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Conductivity of continuum percolating systems
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We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese
model, where the conducting medium is the space between randomly placed spherical holes, near the perco-
lation threshold. This model can be mapped onto a bond percolation model where the conductnce
randomly occupied bonds is drawn from a probability distribution of the forri. Employing the methods of
renormalized field theory we show to arbitrary orderiexpansion that the critical conductivity exponent of
the Swiss-cheese model is giventi{(a) = (d—2)v+max ¢,(1—a) ], whered is the spatial dimension and
v and ¢ denote the critical exponents for the percolation correlation length and resistance, respectively. Our
result confirms a conjecture that is based on the “nodes, links, and blobs” picture of percolation clusters.
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[. INTRODUCTION to transport quantities. Let us consider the conductivity ex-
ponentt for the RRN. It describes the decrease of the average
Percolatior[1] is one of the best studied problems in sta-macroscopic conductivity>, when the critical occupation
tistical physics, both because of its fundamental nature angdrobability p. is approached from abo\éd]:
its vast array of applications. The most natural type of per- .
colation, perhaps, is continuum percolation, where the posi- 2~(p—pc)- 1.
g?srz:sre(t); ;?tzscgngt:gg%fierr:;ﬂz Izrt?icr(]aOtArgisr:;I)ﬁ:aegxfmtglzrhe conductivi_ty exponent is relate_d to the resistance expo-
; s L . ) . hent ¢ governing the average resistankl; between two
of continuum percolation is a conducting material with uni- . . ,
formly sized holes placed at random. Due to its similarit totermmal sitescandx” known to be on the same Clus{é:6]
y p y
Swiss cheese, this model is commonly called the Swiss- Mg(X,X")~|x—x"| " (1.2
cheese model.
Since the holes are allowed to overlap, the system ceasefa the scaling relation

to support electrical transport when the total volume of the
holes exceeds a critical fractiony,. Near this percolation t=(d=2)v+¢. 1.3
thresholdq, the conducting network consists of many nar- -
row bottler;:ecks each of which is bounded by interpenetra The conduct|\{|ty exponent for the RRRon the other hand
ing holes. Thus, it is plausible that the Swiss-cheese modeqepenOIS o, 1.€.,
can be mapped onto the random resistor netw@&RN) $SC_(p—p.) 5@ 14
problem where conducting nearest neighbor bonds on a hy- (P=Pc) ' (14

percubicd-dimensional lattice are randomly occupied with aEarIy estimates ofSY(a) were given by Kogut and Straley
probability p. Apparently, the bottlenecks are playing a rolem, and Ben-Mizrahi and Bergmd#]. Later Straley[9] ar-

similar to the occupied conducting bonds. However, thegued based on the “nodes, links, and blobs” pict[t6] of
bottlenecks have a wide distribution of widths, in contrast tOPercoIation clusters thaf%(a) is given by

the standard RRN, where all occupied bonds are identical.
Due to the wide distribution of neck widths the Swiss-cheese t5Ya)=(d—2)v+max{ ¢,(1—a) ] (1.5
model corresponds to a modified RRN in which the conduc-

tanceso of the individual occupied bonds have a broad dis-(see also Machtat al.[11]). Without relying on the assump-
tribution in the form of a power law~2 with 0<a<1 [2].  tions of the “nodes, links, and blobs” pictur%a) has
Due to its relation to the Swiss-cheese model, we abbreviateeen addressed by Lubensky and Tremi§laly) [12] from a
such a RRN by RRRF. renormalization grougRG) perspective. After some contro-

It is well established that the purely geometrical percola-versy[13] their perturbation calculation to first order in the
tion exponents for the Swiss-cheese model are in conformitgeviation from the upper critical dimension for percolation
with their analogs in the discrete modé¢B|. For example, ¢=6—d shows agreement with E¢L.5).
the correlation lengthf is governed in both models by the ~ The paper in hand presents our field theoretic study of the
same exponent. The reason is that only the connectivity of conductivity of the RRNC. Our analysis builds up on the
the bottlenecks is relevant for the geometrical exponents. ABeld theoretic RRN® Hamiltonian by LT. We discuss the
the widths of the individual bottlenecks do not matter, theyRG flow for the whole regime €a<1 to arbitrary order in
can be regarded identical in the context of connectivity propa diagrammatic expansion. The central result of our work is
erties and the problem is essentially equivalent to standarthat Eq.(1.5) holds to arbitrary order i=.
discrete percolation. The outline of the remainder of this paper is the follow-

The situation is different for critical exponents pertaining ing. Section Il describes the modeling. We define the perco-
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lation problem under consideration. Then we show how theever, has the severe drawback that it is not well defined,
average resistance and the related average conductance ¢mtause the average bond resistance diverges. Thus, it is
be derived from a generating function. We explain how thepreferable to work with the average conductance instead that
replica trick facilitates averaging and leads to an effectiveis given by

Hamiltonian. Next, this effective Hamiltonian is refined into

a field theoretic functional. A scaling analysis concludes Sec. MaCa(x,x") = (ROX,X)™Hy. (2.9

II. It reveals the relevance of the field theoretic couplings

associated with the conductances of the occupied bonds. In Note thaty probes only geometrical connectivity. Hence,
Secs. Il and IV we actually compute the generating functior{ x(x,x")), can be identified with(x(x,x"))c, where

for the average conductance by employing field theory aug¢- - - )¢ denotes averaging over all diluted lattice configura-
mented by renormalization. A Gell-Mann-Low RG equationtions C of the corresponding standard bond percolation
(RGE) provides us with the scaling behavior of the averagemodel. Accordingly(x(x,x")), is nothing more than the
conductance near criticality. Our analysis is partitioned intousual percolation correlation function, i.e., the probability
two cases. In Sec. Il we considar=0 and basically review P(x,x") thatx andx’ are connected.

the known results for the RRN. Section IV deals with the

case of prime interest, viz.<0a<1. Finally, concluding re- A. Generating function

marks are given in Sec. V. Technical details are relegated to

Appendices A and B. In this section we review how one can devise a generating

function for Mffl based on the ideas of Stephgi6]. We
Il THE MODEL demonstrate that this generating function indeed serves its
purpose and explain how the average conductance can be
We are about to consider a bond percolation model on axtracted from it.
d-dimensional hypercubic lattice where the conductances of Stephen introduced the quantity
the occupied bonds are independently and identically distrib-

uted random variables. To be specific, the distribution func- gi(x)=exp(ix-V,), N#O. (2.5
tion g of the conductance, of any bondb is taken to be R
V=V, ... V{P) is a D-fold replicated variant of the
g(0)=(1=p)d(a) +pf(a), (213 oitageV, at lattice sitex andk=(\ 1), ... A(®)) is, apart
where from a factor—i, a replicated external current. The corre-

sponding scalar product is definedxasV,=32_,V{?\ (@),
A The physical content oy (x) will be explained below.
flo)=(1-a)og o (2.1b In order to proceed towards the desired generating func-

tion we now consider the two-point correlation function of

with ¢ e[0,0¢] and 0<a<1. For the relation of the RRI ()

defined by this choice to continuum percolation we refer to

Halperinet al. [2]. Note thatf has the important feature that G(x,x",N)={5(X) (X" ))rep (2.6)

the average resistance of an occupied bond is inf{difg.

This is a key distinction to the standard RRN and also to avhere the average is defined by

RRN with noise modeled by a narrow distribution of bond

conductancescf., e.g., Ref[15] and references thergin P
Since we are going to calculate the conductivity exponent (  Drep= < z=P H Hl dVJ(a)
tSYa) via the average conductanMaggl we need a precise b
definition of this quantity. Commonly this definition is based 1 -
on a setup in which a fixed external currenis applied xex;{—EP({V})}~-> : 2.7
between two leads at lattice siteandx’ known to be on the g

same cluster. In this setup one could measure the resistanﬁ1 - . . .
, . . e product ovej is taken over all lattice siteZ is a nor-
R(x,x") between the two terminals and then average with

respect top, malization factor given by

MgC(x,x’):<R(X,x')>é (2.2 Z=f H dv; eX[{—%P({V})} (2.9

with the average being defined as
P({V}) denotes the dissipated power
<X(X1X,) o ')g
= 2.3

(X(xX")g P({V})=% abv§=<2> o (Vi=Vp? (2.9
1]

N

Here x(x,X") is an indicator function that takes on the value
one if x and x’ are located on the same cluster and zerowith the summations running over all bondg, abbreviates
otherwise. The average macroscopic resista@c®, how-  V;—V;, wherei andj are the lattice sites belonging to the
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respective bond, and accordingly; = oy, . p({\7}) is the May tune to zero. In this replica limit the normalization de-
replicated version of the power with all voltages replaced bynominatorZ " goes to one and hence does not depend on
their replicated analogs. the distribution of the bond conductances anymore. Then the
Before evaluating E¢(2.6) we need to comment on regu- Only remaining dependence on this distribution rests in the
larization issues. First, it is important to realize that the intefoower P appearing in the exponential in EQ.7). In the
grands in Egs(2.7) and(2.8) depend only on voltage differ- replica limit, therefore, we just have to average this exponen-
ences and hence the integrals are divergent. To give thedi@l instead of the entire right hand side of HG.7). This
integrals a well defined meaning one can introduce an addRverage then provides us with an effective power or Hamil-
tional power term w/2)=;V?. Physically the new term cor- tonian that serves as vantage point for all further calcula-
responds to grounding each lattice site by a capacitor of unfions. The effective Hamiltonian will be discussed in Sec.

capacity. The original situation may be restored by taking thdl B )
limit of vanishing frequencyw—0. Second, it is not guar-  Now we come back to the role of E.6) as a generating

anteed thaZ stays finite because infinite voltage drops mayfunction. Since the integrations are Gaussian they are readily
occur. Thus, the limit ling_  Z® is not well defined. This carried out with the result

problem can be regularized by switching to voltage variables

> 2 !

0 taking discrete values on R-dimensional torus that we G(x,x’,X):P(x,x’)< ex;{ _ )\—R(x,x’) > _

refer to as the replica space. The voltages are discretized by 2 .
setting 6= A 6k, whereA 6= 6, /M is the gap between suc- (213

cessive voltaged), is a voltage cutoffk is aD-dimensional R

integer, andM a positive integer. The componentslofre It is evident from Eq.(2.13 that G(x,x’,\) represents a
restricted to—M<k(®<M and periodic boundary condi- 9enerating function for the average resistance. To obtain a
tions are realized by equating® =k(®mod(2M). The con- ~ generating function for the average conductance one simply
tinuum may be restored by taking,— andAg—0. By  Nneeds to carry out a Fourier transformation in replica space,
settingM =m?, 6y,= 6,m, and, respectively) §= 6,/m, the

two limits can be taken simultaneously via—«. Note that

the limit D—0 has to be taken befonm— in order to G(x,x",0)=P(x,x) I > explix- )
ensure IinEHO(ZM)*Dzl. Since the voltages andl are (2M)™

conjugated variablesy is affected by the discretization as % | exd — )\—2R(x x') (2.14
well: 2 ' g' '

N=AN, ANAG=7/M, (2.10 _ _ L
After paying due attention to the exclusionof0 we may

wherel is aD-dimensional integer taking the same values aftPProximate the summation in E(2.14) by an integration,
k. This choice guarantees that the completeness and orthogo-

nality relations ~ - 1 *
G(x,x",0)=P(X,X") ——— f 4\
(2MAX)P —o

1 -
> explix-0)=55 (2.113 . )
(ZM)D > F( \,0 mod(2MAN) )\2 L 1
X ex —?R(x,x’)+|)\-0 - of-
and . (2M)
1 (2.15

—DZ eXp(iX- 0)=8; 6 modamany (2110 _ o _ o _
(2M)~ X The A integration is straightforward since it is Gaussian. In

. . ) ) the limit D—0 we obtain
do hold. Equationg2.11) provide us with a Fourier trans-

form between thé andX tori. It is important to note that the

- ,
replica space Fourier transform ¢f(x), G(x,x’,0)= P(x,x’)| <ex;{ _ %R(X,X,)lb _ l]
g
D00=(2M) P> expliX- 6)yi(x) =54~ (2M) P 2
A#0 (2.12 =POGX)) = 5 MeaiGx )+ (218
satisfies the conditior® ;& ;(x)=0 and hence is nothing - R
more than a Potts spiri7] with g=(2M)P states. We learn from Eq(2.16 thatG(x,x’, ) is indeed the gen-

In passing we emphasize the benefit of the replicatiorerating function we are looking for and thits"; can be
procedure. It provides us with an extra param@&ehat we  extracted simply by taking the appropriate derivative,
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MaSi(x,x")=P(x,x") "t G(x,x',0)

7 Hyep= > K(6). (2.23
a(— 6%12) e b

0
(2.17 Here, we have introduced

We conclude Sec. Il A by addressing the physical content

of ¥x(x) and its replica space Fourier transforbrg(x). A K(8)= —In{ 1+Uf(rod0f(0)exr{ _ 3052
reasoning similar to that for the two-point correlation func- 0 2

tion G(x,x’,X) leads to

} (2.29

with v=p/(1—p). Moreover, we dropped a constant term

’ NgIn(1—p) with Ng being the number of bonds in the undi-
> , (2.18 luted lattice. In order to refinél,, towards a field theoretic
g

Hamiltonian we now expanb[(é) in terms of Yy (X):

> 2

<w):(x)>rep: Pao< exr{ — ZROC(X)

where the prime now indicates averaging subject to the con-

dition thatx is located on an infinite clusteP,, stands for K(By) = ! > D exdix-(6,— 6)]K(6)
. . . e D 4= 4=
the percolation probability that a point belongs to an infinite (2M)" X 4
cluster andR..(x) denotes the resistance betweeand in-
finity. From Eg. (2.18 we learn an important feature of =D (i) ()HKN), (2.25
v (X), namely that its average is proportional to the perco- A#0

lation order parametd?,, . For reasons that are clear by now . R
it is preferable to consideb ;(x). Upon Fourier transforma- whereK(\) is the replica space Fourier transformkge).
tion in replica space we find in the limi2—0 To evaluatek (X) we approximate the summation ovélby
_ an integration. This gives, up to a multiplicative factor that
(@ 5(X))rep=P-{(ex — 6°R(x)"]);—1}. (219  goes to one foD—0,

Anticipating results we will derive in Sec. IV we rewrite Eq. ~ - * . o0
(2.19 as K()\)Z—f dPeexdix- 6]In 1+vf dof(o)
— 0
) B = 62 1,
<(D0(X)>rep_ P. J'O dtp(t)ex —IW -1, xXexp — 50'(9 . (2.26
(2.20

. ) . Upon expanding the logarithm and carrying out thnte-
wherew is a constant proportional te, = and where gration we obtain, once more by dropping a multiplicative
factor that goes to one in the replica limit,

_ o edSN@) v -1\

p(t)=(a(t—w¢ R. g (2.21

- w (FD) .
is the probability distribution of the conductance to infinity. (N)=2, ( | ) vFi(N) (2.27
Thus, the physical meaning of the averageg(x) may be =1

stated as follows{® j(x))ep COrresponds to the percolation
order parameter times a scaling function that incorporates thwith F
distribution of the conductance to infinity.

/(N) being given by

F|<K>=f0”°dol-~-f0”°do|f(ol>~--f<o.>

B. Field theoretic Hamiltonian

This section presents our derivation of a field theoretic N2 1
Hamiltonian for the RRRC. It is guided be the work of LT. Xexp — = Pl (2.28
We start by revisiting Eq(2.7) from which we read off !
1 . . - o .
Hrep= —In< exp{ - 5P({d) > Fi(N)=1+AX*+BA"E3+0((X?)?), (229
g

o 1 where x2(1=2) is understood as\?)'*~@. A, and B, are
- —Inl f 11 dobg(ab)exr{ - —P({a})“. constants. For example,A; is given by A;=(1
0 b 2 —a)/(2ao) and B; readsB;=—T'(a)/(20¢)* @ with T
(2.22 denoting thel’ function. The general form of th4, is A
~051[1+ I(a—1)] 1. For reasons that will be given in Sec.
For the subsequent steps it is convenient to recastZE2R II C we will neglect all terms associated wiB)- ; from now
as on. By inserting Eq(2.29 into Eg. (2.27) we find
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R(N) =K +wWr2+pr2@-ay ... (2.30 C. Scaling analysis in the voltage variable

. . _ o _ Now we address the relevance of the coupling constants
with K, w, andv being expansion coefficients.is propor-  associated with the bond conductances. We carry out a scal-

. -1 . B - - ->

tlo_nlal to og "~ and positive fora>0. w is proportional o jng analysis by rescaling the voltage variales bd. Hereb

0p - Its sign depends on the valuesaéndv. From now on  denotes a scaling factor and should not be confused with the
we omit factors (}_&/I) tha}t go to one in the_z replica limit. index labeling the bonds. By substituting:p(x,é)
Moreover, we define the discrete gradidhj via _ (p’(x,bé) into the Hamiltonian we get

—E D()VaP;())=2 Ny 5(). (23D  Hle'(x,bb);rw,v]

A#0

Collecting we find that J ddXE [ (X, b(9 K(A,A5) @ (X, ba)
Hrep:% > DKWV i+0(— V) 2]d4()).
A6
(2.32

In the limit of perfect transporiy,— o, the coefficientsy ~ Renaming the scaled voltage variab#s=b# leads to
andv vanish andH ¢, reduces to

—g@’(x,b§)3]. (2.39

Hle'(x,0');7,W,0]
Hiep=K 2, 2 @(i)@5()). (2.33 .
) @ :f ddxz {E@’(X,é’)K(A,bZAé)(P,(X,é,)

9!

This Hamiltonian represents nothing more than th1j2

states Potts model that is invariant against aM(2® permu- Ve 203

tations of the spin states. ¢y '#0, thisSizy)o symmetry is —5¢ (%0 ] (239

lost in favor of anO(D) rotational symmetry in replica

space. Obviously, a scaling of the voltage variable results in a scal-
We proceed with the usual coarse graining step and reing of the voltage cutoffg,—b6,. However, by taking the

place the Potts spird ;(x) by order parameter fields(x,6)  limit D—0 and therm— o, the dependence of the theory on

that inherit the constrain jo(x, ) =0. We model the cor- the cutoff drops out. In other word?b is aredundant scal-
responding field theoretic Hamiltonidi in the spirit of Lan-  ing variable. Thus, one can identi#y and # and conclude
dau as a mesoscopic free energy. The constituting elementiat

are local monomials of the order parameter field and its gra-

dients in real and replica space. Purely local terms in replica ~ H[ ¢(x,b6);7,w,0]=H[ ¢(x, 6); 7,b?w,b2(1= 3y ].

space have to respect the @\ Potts symmetry. After (2.37
these remarks we write down the Landau-Ginzburg-Wilson- )
type Hamiltonian Next we consider the consequences of E437) for the

correlation functions of the fielg(x, 5) given by

H= fdde [ e(X, OK(A, A7) ¢(x,6) —<p<x,é>3 ,
(2.343
with the kernel being given by X exp(—H[ ¢(x,0);7,w,v]),

v3)i-a (2.34p (2.38

éN({Xa 5}, 7'1W,U):f D‘P‘P(leél)' Xy réN)

K(A,Aj)=7—V2=WVi+u(—
whereDg indicates an integration over the set of variables

In Eq. (2.34 we have neglected all higher order terms that{(P(X,é)} for all x and 8. Equation(2.37) implies that
are irrelevant in the renormalization group sengsandv are

now coarse grained analogs of the original coefficients ap- 2 1 2(1-a

pearing in Eq(2.32. The parameter— 7.~ (p.— p) Speci- Ciu({x, 0t 7,w,0) = Gn({x,b ;7. b?w, b )v)(z 39
fies the deviation of the occupation probabiljyfrom the

critical probability p. . In mean field theory the percolation From Eq.(2.39 in conjunction with Eq(2.16 we deduce
transition happens at=7.=0. We point out that{ reduces

to the usual field theoretic Hamiltonian for theNi3P states 42
Potts model upon setting=v =0. Thus,H satisfies an im-
portant consistency requirement since one retrieves purely S B
geometrical percolation in the limity— . :bzazM;(—:l((X’X')?Tvbzw’bz(l D). (2.40

Mfﬁl((x,x’);r,w,v)
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The freedom of choice with respect tohas not been The diagrammatic elements as constituents of our perturba-
exploited yet. To address the issue of relevance we choog®n calculation are the three-leg vertgxand the principal
b=y Y3 This gives propagator

MaC((x,X); 7,W,0) G (p,X)=G(k,\){1- &5 g}, (3.2

— VM (kX)W YD 1), (2.4)  Where G(p,X)=(r+p2+wX2)‘1.ﬁDu»e to the factor{1l
— 6y o} that enforces the constraint# 0 the principal propa-
By virtue of v~ *~ we may recast Eq2.41 as gator decomposes in a conducting paG"{p,X)
1(1-a)) =G(p,\) carrying replica currents and an insulating part

(2.42) G‘”S(p)zG(p,):)ég,(, not carrying replica currents. Each

' principal diagram decomposes into a sum of conducting dia-
with f, being a scaling function. We learn that appears 9rams consisting of conducting and insulating propagators.
only in the combinatiom/v (1~ A trivial consequence of ~ Our real-world interpretationl5,19,20,22-2] in which
the fact that the Hamiltonia(®.34 must be dimensionless is the conducting diagrams are viewed as being resistor net-
that WX2~U):2(1,,3)~M2, where 4 is an inverse length works themselves, provides fqr a powerfu.I and eleggnt
scale. Thusw/y Y-8~ ,~23(1-3) This leads to the con- framework to calculate these diagrams. At first we rewrite

clusion thatw is marginal fora of order e whereas it is the propagators in Schwinger parametrization,
clearly irrelevant fora of order one. . oc .

As hypothesized in Sec. Il B the scaling analysis in the G(p,)\)=f dsexg —s(7+p?+wA?)]. (3.2
voltage variable justifies that we have neglected in the re- 0

mainder of Eq.(2.29 all terms associated WitBy~1. SUP- Nyt we interpret the Schwinger parametets the conduct-
pose that we had rEtamedth‘Ef; terms. Each of them hady hropagators as their resistance. Then we can express the
contributed a term—uv,(— V) to the kernel in Eq. ¢ jenendent part of any conducting diagram wRt"™ con-

(2.34. From the preceding paragraph it is evident, howeverqcting propagators in terms of its electric povier
that v, appears in the average conductance only g@s'

~ w272 We conclude that keeping tt&-; had produced
only irrelevant terms and that neglecting them in studying expg —w >
the leading behavior at the critical point is indeed justified.

_ For our RG improved perturbation calculation presentedrne symmation on the left hand side runs over all conducting
in Sec. IV it will be helpful to dispose of a coupling that is S s s - -
propagators\;=\;(\,{«}), where\ is an external current

invariant underé—bé. To identify a candidate we revisit i )
Eq. (2.40 and choosé?=w~ L. This leads to and{«} is a complete set of independent loop currents, de-
q- (& ' notes the current flowing through conducting propagatbr
sc . _ -1 . this representation it is easy to see that the sum over the loop
Me=a((6XT); 7 W,0) =g (X X7)imh), - (243 currents is determined by the total resistaf{¢s;}) of the
respective diagram,

M2C1((%,X"); 7,W,0) =g f1((x,X'); 7,W/v

sﬁt?) =exdwP(X,{x})]. (3.3

ie Pcond

with f, being another scaling functioh=uv/w! 2~ ;22
turns out to be the sought invariant coupling constant. We o .

will see that it emerges quite naturally in perturbation theory. Z exdWP(\,{x})]=exd —R({siHhwr?]. (3.9
Hence, we refer td as effective coupling. {x}

Carrying out the usual momentum integrations, which is
ll. REVIEW OF THE RRN straightforward after completion of squares, and Taylor ex-

This section here presents a brief review of the modeP2"'o" 9IVes

with a=0 [18-20. We provide the reader with background

2 72y _ 2y _ 2v\v2
on the RRN to make the subsequent analysis of the ®RN HPZAD=1p(pT) —lw(pT WA+

more digestible. % -, 5

In this as well as in the following section we utiliz¢ and = fo H ds[1-R{s}H WA+ ---]D(p%{si}),
calculate the generating functicfa(x,x’,é) by employing
field theory augmented by renormalization. For background 3.9

on these methods we refer to REI1]. As soon as we have for the overall form of any conducting diagram(p? {s;})

G(Séx"ﬁ) at hand it is a straightforward matter to extract stands for the usudSchwinger parametrizedntegrand of
Mgy the corresponding diagram in the standardtheory.

For a=0 the coupling constants and h are redundant The ultraviolet(UV) divergences encountered in comput-
and can be set to zero. Straightforward dimensional analysisig the diagrams can be handled by resorting to dimensional
shows thatl.= 6 is the upper critical dimension and tHat ~ regularization. In dimensional regularization the UV diver-

andI'; are the only superficially divergent vertex functions. gences appear as poles in the deviaticn6—d from d..
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These poles may be eliminated from the superficially diver- From the structure of the renormalization fact(8<) and
gent vertex functions by employing the renormalizationthe Wilson functiong3.9) one can deduce the important fact

scheme the RGE is determined entirely by té®) (u). This may be
. seen as follows. From the definitiort3.9a3 and (3.9 we
o—p=2Y%p, (3.6a learn that the Wilsonry functions can be expressed as
—>O= -1 J
ToT=L LT (3.60 v (W=BW5-InZ . (311
W—>\7v:Z*12WW, (3.60

A glance at Eq.(3.7) tells us then that the logarithmic de-
rivative in Eq. (3.11) has a pure Laurent expansion with
respect tee starting at first order in £/ Moreover, we know
from Eq. (3.9b that B(u) begins with the zero-loop term
—eu. Because they functions are finite fore—0 their ¢
poles have to cancel order by order in the loop expansion. As
a consequence, the functions are given by

g—g=2"%ZYG VA2 4o, (3.69

where thee indicates unrenormalized quantities. The ampli-
tudeG, = (4m) ¥I'(1+¢/2) is introduced for convenience.
Z,Z,., andZ, are the usual Potts modglfactors known to
three-loop ordef28].

In the minimal renormalization procedure, i.e., dimen- p
sional regularization in conjunction with minimal subtrac- y  (w)=—u—xY (u). (3.12
tion, theZ factors are of the form au

Z XM (y) For this reason we will focus in the remainder of this paper
Z (u=1+ 21 (3.7 on theX™ (u). We neglect higher order terms in the expan-
m:

g™ . .
sion (3.7) and write
The X(_“_‘)'(u) are expansions in the coupling constanbe- © (L)
ginning with the poweu™. It is a fundamental fact of renor- Z (W=1+ Z b+ 0(s72) (3.13
malization theory, cf. Ref{21], that this procedure is suit- =1 Le ’

able to eliminate the UV divergencies from any vertex

function order by order in perturbation theory. where theY(") are numerical coefficients independentsof
The unrenormalized theory has to be independent of the The RGE can be solved in terms of a single flow param-

arbitrary length scalew ™! introduced by renormalization. eter| by using the characteristics

Hence, the unrenormalized correlation functions satisfy the

identity o —  —
5 I=r=r wD=u, (3.143
M@éNdx,X};é},v"v):o. (3.9 B
u _
Equation(3.8) translates via the Wilson functions 'ﬁzﬁ(“(l))’ u(l)=u,
p (3.14b
7...(U):M@|n2... K (3.99 . B
|E|nT=K(U(|)), 7(1)=r,
BW=por| =u@By—y—e), (39D (3.149
au 0
J  — _ _
alnr 1= inw=Zu),  wil)=w,
k(U)=pu o O=7—7ﬂ (3.99 (3.149
dinw J = = Sray_
(W)=p | =7 (3.99 G ne= iy, 2=t
0 (3.14¢

.(the|° |nd|cgte§ the}t bare quantities are kept fixed while tak'These characteristics describe how the parameters transform
ing the derivativesinto the RGE

if we change the momentum scale according to u

] a J P —u()=1pu. Being interested in the infraredR) behavior

MﬁJFBEJFTKa_TJFWé“m*EY of the theory, we study the limit—0. According to Eq.
(_3.14t) we expect that in this IR limit the coupling constant

X Gp({X,N};u, 7,w, 1) =0. (3.10  u(l) flows to a stable fixed point* satisfying 8(u*)=0.
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The IR stable fixed point solution to the RGE is readily The factoru?? is included to render the renormalized effec-
found. In conjunction with dimensional analysis it gives  tive coupling dimensionless.
After these remarks we now bring our attention to the

GN({X,X};U,T,W,M) perturbation calculation and its Feynman diagrams. For the
RRNSC the principal propagator has a form similar to its
=|(@=25INRG ([, NYu* 1 W r 1 P, ) analog for the RRN,
(3.15
GSSPp,N)=GSAk,\){1— &5 g} (4.9

with the critical exponents for percolatiop= y(u*) and v
=[2—«(u*)]"* known to third order ine [28]. ¢p=1[2
—{(u*)] is the percolation resistance exponent known to
second order iz [19,20,29.

Equation (3.15 implies that the two-point function

G(x,x’,6) scales at criticalityr=0 as

However, its flesh is now given baSY(p,\)=(7+p?
+WX2+pX2(1-2) =1 Evidently, GS¢*°{p,\) decomposes
into a conducting and an insulating part. This leads to con-
ducting diagrams identical to those for the RRN up to appar-
ent distinctions in the definition of the propagators. Due to
these distinctions an expansion for small external momenta

é(x'xr’é)zlwyﬂ(l|X_X,|’I7¢/VW7152) (3.16 and currents leads to

with B=(d—2+ n)v/2 denoting the percolation order pa-

2 72y (2 2\ x2 2, 2(1-
rameter exponent and whefe is a scaling function. Upon | (P5A9) =1e(P7) —Iw(PHWA = Ty(p%)uh =2 ..
choosingl =|x—x’| " and expanding the right hand side of (4.5
Eq. (3.16 we obtain by dropping nonuniversal constants  jngteaqd of Eq.(3.5) for the overall form of the conducting
72 diagrams.
G(x,x’,0)=|x—x'|?A" —W_1?|X—X’|_¢/V+ c To extract information orZ>C consider thex dependent

part of a conducting diagram with®" conducting propaga-
(38.17  tors that reads in Schwinger parametrization

With the help of Eq.(2.17) it is now straightforward to de-

duce the scaling behavior of the average conductance, 2 ex;{ _ E Si(w):_erv)(_Z(l—a)) (4.6)
/; ie cond : ! ' '
Mg-1~W~ Yx—x"| "¢ (3.18 et =P
We keep in mind thak;=X\;(N,{«}). The important obser-
IV. RENORMALIZATION GROSgP ANALYSIS vation is now that any conducting propagator affected by the
OF THE RRN summation over the loop currents gives a contribution to Eq.

Now we turn to the RREC and assume that<0a<1. (4.5 polynomial inX, i.e., it contributes td, rather than to
First we address the renormalization of the model. By carelv. The only contributions td,, can come from conducting
fully analyzing the RG flow we reveal the critical behavior propagators not affected by the summation oler. In the
of Mfﬁl and> €. As far as notation is concerned, we adoptterminology of our real-world interpretation this means that
the same convention as in Sec. | and . Quantities that mighky is determined exclusively by the red bonds of that dia-
be confused with their analogs for the RRN are marked bygram, i.e., by its singly connected conducting propagators.
the superscript SC. To be specific)y is given by

A. Renormalization |v(p2):wa de E
Obviously the Potts modé factors are independent af 0 <P
and hence do not require further consideration. ZHactor
pertaining tow, however, is expected to be different from its
analog for the RRN, i.e.,

dSiD(pzi{Sj}): (4.7)

where the sum runs over @™ conducting propagators of
the diagram not belonging to any closed conducting loop.
Now we take a short detour and recall some central fea-
tures of our field theory on the nonlinear RRRO0,22 in
which the occupied bonds obey a generalized Ohm’sVaw
~1". The field theoretic Hamiltonian for the nonlinear RRN
[30] corresponds to that for the standard RRN vwa,
v—p=2"175%. 4.2  replaced byw,=o_;(—d/36‘) 1. Accordingly, one en-
counters a generalized renormalization fadliq;r that then
From Egs.(4.1) and (4.2) we deduce immediately, that the |eads to a generalized resistance exponeft=v[2
effective invariant couplincdh=v/w'~2 announced in Sec. —¢,(u*)]. The Wilson function, is defined analogous to

wow=2"1z5. (4.1)

Sincev #0 we need an additional renormalization

Il C has to be renormalized by Eq. (3.9d with y, replaced byy, =pudlduInZ,lo. The
o _ B generalized resistance exponent has the physical meaning of
h—h=2Z aZEC(Z\?VC)a thu??, (4.3 governing the average nonlinear resistance at criticality,
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M, (%,X") = (x (X, X )R (X, X" )/ {x(X,X"))c over. In case botla ande are small we can follow the work
oIy of Honkonen and Nalimoy33] to analyze the structure of
~[x=x"|#"". (48 7S¢ This structure differs from that dZ,, [cf. Eq. (3.13]

The nonlinear RRN is particularly interesting, because Itbecause two major differences emerge #0¢0. First, the
conducting propagators

provides for an elegant way to determine fractal dimension

of percolation clusters by considering specific values.of *(—1)kn2(-a)k
For example, it is a well known fa¢81] that GSC.eondp w2y = z AT
k=0 [7+p +)\2]k+l
lim M, ~M ¢q, 4.9
r— give rise to an entire series of individual terms. Second, since

a is now of ordere, the poles in these individual contribu-

B g meseuerage nUben e 184 b tons are nowofthe ype M 2. HenceZ: s ofthe
ing relationd,eq=lim ¢, /v for the fractal dimensiomleq
. . ®  ® (L k)
et G 1y, which means hat 1 g1, From the  Zaum=1+3 3 i ik o(e ),
definition of ¢, it then follows that lim _Z,(u)=«(u) that (4.17
leads in turn to the identity Here, theY{¥) are the numerical coefficients of the poles.
lim Zy=2.. 4.10 Appendix B illustrates the preceding arguments at the in-

stance of an one-loop calculation.

In minimal subtraction, th&{-"* are independent of both
In Refs.[20,22 we showed based on our real-world inter- ¢ anda. This fact provides us with a simple method to cal-
pretation that the contributioqu,\,r of a conducting diagram to culate the numerical coefficients because it is sufficient to
Z,, takes forr—o the simple form consider the limita— 0. In this limit the Hamiltonian for the

' RRNSC reduces to the Hamiltonian for the RRN with re-

r—o

placed byw+uv. As a consequence we obtain by exploiting
I|mIW(p f H ds; 2 sD(p{s}}). (41D  Eq. (4.13 the relation

iep™

SC, —
Comparison of Eqs(4.7) and (4.11) yields Zu () =2y (W) + A2y (1) +2(W)] (4.18

valid in the limit a—0. Inserting the explicit form£3.13
and(4.17 into Eq. (4.18 we obtain the following relations
between the numerical coefficienty{-?=y{) —yLD
From this and Eq(4.10 we finally conclude the identity ~— =Y{&—Y®)  andY{-**Y=0. Recalling that ther{-* are
independent o& we conclude that

lim zwr=zfc. (4.12

r—o

75¢=7.. (4.13

y(Lb) v Y(L)

For analyzingZSC® we revisit Eq.(4.6) and rescale the  Z5%u,h)=1+ >, u' %Jrhh +0(e72).
replica currents)2—w~\2. This recasts Eq(4.6) into -t 4.19
Z exr{— > Si():iz_"h):iZ(la))] (4.14 B. Scaling
P! i  peon

We proceed in the same fashion as in Sec. Il and set up
As mentioned above, conducting propagators belonging ta Gell-Mann-Low RG equation for the RRN By carefully
closed conducting loopgblobg lead in an expansion for analyzing the RG flow we derive the scaling behavior of the
small X to terms polynomial inx that contribute tol,,.  average conductance.
Sinceh appears in Eq(414) IW will in genera' depend oh The RGE for the RR% is somewhat richer than that for
(cf. Appendix B. We conclude thaZSC is not only a func-  the RRN:
tion of u but also ofh, J

z8e=Z5%u,). (415 [’%wﬁﬂ“? Wbyt 27}

For arbitrarya e (0,1) it is difficult to gain further insight X Gn({X,\};u,7,w,0,u)=0, (4.20
into szvc_ Anyway, the most exciting values @f are those
for which a is of the order of our small expansion parameter
e. This is the key region in which the crossover between the P
RRN and the RRRF occurs(the naive limita—0 presup- yad(u,h)=p—1In Z\?VO‘ , (4.213
posese<a and hence is inadequate to resolve the cross- I 0

where we have introduced the Wilson functions
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s Jlnw < sign and it is unstable if this bracket has a negative sign. For
w(u,h)= R | =Y (4.210  aof order one the sign is certainly negative. This leads to the

0 conclusion thahj is stable fora of order one. In the cross-

Il over region, i.e., foa of ordere, the question of stability is

nv - h .

§fc(u)=,u =y— yfc_ (4.210 more intricate. Here, we need more information on the func-

|, tional dependence dfon h. This information can be derived

_ c _ o from the structure oZ5C given in Eq.(4.19. Upon inserting
Obviously value of¢,™ at the fixed poinu* is given by Eq. (4.19 into the definition(4.21a of 7\/Svc we obtain
SYur)=2—1/v. (4.22 .

SC - Iy (L) L) _vyL)
In order to expresgsC at u* in terms of the known RRN Yw (u,h)—LZl Yy FhLYy =YL (4.30

exponents we introduce the function
F(h) = y35(u* ) — yu(U*), (423  Substitutingy,S(u*,h) into the definition(4.23 of f leads to

which leads to

h
f(hy=-[¢-1]. (4.3)
LS5u* hy=2—¢lv—1f(h). (4.24)

Equations(4.21), (4.22, and (4.24 provide us with flow The important conclusion from E¢4.31) is thatf is linear in
equations for the coupiing& andy: h for a of ordere. Hence, it results in a contribution to the

right hand side of Eq(4.28 quadratic inh that can be ne-
J _ _ glected in analyzing the stability &ff . Finally, we perceive
1= Inw(h)=2=¢/v=1(h(1)), w(l)=w, (4253 thath? is stable if¢>(1—a) * whereash} is stable if¢
<(1-a) .
9 _ At this point we possess enough information to solve the
1= inv(h)=2-1/v, v(1)=v. (4.25H  flow equation(4.253 for w. For ¢>(1—a) * we know that
f tends to zero becauseflows toh} . Forp<(1—a) %, on
The flow equation(4.25h for v is readily solved, the other hand, we have to insert H¢.29. Summarizing
both cases we write the solution to Eg.253 as
v(l)=vl2~ 1, (4.26 «
Wil = [2— > (@)lv
To solve the flow equatioit4.253 for w we first have to w(l)=wl ' (4.32
analyze the flow oh.
From the renormalization dif (4.3 follows immediately
that the logarithmic derivative of the renormalizedwith

where we have defined tteedependent resistance exponent

respect tou is given atu* by PR S S —
1
7 Inh uzu*l[(l Yyb—1]+(1—a)f(h) 4.27) =) 1 (4.33
u—Inh| = =[(1-a)¢—1]+(1—a)f(h). : -
Em . » i—a if ¢<1—a'

Consequentlyh obeys the flow equation Collecting the above results we find that the solution to

1 the RGE(4.20 augmented by dimensional analysis reads
v

J— _ _
|ﬁh(|):h(|)[ [(1—a)¢—1]+(1—a)f(h(|))]
4289  Gn({X\}u,7,W,0,u)

with the initial conditionh(1)=h. A glance reveals that the =INB’VGN({IX,K};U*,I v ‘¢Sc(a)/”w,| 1y ).

flow of h has two IR fixed points, viza} =0 andh} deter- (4.34
mined by '
17 1 This scaling form implies for the Fourier transformed two-
f(h3)= J1=a bl (4.29 point function at criticality that
Now that we know the fixed points &f we have to ana- Bxx',6)=128E (1 |x—x'| |~ @y =162 ¥ ),
lyze their stability. Since there are two fixed points either one (4.35

will be stable and the other one will be unstable depending
on the value ofa. Considerh} . h} is stable if the{---}  whereE is a scaling function. The choide=|x—x'| ! and
bracket on the right hand side of E@.28 has a positive subsequent Taylor expansion yields
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B(x,x',8)=|x—x"|28" function (2.1b) is sin_gular,_the_re exists at .criticality a large
number of bonds with arbitrarily large resistance. Whenever
72 one of these bonds is red it may dominate the total resistance
% _\,\,—1?|X_Xr|—d)sc(a)/wr ot of its link. If the large resistance, on the other hand, occurs in

a blob it has, in general, little impact because the current can
(430 fiow through parallel paths. F@a>a, the resistance of the

With the help of Eq(2.17) we readily obtain weakest red bond is typically larger than the sum of resis-
tances of the other building blockthe blobs and the other
M§§l~w—l|x_xf|—¢sc(a)/v_ (4.37)  red bondsof a link so that the weakest red bond dominates

the total resistance of its entire link. Faxa, the impor-
It remains to deduce the scaling behavior the average coriance of the weak red bonds is diminished and the network
ductivity and its conductivity exponenfYa). Commonly, behaves effectively as a standard RRN.
the conductivity of percolating systems is defined with re- We point out that our analysis was not restricted to any
spect to a bus bar geometry where the network is placegarticular order ine expansion. Unlike LT who set up a
between two parallel superconducting platé® electrodes “momentum shell” RG, we used the powerful methods of
of areaLd_l a distancd. apart. From the above we expect renormalized field theory. These methods allowed us to ex-

that the average conductane€® of this system scales as  Pplore general properties of the renormalization factors, sub-
sequently the RGE, and finally the conductivity exponent to

oSL,7) =72 @I (L1¢), (4.39  all orders in perturbation theory.
wherell, is ana-dependent scaling function with the prop- ACKNOWLEDGMENT
erties
We acknowledge the support by the Sonderforschungs-
const for x<1 bereich 237 “Unordnung und grof3e Fluktuationen” of the
Ta(x)~ for x>1. (4.39 Deutsche Forschungsgemeinschatt.
Now consider length scales large compared to the correlation ~ APPENDIX A: CONTENTS OF THE COUPLING
length &. In this regime the RRRF above the percolation CONSTANTS w AND v
threshold,7<0, can be viewed as a homogeneous system of _ _ _ _ _ o
conductivity 35 7). Hence, we may write fok > ¢ that In this appgndlx we give details on the integrations in Eq.
(2.28. At the instance of; andF, we illustrate the con-
35C(7)~L2 doSqL, 7). (4.40 tents of the coupling constantsando.

We start by recalling the definition &f,. After changing

the integration variable froro to t by settingt = XZ/(ZU) Fq
takes on the form

By virtue of Eq.(4.39 we finally get

3G 1)~ | o] @-2r+ %@ (4.4
, . _— N2\t N2
which means that the conductivity exponent is given by F1(K)=(1—a)(2—) F( a— 1,2_). (A1)
o Jo
t59a)=(d-2)v+¢°Ya). (4.42

Here

V. CONCLUDING REMARKS

r = [ Tdttetet A2
We showed without relying on the assumptions of the (@) J’y deee A2)

“nodes, links, and blobs” picture that the conductivity ex-
ponent for the RRRC is given by Eq.(1.5). For sufficiently  is the incomplete Gamma function that has abpstO the

large values of this means that Taylor expansiori34]
t5%a)=(d—2)v+(1—a)? (5.1) oo (—1)ntyetn

F(ay)=T(a)~ 2 atn) (A3)
recognized by Halperiet al. [2] as a lower bound t6>%(a) n=0 %
that can be attributed to a dominance of the red bonds. At #hus, we obtain
critical valuea,=1—1/¢ the conductivity exponent crosses
over to the value N2\l g %2

F (X):l—r(a)(—> 2 +0((x2)2)
t5%a)=(d—2)v+ ¢ (5.2 ! 20, a 20,
(Ad)

for the standard lattice model and is essentially determined ) ) o
by the blobs. Now we turn toF,. After isolating the contribution for

The “nodes, links, and blobs” picture provides an intui- =0 it is save to change variables by settimg= ootx and
tive explanation for this behavior. Since the distribution o,=opt(1—x). We get
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2 l ,," ''''' “\‘
FZ(X)=1+(1—a)2J dtf dxtl=28x 3(1—x) "2 _O_ - _O_ o _{

2
exnl — A 1 (A5) FIG. 1. The principal one-loop self-energy diagrébold) de-
200t ) composes into the conducting diagrams A and B assembled of con-
ducting (light) and insulating/dashed propagators.

X

The integration ovek gives a Beta functiof34] B(1—a,1

—a). The integration ovet can be handled analogous to the I'11°% \)=2B-A. (B1)
integration in the preceding paragraph. As a result of both
integrations we obtain Applying the usual Feynman rules yields
. 22(17a) Fl Ioop JE Gcond(q K)Gcond(q K+)\)
_ —aV2R(1—a 1—a){ —
Fo(N)=1+(1-a)B(1—a,l a)[ 2(1=a)
2(1-a) >0 2 con "\ (ins
X +g JG 1a.M)G™a), (B2)
+| =— F( 2(a—1),—) ] (AB) q
20'0
where we have dropped the superscript SC because we con-
With help of the expansiofA3) we finally get sider exclusively the RRR throughout the entire appendix.
[q is an abbreviation for ()~ 9/”_.d%. For the following
Fo(N\)=1+(1—a)?B(1—a,1—a) 221 steps it is convenient to recast H§2) as
-5\ 2(1-a) -5 2 1
A 1 A 1oop oy 9 ~\2 con Y
—1y) Al r ”(A)———JZ [GC"“"(q,K) —5[G*™a,x+X)
x| rea 1))(400) " %a—1 20, ? 2 Jo% 2
LO(R 2)2)] (A7) ~G*™a,x)]| +¢? f G, \)G™(q).
q

(B3)
The higher order§ |-, can be analyzed by similar means.

It is not difficult to convince oneself that the general form of The evaluation of thé -independent term is straightforward
the F, is given by Eq.(2.29 and that the coefficients, because z;Gcond(q,;)ZZGiHS(q)Z for D—O0. The
decorating\” are proportional t§1+I(a- 1)]*. Since the  X.dependent terms are expanded in the external currents. Af-
F, enter into the kerndk(\) via Eq.(2.27) the coefficient of ter some algebra we obtain
_)2 - -~ >, - -
the \“ term inK(\) is given by e L WRZ4 pR20-2)
rl Ioop()\)

-9
(1)' C (A8) 2 ar+g?? o (r+¢?)°

UAl 2

=1 Yiti(a—1)

_y Y
=1

+ng [w+(1-a)jvx 22X k)2

. . _ ~2(1-a)
where theC, are positive constants proportionaldg *. We (74 P+ W+ vk )
learn from Eq.(A8) that the value ofv depends on details (B4)
like the specific values af anda. It may be finite or infinite, . _ . . . . _
positive or negativev depends on anda as well, see Egs. The first two integrations are readily carried out using di-
(2.27) and (A4). However, for 6<a<1 andp>0 it is al-  Mensional regularization. The summation over the loop cur-
ways finite and positive. rent can be simplified by exploiting the rotational symmetry

in replica space and by rescalimg}’2—> x2. After these steps
APPENDIX B: ONE-LOOP CALCULATION we arrive at

In this appendix we calculate the one-loop contributions
0 Z5¢ explicitly. We will see that the one-loop result is in
conformity with Eq.(4.17). In one-loop order there exists o oo
only a single principal self-energy diagram that decomposes TOWA A+ (BS)
into conducting diagrams as shown in Fig. 1. In the follow-
ing we set external momenta to zero for simplicity. HenceWhere
the one-loop contributiod’3™° to the vertex functiorl’,
(note that the vertex functiord$, are defined as the negative =
of the corresponding diagramis given by

- G, R -
F%'loc’p()\) =— gz? 778/2{ THWN2+ U)\Z(lfa)}

_ ~—2a12.2
_f [1+(1—a)hk 22]2¢ @5

w (T+0%+ K2+ he2(- )

056105-12



CONDUCTIVITY OF CONTINUUM PERCOLATING SYSTEMS PHYSICAL REVIEW B4 056105

remains to be evaluated. Upon rewritihgn Schwinger pa- a is sufficiently small and abbreviate the value of this inte-
rametrization, the momentum integration can be carried ougral by c, ,. Changing the summation indéxto k—n we

immediately. The summation overcan be approximated by obtain

an integration since we have already excluded0 prop- ® .
erly. Recasting this integration in spherical coordinates we | = 2 Ckhkj ds @ 92+akeyy —s7) (B9)
get forD—0 k=0 0 '

where we have set

1 S 0
= - ds §’7dlze —S J' d
6(4w)d’2fo Xp=sT) | dicx

- = E 1— n&
X[1+(1—a)hk~2¥]2exd —s(«?+hx2(1-2)], T am@2 i | n (A=) = Cknn
(B7) (B10)

The integration over radius variabkeis simplified by intro- ~ The integration oves yields
ducing an integration variabbe=s«?. Moreover, we apply

©

the binomial formula and expand the rightmost exponential ‘ o2k
function in Eq.(B7) with the result I= 2 ckh*l’ +ka ~(el2tka), (B11)
= ;fwds @ d2exy —s7) For a of ordere we can expand thE function that provides
12(4m)92J o us with the final result
) 2 K . K
(- ) Cih
X 1—a)" hn+k a(n+k) —(s/2+ka)
53 [oo-w -3 o e
% fxdxexq_x)xkfa(nJrk)_ (B8) whereCy abbreviatesC, =2c,I'(1+e/2+ka). We see that
0 the UV singularities manifest themselves in a series of poles

) o o of the fromh*/(Le+ 2ka) with L=1. In other words, our
The integral ovex is divergent for= 1/2 signifying that the  one-loop example is in agreement with the general insights
expansion in\? is justified only fora<1/2. We assume that presented in Sec. IV.
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