghermodynamic bulk system into square cells of sizax a that are large enough, on the
when the term® " vanishes. On the other hand, it is con- one hand, to admit thermodynamically meaningful averages,
venient to consider also cases with a nonvaniskiit) in  but, on the other hand, sufficiently small to neglect gradients
the bulk. We say that a system is subjected tadeal ther-  across cells. The cells are considered as the regions used in
mostatwhen the dissipated heat is directly let into the heatrreversible thermodynamics to define local equilibrium vari-

Ill. THE MULTIBAKER MAP
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(b) R T T FIG. 3. Graphical illustration of thex(p) multibaker represen-
«Q [=${7] =1y (o] . . .
- T tation of the laminar flow(a) Domain of the map. The outermost
—_ ) A cells (indicated as dark gray boXeare again used to implement
’ boundary conditions(b) Action in the bulk. The average values of
- ; ad the fieldsv(x,y) andw(x,y) in the cells[cf. Egs.(12) and (18)]
- \ — —_— 22 a and stripgcf. Egs.(11) and(19)] are given on the margins.
Y L [ —
au
- }[ (i) an energy fieldv,, that represents the kinetic energy of
m-1 a peculiar kinetic energy
l The dynamics on this two-dimensional lattice can be con-
B Do om | med | Com sidered as a model of the velocity and energy transport in the

configuration space. In order to obtain a faithful representa-
FIG. 2. Graphical illustration of the action of the multibaker tion of the entropy balance, however, one has to consider the
map on its phase space,y). The indices labeling the columns and Phase-space dynamics. To define the dynamics in the analog
rows are given on the lower and left margins, respectively, whileof & . space, we take into account the translation invariance
their width is indicated at the upper and right margits. The  of the problem. The velocity and energy fields can take on
mapping is defined on a domain ®f+2 identical columns of different values in the columns,=0,... N+1 of Fig.
square cells of sizeaxa that are labeled by the indices, 2(a), but the fields have to be uniform within every column.
=0,... N+1 andmy=—o, ... . Boundary conditions on the In this respect it is not necessary to follow the dynamics in
flow are implemented in the shaded cetig=0 andN+1. (b) The  the y direction, and one achieves a quasi-one-dimensional
action of the map on regions that are mapped into aell,(n,).  dynamics in an X,p) space, where represents a momen-
The contraction and expansion for these regions is indicated by thg,mlike variable of the model.
deformation of the tagsR,U,S,D,L) in the different branches of
the map. B. Action of the mapping in the (x,p) space
ables. The system shown in Fig. 1 is represented by a rect- The domain of the multibaker representation in tRepj
angular array oN=L/a cells in the horizontal direction, and space is shown in Fig.(8). It comprises a chain o+ 2
an infinite number of cells verticalljFig. 2@)]. Cells are cells of sizeaxb that for sake of more condensed notation
labeled by the indicesm,=0,...N+1, and m,= are labeled by the indem (instead ofm,). The middleN
—, ... . All cells have the same dynamics except thecells represent the bulk, and two additional ones are used to
outermost ones where it is modified to implement boundarymplement boundary conditior(sf. Sec. V). The parameter
conditions. b sets the momentum scale. It will not play any role in ther-
modynamic considerations.
In order to maintain the same dynamics in the transport
direction in the two representations of the flow, each cell is

divided into three columns of sizey, as, andag, whereg is
the same as above aBé 1—2g. The left and right columns

cell (m+1,m,) and cell (n,—1,m,), respectively. The left of cell m are mapped |n.to a strip of helga'g in cellm+1

column (U) of widths au is mapped upward onto a strip of @nd cellm—1, respectively, as shown in Fig.(8. The

heightau in cell (m,,m,+1), and the right one labeled by middle column Aof sizeas is squeezed and stretched onto a

(D) downward into (n,,my,—1), respectively. Regior§ strip of heightbs and remains in the same cell.

stays within the cell. In all cases the area of the strips is This multibaker dynamics drives the velocity and energy

preserved. fields. Their values might depend on the phase-space coordi-
This dynamics is driving two fields. Denoting the com- nate. Hence, we are dealing with a bivariate distribution of

posite index (n,,m,) asm, these fields aréi) the velocity the velocity v(x,p) and peculiar kinetic energw(x,p)

field v,, describing the mean flow velocity(x,y) in cellm;  within each celim. Only the cell averages,, andw,, appear

A. Action of the mapping in the (x,y) plane

After each time unitr every cell is divided into five col-
umns[Fig. 2(b)]. The rightmostR) and leftmost{L) columns
have widthag. They are mapped onto a strip of heigtg in
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in the transport equations. The dependence (f,p) and  velocity to the constant values,=v, andovy.=vg, re-
w(x,p) on the phase-space coordinates contributes essespectively, irrespective of the momentum flowing into these

tially to the entropy dynamics, however. cells.
C. The dynamics of the velocity field D. The dynamics of the energy field
The mass density, is proportional to the average phase-  The full kinetic energye,, of cell mis obtained by inte-
space densitpy, in cell m, i.e., gratinge,,0 , over the volumeab of the cell. At any instant

of time it is the spatial average of the energess;, ens,

pm=Mbem, (10 ande,, of the different strips,
whereM is a constant of dimension mass. When interpreting ~
the mass density or associated quantities from the point of €m=0g€m| T S€mst YEm, . (17

view of the two-dimensional flowg,, is to be understood as

a mass density in the coordinate per unit length in thg ~ The difference between the energyand the translational
direction. Hencep v, represents the preserved momentumspecific kinetic energiMu?/2 of the flow defines the peculiar
density (per unit length of the hydrodynamic flow. Its evo- kinetic-energy densityw=e—Muv?/2, whose macroscopic
lution expresses momentum conservation. As a consequend#nit will be proportional to the local temperature. Therefore,

the updated values for the velocity on the strigs§R)  ©ON the stripi=1,s,r in cell m one observes densiti@g; ; of

after one time unit argsee the right side of Fig.(B)] the peculiar kinetic energy that satisfy
pr,‘nvlfn,lzpm-%—lvm-%—ll M 5
em,i:?Um,i_’_Wm,i )
pr”nvr’n,szpmvma (11

P while at the same time the coarse-grained kinetic enefgy
PmUm,r=Pm-1Vm-1, obeys

wherevg, |, vys, andvy, . stand for the velocities of the

flow in the regions [,S,R) of cell m, respectively. The

prime indicates that the updated values of the field are con-

sidered. The average momentyiyu ,, of the full cell is the

average of the contributions in the different strips, i.e., Using these definitions and the averaging r(&) for the
energy one finds

M 2
em=§vm+wm.

vam=(gpm,rvm,r+§pm,svm,s+gpm,lvm,l) (12

at any instant of time. If the velocity is initially uniform in S M 2 4 gp? 2
y . : . Yy : Yy Wm:ng,I+SWm,s+ng,r‘"?[gUm,l+Svm,s+gvm,r

the full cell (i.e., the values of in all strips agreg then due

to Egs.(12) and(11) the average velocity of ceth becomes

after one time step —(gom+SUmst+Gum)’]. (18

i m=(1=29)pmVm+9Pm-_1Vm-1+9Pm+ 1W0m+1- This shows that the average kinetic enemgy, is not the
(13)  straightforward spatial average of the valugg; on the
strips. Rather, intracell variations of the velocity fiéic., a
Observing that the mass densitys uniform and constant in  nontrivial distribution of thev,,;) also contribute tow,,.
time, the updated value of the cell velocity, is found to be  Thjs property is an immediate consequence of the conserva-
tion laws, and is therefore not restricted to multibaker mod-
els.
For a thermally closed system the peculiar kinetic energy
w is advected by the flow. The values on the strips after one
time unit are then

Um=UmT9(Um-1FVmi1— 20 ). (14

This evolution can be written in the form of a discrete bal-
ance equation

Ur,n_vm__jﬁrlgrl_.srl:) 15 ,
T - a ( ) Wm’| :Wm+1,
with the discrete current defined by W/ 6= Wi, (19
2
. aA"g Um~Um-1
(“"U'):_TT' (16) W =W g

In the boundary columnsi=0 andN+ 1 the dynamics will From this and the updatell) of the velocities the updated
be augmented by force terntSec. V) in order to fix the peculiar kinetic energy is found to be
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gM Finally, we note that in this model the fields, andw,,
Win =W+ g(Wp_ 1+ Wy 13— 2Wp,) + T[(Umfl_vm)z are passive in the sense that they do not influence the multi-
baker dynamics. Previous experience with a multibaker map
o M| (Vmo1tOmi1—20m) 2 describing thermoelectric cross effe¢5] suggests, how-
+(Ume1—vm) = > a“g 5 . ever, that the present discussion is not affected lpy,ar
a w,, dependence of the parametgr

(20

The first two terms account for a diffusive rearrangement of IV. ENTROPIES AND THEIR TIME EVOLUTION
the peculiar kinetic energw. Therefore, we attribute the A. The coarse-grained and the Gibbs entropy

terms proportional taVl to the effect of viscous heating in . _ .
this discrete setting. The Gibbs entropy for celin of a multibaker system with

In order to model the action of a thermostat, which leads? density field ¢(x,p) and peculiar kinetic-energy field
to local changes of the peculiar kinetic energy due to a hea/(x:P) takes the fornj27]
flux into the environment, an additiondhermostat heat
source Gy is incorporated into the update wf,, by multiply- SET?): _ ka
ing the right-hand side of Eq20) by a factor[ 1+ 7q,],

cellm

X!
dxdp Q(X,p)|n[9( *p)w(x,p)”]
e
(26)
"= + gt -2
Win= | Win G (W1 Wiy 1. 2Win) wherey is a free exponent. Since an initially uniform phase-
space density (x,p) is left invariant by the time evolution

one can identify the reference dens@y with ¢o(x,p) and
obtain

gM

+ 7[(Umfl_vm)2+(vm+l_vm)2]

ap dxdp
SO =k y— — —Inw(x,p). 2
m=Kevyr] L a b (X,p) (27)

M 2 2
_?g [Vm-1tUme1—20m] [ [1+700]. (2D)

This equation can be rewritten as
Here, we have already replaced the phase-space density by

Wi~ Wi, —Q,+ @ W1~ 2Wnt Win-q (22  the mass densit10).
T moor a? The coarse-grained entropy of cellis based on the cell-
averaged coarse-grained valug, of the kinetic energy
with the full heat source w(x,p). For the form(27) of the Gibbs entropy, one obtains

2
~ Om , agM
Qm_1+Tqum+ T 2

(Umfl_vm)2 (Um+1_vm)2 p
a2 a2 szkBayMIn W, (28
@ (Vm-1TVms1—20m)

T a2

T

2
2 .

(23 as the coarse-grained entropy.

In order to discuss the thermodynamic time evolution of
entropies, one conveniently starts with uniform densities in
every cell[21,14. In that case the coarse-grained and the
Gibbs entropies initially coincide. After one time step, how-

Wo—w om jw —jw ever, they typically differ. The Gibbs entropy has changed
P Om Wm_p _dm+i ‘m (24)  due to the fact that thev field takes different values on the

m ’ N
M T M a strips R,S,L), leading to the new value

The equation for the update @f can be rearranged into a
balance equation for the heat per unit volume,

which comprises the divergence of the discrete “heat” cur-
rent S =kgyeab{gIn[wWy_1(1+7qm)]

Wm=Wmn-1 (25) +(1—-29)In[w(1+ 79y ]+9g |n[Wmfl(1+TQm)]}

W

Wmn-1
The first contribution ta@Q,, in Eq. (23) reflects the action of 570D IN[Wy(1+7Gm) ]+ g I W, 9 PWm+l

the thermostat, and the latter two the effect of viscous heat- (29)
ing of the fluid. A steady state with a uniform profile can

be found forQ=0, which thus mimics an ideal thermostat. . .

In contrast, |?1 a bulk system in the sense of conventionaiDn the other hand, the coarse-grained entropy after one time
irreversible thermodynamicg,,,=0, andQ,, vanishes only step is

when the discrete velocity gradients,.;— v, and vy , ,

— v, across the cell vanish. Sm=—kgabyelnwy,. (30
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B. Entropy balance Om. In view of Eq. (23 this finding further supports the

The coarse-grained entropy depends only on the averadBtérpretation ofg, andQn, given at the end of Sec. Il D.
kinetic-energy density,,, and is therefore considered as the
multibaker analog of the thermodynamic entropy. Its tempo- V. THE MACROSCOPIC LIMIT

ral chan n m : . : .
al change can be decomposed as In this section we evaluate the expressions of the different

AS, S.—Sn (Sp'—S©")—(S,—S) quantities considered in Secs. Ill and 1V, and identify condi-
= = tions for consistency with the thermodynamic results de-
scribed in Sec. .

abr abr abr

S(G)/ _ S(G)
m m
5 (31) A. Definition of the limit

) ) ) For macroscopic systenis>a (i.e., N>1), so that the
where information-theoretic argumen0,21,25,14 lead  gpatial coordinate

one to identify

X=am (36)
AiSn_ (Sn' =SB~ (Sn=SF)
abr abr (328 s quasicontinuous. Moreover, the microscopic time seale
is negligible as compared to the viscous relaxation time
with the rate of entropy production, and L?/v. Consequently, there is also a clear separation of typical
microscopic and macroscopic time scales such that the time
AS, S©&'-s© can also be considered as a quasicontinuous variable. We
abr abr (32b denote the scaling limit, where all contributions to the time

evolution that explicitly depend oa or 7 are neglected, as
with the entropy flux. Note that the second term of the nu-the macroscopic limit Formally, it can be evaluated as
merator ofA;S,, vanishes due to the initial condition of uni-

form fields in the cells. a,7—0, (37
. ’ (G)' . ' e
(322562:32 the values foB, and Sy™ into the definition such that the kinematic viscosityand the spatial coordinate
y x=am are finite. As mentioned earlier, the field is as-
/ sumed to go over into the local temperaturéx) in the
AiS, kgyp w
i~m B m —1 in it i
= ELLLYE macroscopic limit, i.e.,
ar M7 In(wm(l 70m) ) P
W,,— CkgT(X), 38
W1 Wi 1 m— CkgT( ) (39
—gln —gln (33 _ . .
W W whereC is a dimensionless constant.

Remarkably, this expression for the entropy production does
not depend on the source tef@y,, but only on the values of
the coarse-grained field in cell m and its neighbors. The The macroscopic form of the velocity curre(it6) be-
shear flow enters only indirectly through the updetg of ~ comes

w

B. The transport equations

m- 2
- ; a
Slmllarly to the other balance equations, the entropy flux -E#): _ _gaxv_ (39)
can be written as
AeSh ISP (th) In order to achieve a meaningful thermodynamic result the
ar +OR”, (34) ratio a®g/ 7 has to be finite in the limit. Indeed, comparison

with Eq. (8@ shows that

where the discrete entropy currgiff takes the form )
a~g
y=—
_ ag p Wpis 7
() — _ >
" kg — ' In W (353

m

(40)

is the kinematic viscosity.
and Equationg39) and(40) imply that Eq.(14) is the discrete
form of the Navier-Stokes equatid@a) for the laminar flow.
(th) p Moreover, with this choice fog one obtains for the heat
P =keyy m (350 current(25)

describes the direct flux into the thermostat. Such a flux is

. p
w)— _ =
encountered whenever there is a nonvanishing source term J M vCkgdT. (42)
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Hence, Fick's law of heat conduction is recovered with the (Vo wo) (Vi wy) (V51 w;)
heat conduction coefficient

S S | (V3 2 wo(1+7G0))
: |

A= ﬂ vC kB . (42) = : [ ] bg E w, (1+1q,))
M ool o
Q«Q o
Due to Eq.(42), the macroscopic limit of Eq21) reduces . |_Z | :‘;l :—Z—'l

to Eq. (8b) for the temperature evolution:
FIG. 4. Implementation of the boundary condition in cell 0. The

A M Lo ; . . )
T= 2T+ 24 gT. 4 indication of the width of strips, values of the fields on the strips,
% Ckgp/M % Ckg (0x0)"+q (43 and action of the map follows the rules spelled out in Fig. 3.
Comparing the coefficients in this equation with the ones inmportant differences about the dynamics at the boundary are
Eq. (8b), one obtains that (i) there is no column leaving cell O to the left, afi
Ckg=cyM. (44)  the momentum of the particles entering cell O is not pre-

served. Conditior(i) reflects that no particles can penetrate
The proportionality constan€ introduced in Eq.(38) thus  the walls of the system, and) reflects that there is a force
corresponds to the specific heat at constant volimea- exerted by the boundary on the fluid. In sttigentering cell

sured in units okg). 0 (and analogously striR entering cellN+ 1) the update of
the velocity consequently contains the contribution of the
C. The entropy balance external forcef, (fy, 1), leading to
In the macroscopic limit the rate of irreversible entropy for
production(33) becomes vo =v1t W’ (4839
AiSy, . p [,T\? wvp
—L oM =kgyr—|=| + —(30)% (45 fnraT
ar -0 B)’VM T T (dyv) (45 Ul,\H—l,r:UN—'— N+1 . (48D

gp
It fully agrees with the thermodynamic form of the entropy
production(9a when the coefficienkgyvp/M in front of
the first term is the heat conductivity. In view of E42) we
thus conclude that in our model=C, i.e., the exponeny -
appearing in the definitio(26) of the entropy is proportional vo=votg(vi—vg)+ L, (49
to the specific heat. Hence, the final form of the heat con- p

ductivity N can be settled to

)\:pkaV

The update of the coarse-grained velocity of the leftmost cell
is

and an analogous relation holds for ddli-1. A shear flow
with a prescribed shear rate is enforced by adjusting the

M Pev 46 forces in such a way that, anduy,; take the respective
valuesv, andvg of the velocities at the walls at any time.
Working out the expressio(85g for the entropy current In view of the time evolution of ,, in a steady stateEq.
j® . one finds in the macroscopic limit (14) with v,,=v,] the asymptotic velocity profile becomes
ot ot linear,
9(x) = —kgyrar =N ()

m m
vaUL'f'm(UR_UL)EUL‘f‘mAU, (50)
In view of Eqg. (46) this relation also fully agrees with its

thermodynamic counterpa(®b). irrespective of the temperature distribution in the system.
As in the situation for heat transport decribed 14, Sec.
VI. BOUNDARY CONDITIONS 8.1] one has to keep in mind that the implementati4®) of

_ . _ the boundary conditions wrecks the time reversibility of the
In this section we demonstrate how boundary conditiongiynamics. After all, the boundary conditions do not allow
for the shear flow can be implemented in the multibakerreconstruction of the past velocity distribution of volume el-

dynamics. ements that entered the outermost cells. A thorough discus-
sion of time reversibility in this model and its consequences
A. Boundary conditions for the velocity field on the probability distribution of fluctuations lie beyond the

The multibaker dynamics for cell 0 is shown in Fig. 4. scope of the present exposition, however.

(An analogous prescription holds in c@&ll+1.) The action
of the strip mapped from cell O to 1 fully agrees with that of
the corresponding strips in the bulk such that the dynamics The modification of the dynamics of the velocities at the
of cell 1 agrees with the bulk dynamics of FiglbR The boundary also implies changes of the thermostat source

B. Boundary conditions for the kinetic-energy density
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terms. Since the velocity in cell 0 is uniform by definition,  Thus, for the asymptotic state, the boundary conditions
the update ofv, can be found from Eq.18) where the terms imply that wy, and wy ., essentially coincide wittw; and
containingw,,; and v, are not present since no particles wy, respectively. Moreover, the viscous heating té€pm in

enter cell 0 from the left. Consequently, the bulk depends only on the squarevgf, ;—v,,. The heat-
ing is therefore spatially uniform in the long time limit. With
Wo=[Wo+g(w;—wp)](1+ 7qp). this input, one immediately verifies that,, approaches a
. ) spatially uniform valuew*. However, in view of the heat

This leads to the discrete temporal change sourceQ,, in Eqg. (23), it constantly grows in time,
Wi—w 1 a%gw;—w, .
- Ozlf:q Wo ETg = D LV U (55)
0 T a(N+1)/ °

instead of Eq(22). For a steady state;—w, vanishes, and

the equation impliegct. Eq. (25)] This temporalevolution ofw reflects the rise of temperature

due to the entropy production in the system. After all,

a’g  (w;—wp)/a ™

a = —_ — = — . X *’
BT T Wotg(wi—wo)  e[Wot g(Wy—Wo)] AiSn_ksyp W' _kevp
(52 ar ™ W

2
+0(7)

Av
a(N+1)

The right-hand side of this expression is finite in the macro

T ‘which in the macroscopic limit reduces to the thermody-
scopic limit, where

namically expected value

aT| v 70 Ay2
S N N TOR ®3 G
x=0 o * L
()
Since, howevera—0 in the macroscopic limit, the thermo- . 5 _ _
stat heat sourcgg cannot be interpreted as a density whenwhere T*(t)=const- (v/cy)(Av/L)“t is the spatially uni-
there is a finite heat curreit”)(0). Itsintegral over the cell, form but temporally increasing asymptotic temperature dis-
ago, however, stays finite. As a consequence, the heat cuftibution. Note that the fluxb™ and the entropy current
rent has to vanish in a Steady Sstate WI%FF qN+1:O- vanish in this settlng, |mp|y|ng an ever increasing entropy.

V1. DIFFERENT MACROSCOPIC FLOWS B. Systems subjected to an idealbulk) thermostat

We have seen that in the macroscopic limit the local mo- In a system subjected to an ideal thermostat the viscous

mentum, energy, and entropy balances for the muItibake!F'eati”g is inst'antaneously released into a heat bath. Accord-
map coincide with their thermodynamic forms. This result"9ly: Qm vanishes for all cellsn=1,... N such thatqp,

was achieved by inspecting the Iocal time evolution of the®@n be determined from E3). o

densities without referring to particular boundary conditions, Moreover, according to the results obtained in Sec. VI B
and it is not restricted to steady states. In order to underlin&/€ areé again dealing with a system with vanishing heat cur-
these features, we discuss the global transport pictures f6ENtS through its boundaries, i.e., for the asymptotic state the
three different settings of transport. We emphasize that th@oundary conditions implywo=w,; and wy=wy,, and

considerations immediately generalize to arbitrary time-here is no source ter@ for the heat. Consequentlyy,

dependent states although the particular calculations are cdPProaches a spatially uniform staté that isstationaryin
ried out for stationary coarse-grained velocity fields. this case. Entropy production arises due to the nontrivial
form of q,, [cf. Eq. (23) with Q,,=0]

A. Isolated systems . yM[Av/a(N+ 1)]2
In thermodynamics sheared systems are often considered Am=q" == — 2
. . . ) + +
to be thermally isolated. In that caqg, identically vanishes wrtvMr [Av/a(N+1)]
for all cellsm=0, ... N+1. Equation(51) implies for the

in the bulk[cf. the steady-state velocity profi(g0)]. Hence,

current(25) the irreversible entropy change is
a’g p Wi—Wo ap Wo—Wp
G — = _
W=—wv " -~ wv - (59 A, kgyb k Av?
TM a M7 N W) B0 . LaeTor)
ar T Mw*  a“(N+1)
Assuming that the time derivative of is finite in the mac- (56)

roscopic limit, the currenf (1W)—>—a(p/M)CkB&tT(O) ap-
proaches zero as— 0. An analogous argument applies alsoand in the macroscopic limit it reduces to the thermodynami-
toj{,. cally expected value
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_ pv [Av)2 The entropy production in the bulk is related to the spatial
af];rr)zT—*(T> , variation of the steady-state distributier, [cf. Eq. (33)],
) o A k wr w
where T* is the steady-state temperature. Also in this case olim=— BYP gln—" Ligin m*”
there is no entropy current in the steady state. However, at ™ W Wm
every location in the system there is a nonvanishing entropy W) W) (W) 25 (w)2
flux into the thermostat, which can be formally identified _Key| 1 JmiamIm®  Jmiattim 61)
with @ defined in Eq(5): M| w, a 2p0w*2 |’
(th) pv[Av\? where the second equation was obtained by expanding the
P :kB7b9qu_T_* T/ (57 Jogarithms to second order in the differenced. ,—w* ,

and rearranging terms. Using Ed24), (23), and (59), the

It exactly compensates"™) such that the entropy indeed is first term can be related to the applied shear rate, while the
stationary. second one represents the contribution to the entropy produc-
tion arising from the heat flow. Indeed, in the macroscopic
limit one recovers in this case both contributions to &d).
(For small shear rates the contribution from the temperature

Finally, we discuss a steady state in a hydrodynamic bullchange is, however, negligibleCorrespondingly, there is a
system that generates heat flux into the walls due to the préinite entropy curren(® at every point in the system, but
scribed temperatures at the boundaries. There are no thermenly at the boundaries there is a flux into the thermostat.
stat heat sources in the bulk, i.¢,=0 for m=1,... N.  According to Eq.(53) the macroscopic limit of the full en-

On the other hand, there are source tegpendqy:1=0do  tropy flux through the boundaries becomes
acting in the two outermost cells that fix the valueswgfand

Wy 41 (i.e., the temperatujeo the same constant value,.

To this end the sources counterbalance a macroscopic heat
current releasing the viscous heat into the bath at the bound-
aries[cf. Eq. (52)]. In contrast to the previous cases, theSince the stationary temperature profiilde macroscopic
discrete heat current does not vanish at the boundaries. |nit of w}/Ckg is obtained from Eq(60) in the form of
view of Egs.(25) and(51) the heat current through the left T(x)=T(0)—[x(x—L)(M/2Ckg)](Av/L)?, the derivative
boundary of the steady-state system is at the origin isd,T|,—o=ML(Av/L)?%/(2Ckg). The contri-
bution at the right boundary is the same. Therefore we find

C. Thermostating at the walls

p T
(th) — - X
ad kBybgaq0—>kBva T,

(62

i (w) _ -
Jit_  WimWo_  alo Wo. (5  for the integrated entropy flux
p a 1+ 7qg
pv [Av\?
. . . pthto) — = || —— (63
Since the dynamics is symmetrical ang . ;=w,, the cur- To \ L/’
rent at the right boundary takes the same value up to a
change of the sign, where we usedy=C. For weak shear this is essentially the
same as the integral of the constant f(6%) over the chain.
JF\,"‘Q1= —J(W) Thus, we conclude that for sufficiently small heat currents

thermostating in the bulk and at the boundaries can lead to
In a steady state the cells in the bulk consequently satisfy the sameglobal behavior.

The work per unit time done by the external force densi-

W, — W, Av? o —jw tiesfy andfy,, can be evaluated using their form E¢8)
O0=p - :pDaZ(N+ 1)2 - a ' and the value of the constant velocity gradient
. . . (Av)?
leading to a linear profile of the heat current, a(fou +fyrvR) =vp i (64)
ol oo N, B i This expression is exacthy To® ") sych that in a stead
im’=alm—1 5| Pv aN+1)) (59 IS exp Ion s ex 0 , SU [ y

state the work done by the external forces equals the total

. . . o heat flux into the thermostat.
In view of the definition Eq.(25) of ), this implies a

parabolic profile ofw in the steady state, VIIl. DISCUSSION
We have enlarged the family of multibaker maps by a
model for momentum, energy, and entropy transport in vis-
cous hydrodynamic flows. Although the macroscopic prob-
as expected for the temperature profile in a shear flow sudem is of strongly dissipative nature, the proposed multibaker
jected to identical temperatures at the two ends. dynamics is area preservifgamiltonian. This is to be con-

(60)

. am 2
Wp,=Wqo— 7a[m—(N+1)]M m) ,
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trasted with previous multibaker models of electric transpordynamics can be implemented at the walls in order to
[20,21] and thermoelectric cross effedi&5,26 where the achieve correspondence with different macroscopic bound-
inclusion of a reversible dissipation mechanism was necesary conditions.

sary in order to simulate the effect of thermostating on the (g) When source terms are present in the bulk, the local
particle dynamics. The form in which thermostating appear®ntropy balance of nonequilibrium thermodynamics is gen-
in the present model is via a heat-source term in the microeralized by introducing at every location an instantaneous
scopic energy dynamic&vhich was already present in the flux of entropy(i.e., of heat into a thermostatthe entropy
model of cross effectf25]). This term, however, does not flux is then no longer the divergence of the entropy cujrent
give rise to phase-space contraction. The dynamics is in that case reminiscent of numerical algo-

The model has the following basic features. rithms based on Gaussian thermostats.

(a) The time evolution of the system can be interpreted as (h) The global entropy balance was worked out, in order
that of weakly interacting particles. The resulting “multi- to demonstrate that the total heat flux into a thermostat is
baker” gas obeys the classical ideal-gas equation of staténdependent to a large extent of whether thermostating is
The particle and heat diffusion coefficients and the kinemati@applied in the bulk or at the walls.
viscosity are proportional to each other, as in the kinetic The major interest of the present model lies in the light it
theory for classical ideal gasga8]. sheds on the origin of viscous heating in deterministic mod-

(b) The distribution of a macroscopic velocity does notels of transport. It was pointed out how fractal structures
enter the entropy explicitly. Rather, the shear rate appears iemerge in multibaker models for a variety of physical set-
the entropy balance via its influence on the temperature dytings of shear flow. In all cases the structures arise from the
namics only. mixing of regions with different local temperatures and flow

(c) The connection to a thermodynamic description ofvelocities whose differences are exponentially proliferating
transport is achieved by considering fields that are coars® smaller and smaller scales for a nonequilibrium system.
grained in regions of small spatial extension. Their propertie©ne can explicitly follow this redistribution of the kinetic
are to be contrasted with those of the fields characterizing thenergy, until it reaches the scale of the domains used to
microscopic evolution. define local thermodynamic averages. Motion at that scale

(d) Comparing these two levels of description allows us tohas to be considered as contributing to the nondirectional
identify all contributions to théocal entropy balance, in full motion, and hence leading to viscous heating. lbrigy due
consistency with thermodynamics. They apply to both stato this coarse-graining mechanism that the macroscopic
tionary and transient states. shear rate appears in the expression of the irreversible en-

(e) A source term is implemented in the evolution equa-tropy production.
tion of the microscopic kinetic energy. It provides the possi-
bility of implementing local irreversible cooling of the sys-
tem, i.e., extraction of heat such that states which are
permanently warmed up by viscous heating can become sta- We would like to thank Bob Dorfman, Christan Gruber,
tionary. In traditional thermodynamics these terms areand Gary Morris for illuminating discussions. Support from
present only at the boundaries, and they vanish in the bulkthe Hungarian Science Foundatiof@QTKA Grant No.

(f) It is indicated how the velocity and the kinetic-energy 032423 is acknowledged.
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