PHYSICAL REVIEW E, VOLUME 64, 056103
Phase transitions in systems with f ¢ attractive interactions
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Collapse, or a gravitational-like phase transition is studied in a microcanonical ensemble of particles with an
attractive I/“ potential. A mean-field continuous integral equation is used to determine a saddle-point density
profile that extremizes the entropy functional. For all <3, a critical energy is determined below which the
entropy of the system exhibits a discontinuous jump. If an effective short-range cutoff is applied, the entropy
jump is finite; if not, the entropy diverges tb. A stable integral equation solution represents a state with
maximal entropy; the reverse is always true only for a modified integral equation introduced here.
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[. INTRODUCTION a phase transition &* as a mere artifact of an often auxil-
iary cutoff.

The behavior of systems with long-range interactions is While these rather elaborate studies of gravitational col-
often different from those considered in traditional thermo-lapse have usually been motivated by cosmological applica-
dynamics. As an example we take self-gravitating systemgjons and were performed solely for anm Potential, a natu-
i.e., particle ensembles with purely attractive iteractions.  ral question is, what happens if the particles interact via an
It is known that such systems exhibit collapse, sometimegitractive ¥ potential with arbitrarya. Apart from pure
called a zero-order phase transition, when the energy in thigeoretical interest and_possnble astrophyspal applications,
microcanonical ensembI®IE) or the temperature in the ca- SyStéms with ¥/* potentials are often found in condensed-
nonical ensembléCE) drop below a certain critical value, matter physics. It has been noticed before that in systems

or T, respectivelyf1-3|. During such a transition, the cor- W_ith no_ninte_grable interaction_s, l.e., whenis less th"m the
respcc;nding thermodynamic potentidétropy in thé ME or dimensionality of the space, first-order phase transitions oc-

. o . . , cur differently in the ME than in the CE, even fbr— oo [7].
free energy in the CRexhibit a discontinuous jump. If the However, in the examples considered in the literature, the

mﬁer?ctlon bet\;ve;fe_n _thte %artlc(;esthls ptuhrelél_ attrat(_:tlve an_d n%otential energy was always bounded from bel@sually
short-range cutoll s introduced, then Ihe discontinuous jum y putting the system on a lattigeallowing only for normal

is infinite and the entropy and free energy go+tec and {5t order phase transitions and excluding any singular col-
—oo, respectively. This makes all normahoncollapsed lapse.

states of the self-attractive system metastable with respect to' | thjs work we consider a possibility of collapse in sys-

such a collapse; the collapse energyis in fact an energy tems, similar to the gravitational self-attracting Hamiltonian
below which the metastable state ceases to exist. |f, on thﬁartic]e systems, but with a generaj‘ C]‘jotentiaL The paper
other hand, some form of short-range cutoff is introducedis organized as follows: after this brief introduction we for-
the entropy and free energy jumps are finite. In this case as a
result of the collapse, the system goes into a nonsingular
state with a dense core, the precise nature of which
depends on the details of the short-range behavior of the
potential. Then only the normal states that are in some
interval of energies above the collapse point are metast-
able with respect to such a transitiosee Fig. 1
There is an energg* for which both collapsed and nor-
mal system have the same entrdpf e ande’ in Fig. 1);
above this energy the collapsed state becomes metastable
and at some higher energy it ceases to €4d]. It is pos-
sible to regard the energg* as that where a true phase
transition occurs. When the effective cutoff vanishes, such
phase transition energy* increases to infinity, so that with-
out a cutoff all the finite energy states are metastqble
However, the value of* is highly sensitive to the details of €
the short-range cutoff. On the contrary, the collapse energy G, 1. Sketch of an entropy vs energy plot for a system with

e; depends on the long-range part of the interparticle interyrayitational-like collapse. The entropy of the normaoncol-
actions and is almost unaffected by a cutoff, provided that ifapsed state is shown by a solid line, the entropies of the two

is sufficiently short range. Therefore, in studies of the phaseollapsed states for different cutoff radia andr,, r,<r,, are
behavior of the long-range interacting systems, the collapsshown by dashed lines. The entropies of the two collapsed states
phenomena usually gain the most attention, considering thentersect the entropy of the normal state at energfeande; .

s(e)
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mally define the model and derive an integral equation tder of particles is varied but the energy per particle is fixed,

solve for a saddle-point density profile. Then we describe théhe system siz&R should scale aR&~NY?. This indicates

results obtained by a numerical iterative solution of thisthat «=3 is the largest value aof for which no thermody-

equation for various & «<<3. After this, we look at the manic scaling is observed and hence some nontraditional

local stability of the solutions of the integral equation andphase transitions may exist.

link their stability to the stability(metastability of the cor- We assume that the number of partichéss large and go

responding states of the self-attracting system. Finally, w&o a continuum limit, replacing a-dimensional configura-

discuss the results and directions for further investigation. tional integral in Eq.(2) by a functional integral over pos-
While the collapse is shown to be a generic property ofsiple density profilep(x) (see, for exampld2,3]),

self-gravitating systems occurring in both the ME and the

CE, the ME allows to obtain more information about the i dy +ie dg

system than the CE. For example, negative heat-capacity S(e)~ 50“”{ f Dpf Py

states, that precede the collapse in the ME, are not accessible

in the CE, as it is in the much better studied case of normal -

first-order phase transitio$,7,9. In the rest of our paper XeXp{NS[P(')ﬁ,%ﬁ]}], 5

we consider systems only in the ME. In our studies we

ztrzoilglg/ﬂr::]yr?gnotrzi Slagesbfgy of existing results derived forwhere the “effective action” functionas is defined

joo 2’7T| —joo 2i

~ X1)p(X
IIl. THE MODEL Up().eyBl=5| e ffp|( 1)P(|2) 1dx2)
X1—X
Let us consider a three-dimensional ME Nf particles v
each having masm, interacting with an attractive pair po- . 3
. o - - . ' p(x)dx—1|—zInp
tential V;;= — G/|r;—r;|*. These particles are confined to a 2
spherical container with radiuR; the total energy of the .
particles isE. The microcanonical entropyqual to the loga- | P(X)d» 6
rithm of the density of states; here and in the following we — | p(X)In—=dx. ©®)

putkg=1) can be expressed as
Here we introduced two auxiliary Fourier integrations: one

N dpedry N p? overdp to replace the® function in Eq.(4) (see e.g[2]),
S(B)= ln{N' mh)? { ~ 2 2m
f f 1 ) ! " I'(oc+1) (+= . dw
N N X70(x)= Z—J el ——, (7)
_21';1\/” (1) ™ - (i)
i=1j=1+

and similarly one overdy to express thed function
After integrating over the momenta and introducing a di- 5[ [ p(x)dx—1]. Equatlon(5) is apphcable only for & a

— o4 2
mensionless energy=ER®/GN* and radial coordinates; 3 \yhen the integrals odx, anddx, are convergent at the
=r;/R, Eq. (1) can be reduced to lower limit.
N Using thatN is large, the integral in Ed5) can be evalu-
J o J [T dx®(eyin) V21|, (29  ated by the saddle-poiritnean field method. To determine
k=1 the dominant contributions to the integral, we differentiate
Eq. (6) with respect toy,B3, and p(x) and look for

{vs:Bss ps(i)}. which give the extrema to the effective ac-

1 1 tion (6). As a result, unique solutions are obtained for

(3 {ys.Bs}; while for p4(x) a nonlinear integral equation is ob-
tained for which the number and the nature of solutions is
generally unknown,

S(e)=Sp+1In

wheree,;, is a dimensionless kinetic energy

Ein= €T 2 )
N 1<iSj<n | — x|

andS, is an energy-independent term

3N/2 2\ 3N/2-1 3N Bsps(X1) - | -
So=In|2m| =—= m G_N R— (4) ys=—|n[ f ex;{—f S'eladx1 dxs ¢,
2mh? R T(3N/2)N! | X1 X
HereI'(x) is a Gamma function® (x) is a un.it step function pS(Xl)pS(X2 o
that guarantees positiveness of the kinetic energy, and the Tl dx,dxy | ()
17 A2

integration for eachj;(i runs over a three-dimensional unit
sphere. It follows from Eq(2) that the entire thermodynami- -
cal behavior of our system depends on the single variaple ps(X)= ex;{ v+ Bs &dgll_
and for a system to remain in the same state when the num- [x1—X|“
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It follows from Eq. (8) that B is equal to 3/2 of the inverse
kinetic energy, hence it is equal to the entropy derivative P(X):Poexq
with respect to the energy, i.e., to the inverse temperature,
=[ds(e)lde]g=1IT.
Using Egs.(6) and(8) and ignoring terms independent of —In|x—x1|]dx1},
€, we obtain for the entropy per partictée) = S(€)/N in the
saddle-point approximation .
Po—{J eXF{

JJP(Xl)P(Xz) s
X1 X2
|X1 X2|

1
N) . 9

1
BSJ'O p(X1)Xq[IN(X+X)

27B
+x'

1
- JO p(x)x[IN(X" +xy)

-1
dx’] , (11)

s(e)——ln

—In|x" —x4|]dx;

- f p(X)IN[p(x)]dx+O

3 11
_ _ o _ == e+4772J f X1) p(X2) X Xo[ IN(X 1+ X
The mean-field saddle-point approximation works only if the Ps 2 0Jo P(Xa)p(xo)xaxelIn(xa +x2)
second derivatives of the effective action functiosalre not -1
K)/o small; we will return to the question of its validity in Sec. —In|x,— x2|]dx1dx2] .

The above equations look similar to those for the gravita-
tional («=1) cases that are derived, for example, in Refs.
[2,3], to where the reader is referred for a more detaile$
description of the derivation. However, we cannot procee
further along the lines developed in the references mention
above, all of which deal with the gravitational case. For,
unlike the gravitational case, when tdg1/r)=—4745(r)
property of a Coulomb interactionrlAllows one to reduce IIl. NUMERICAL SOLUTION

Eq. (8) to a second-order differential equation, no such prop- ¢ g_js considered an independent parameter rather than a
erty exists for a generalv and we have to deal with the 5.0y depending or and p., the Eq.(8) is often called a
integral equation fop(x) in Eq. () directly. generalized Poisson-Boltzmann-Emden equafit®]. Very
In what follows a further simplification is made by disre- Jittle is known about this equation even in the gravitational
garding the angular dependence for the saddle-point density=1 case. The only exactly known, so called “singular,”
profile, i.e., p(X)=p(X); for the gravitational case this is solution is for B;=2 [10] and has the formpg;ng(X)
justified in Refs.[2,3]. After performing a straightforward = (4mx?) !, which leads toe= —1/4 ands=In(\27)—2.
angular integration in the exponential of E&), we obtain  However, We are interested here in generande; and B
for a#2, in the ME is not an independent variable but a function of
€. As we will discuss below, this has a crucial effect on the
2mwBs (1 _ numerical accessibility of solutions in a certain intervakof
p(X) = po€X mfo p(X1)Xq[(X+X1)* "7 To solve the Eqs(10) and(11) numerically for generad
and e, we use a simple iterative method. For a fixedve

Once the Egs(10) and (11) have been solved and the
ntropy (9) has been calculated, the nature of the phase be-
avior of the system can be deduced from an entropy-energy
lot. In the next section we analyze the E¢B)) and (11)
numerically.

start at a relatively high value @fwith a flat density profile,
_|X_X1|(2_a)]dxl], po=3/4ar, which is the solution of Eqg10) and(11) for e

— +o0. Putting py into Egs.(10) and (11), we calculateB,

and obtain a new density profile;(x). In other words, an

1 278 1 _ iterative map
POZ{ Jo eﬂ{ﬁfo p(Xl)Xl((X"I’Xl)(Z o
“ pi+100=Fdpi(-).x], (12
-1
—|x" = x| @~ NYdx, | dX’ (10) is introduced, with a nonlinear function& [ p;(-),x] de-
' fined by Eqs(10) and(11).

After a sufficient convergence of the iterations ELp) is
achieved, i.e., when

3 (2-a)
Bs=5 (2 a) (Xl p(X2)X1Xo[ (X1 +X2) L
. 47rf0 |pi+1(X) — pi(X)[x2dx< 6<1, (13

—|X1—x2|(2”‘)]dx1dx2] ;
the entropy is calculated with E@9). We then move to a

lower-energy point, use the previous energy point density
and fora=2, profile aspg, and repeat the procedure again. Caution in
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6

s(g), B(e)

-10 -
-1.5 -1.0

3.0 €
FIG. 3. Plots of entropys(e) and entropy derivative8(e) for

a=1/2. The radius of excluded central volumg=5x10"*. The
pointse;,€*,€,, ande; are defined in the text.
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FIG. 2. Plot of collapse energs.(«) vs potential exponent.

selecting the initial energy as well as the energy step has g, zero. Hence, if no short-range cutoff is present, it is rea-
be exercised to maintain the positiveness of the kinetic ensg5ple to assume that the entropy discontinuity 6d) is
ergy. In fact the initial energy has to be larger than jufnite.

—[3°2°” /(6 a)(4-a)(3— )], which is the potential it some form of a short-range cutoff is introduced, the
energy for the flat density profile. As we progress towardsspiropy discontinuity may become finite. To investigate this
lower energies, the density profiles get more and Morgye tried two approaches. One, suggested in R&f.is to
peaked near the origin, and the absolute value of the POtefliace a small spherical excluded volume with a radiyn

tial enc_argy.increas_es. To allow for improper integra[s in théihe center of the system, or, in other words, to replace a
numerical integration of Eq¢10) and(11), we use a simple  gpperical container with a spherical shell container. The

midpoint trapezoid rule. Uniform meshes of 1000-2000qther approach is to replace the original “bare” potential
points were usually sufficient. However, in order to deter-q,« \ith a “soft” potential of the form 1/(-2+ré)2a. For a

mine the position of a phase transition point with a SUfﬁ'reasonany small short-range cutoff,(-10~2 for small

ciently high precision in order to compare our results to ther 102 for a=3 for both approacr?ezshe behavior of tr’1e
P _ . . . 0 =

EEISIIH% one_;? for‘)]ﬁ_l’ anl(lj to ach;]evde talso a ;}_Ilscontlnuhous precollapsed system is virtually unaffected. A finiteness of

p.:;se ranS|O|88 or Sma_l_ﬁf‘ we had lo use merétmes ©S the integration mesh can also play the role of an effective

with up to 5000 points. The convergence parame@lavas  conira| excluded volume; for our method of integration the

usually set to be 10 _size of such an effective excluded volume is roughly of the

The main conclusion that can be derived from the numerio, qor of the mesh step. Our numerical studies indicate that
cal results obtained is the following: for alkOx<3, as for

. , i both the central core and the soft potential short-range cutoff

a=1, there is a certain energy(«) below which the sys-  5555aches lead to qualitatively similar phase behavior.
tem collapses and the entropy exhibits a discontinuous jump.” hiroduction of a short-range cutoff makes the existence
The results fore () are presented in Fig. 2. To verify our of 3 nonsingular collapsed phase possible. However, being
calculations ofec(a), we compare our result foic(a=1)  ghjied directly, the iterative methdd?) still diverges when
with the existing data obtained by other methods. Our num- ¢.. To make it convergent, we introduced a map with a
ber, e.(a=1)=-0.3346, is consistent withe.(a=1) variable “step”
= —0.335, quoted in Ref§3,4].

Since the behavior of self-attractive systems is quantita-
tively similar for all 0<«< 3, let us consider in more detail,

pi+1(X)=0F[pi(-),e]+ (1= 0)pi(x), (14)

for example, a system with=1/2. Plots of entropg(e) and
inverse temperatureB(e)=ds(e)/de are presented in
Fig. 3.

As we go down along the energy axésthe entropy de-
creases as well, passing through an inflection pginthere
B reaches its maximurg,,. For energies below this inflec-

where 0<o=<1 is the step size parameter. Choosinguf-
ficiently small(as small as~10 ?-10%), we were able to
make the algorithm convergent fer<e.. The connection
between the numerical stability of the iterative algorithm and
the thermodynamic stability of the corresponding phase is
analyzed in the next section. A typical density profile in the

tion point, the system has a negative specific heatollapsed phase exhibits a much higher concentration around
[d2s(e)/de?>0] and is, therefore, unstable in the CE. As wethe origin than to the normguncollapsedl phase; plots of
pass through the; point and continue decreasing the energy,density profiles fore=1/2 are presented in Fig. 4.

the convergence of E¢12) becomes slower and slower, and A collapsed phase exists not only fee., but for e

at the pointe. the iterations start to diverge. It is straightfor- > €. as well. In fact, this phase is globally stable in the range
ward to show for all < a<3 (see, e.g.[10] for «=1) that  of energies where its entropy is higher than that of the nor-
the entropy is unbounded from above with respect to unifornmal phase, i.e., whea<e*. For e>¢€*, the collapsed phase
squeezing of all the matter into a sphere with a radius goings metastable and above some eneegybecomes unstable
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, For the iterations to converglip; , 1(X)| <| dp;(x)| for all x.
10 This condition is equivalent to a requirement that the abso-
] ] lute values of all the eigenvalues of the first variation
10 operator defined below are less than one,
z 10
= L6F Jp(-).X] o
1 Ndi(0)= | ——"=|  g(x)dx, (16
10 o Sp(x) | _
P=pg
107"
““““““ where theg; are the eigenfunctions corresponding Xp.

60 02 04 06 08 10 Recalling the definition ofF [p(-),x] (8),(10),(11) we note

that it can be expressed through a first variation of the effec-
FIG. 4. Density profilesp(x) for a=1/2 for normal(dashed tive action functionak[p(-),e,v,5],

line) and collapsedsolid line) phases for the energy* = —0.708,

when entropies of both phases are the same. The radius of the

excluded central volume is=5x10"%. 5s(p(-).€,7.8]

Fe[p(~),x]=eX{ 5p(%) 7_ypﬁ_ﬁflnp(x)].

even locally(see Fig. 3 However, being cutoff dependent, (17)
€* and e, are not directly related to the fundamental prop-
erties of the original 1Fself-attracting system. ) ) o

Finally we return to the exagiging(X)=(4mx?) " solu- ~ Then one obtains for the first variation B{[ p(-),x],

tion that exists fore= —1/4 anda=1. Our attempts to ap-

proach this solution by the numerical iterative meth¢ti® . 73 (.

and (14) failed. In fact, even after substituting thg;ny(x) OFdp(-).X] :ps(x)w

into Eq. (14) as an initial approximatiopy(x), the iterative Sp(x') |, _, Sp(X)op(X") | s p
solution of Eq.(14) evolved either to a normal or to a col- ° ° ° °
lapsed solution depending on the value of the siepVe +o(x=x"). (18)

calculated the entropies for the three solutions, that exist at

e=—1/4: a normals,, a collapseds, (with a sufficiently Now for a statep(Xx) to be thermodynamically stable and for

small central core, so that it still exists at this engr@gnd a the saddle-point approximation to be applicable at all, the

Ssing fOr psing. It turns out thatsg;,g<min{s,,s;}, which, L , o~ .
together with the evidence obtained from the iterative proceS€cONd variation of the effective actianon the right-hand

dures mentioned above, strongly suggests that in the space i€ Of EQ.(18) must be negative for alt andx’. This is
solutions(or fixed points of Eq. (14), both normal and col- equivalent to the requirement that all the eigenvalues of the

lapsedp(x) are at least locally stabl@ttractive, while pq, operator on the.right—hand side of H48) are I.ess tha:’] one.
is unstable(repulsive. For, the only eigenvalue of the delta functidix—x') is

one with any function being its eigenfunction and the density

ps(X) is strictly positive for all G=x<1. Hence, the conver-

IV. STABILITY OF THE THERMODYNAMIC STATE gence of the mapl2) to the functionpg(x) is a sufficient

AND THE ITERATIVE MAP condition for the thermodynamic stability @f(x) and the

) , , , , validity of the saddle-point approximation. However, the re-
The iterative solutions of the integral equatiod®) and 156 ”is not true, i.e., stable thermodynamic states do not

(12) for the saddle point density profilps(x) of the self- o essarily correspond to stable iterative solutions. For, the

attracting system correspond to thermodynamically stable 0f o ator on the left-hand side of E(.8) may have eigen-

unstable states. In this section we will give the necessary a lues that are less thanl, which will make the mag12)

the sufficient conditions for the thermodynamic stability of | ciapje. Therefore, let us’ instead of Ef2) consider the

the py(x) in terms of the stability of the iterative solutions of | 5japie step magld) with eigenvalues of its first variation

the |'n.tegral equatiorg10). To t.hat'end we will look at the \* (o) =0\ +(1—0). Then for any negative\, we can

stability of Eq.(12) for a certain trial functiorp;(x). Let us choose an appropriate so that|\* ()| < 1. Evidently, this

assume thapg(x) is a solution(fixed poiny of (12), and . . .
5p:(X) = pi(X) — pa(x) is a small deviation of thih iteration is what happene_d in the case o_f the .cqllapsed phase, which
from the solutionp,(x). After one iteration we obtain for possessing the highest entropy, is definitely stable, but can be
So. - SV accessed numerically only by using Hd4) with a suffi-
Pi+100=pi+100 = ps(X), ciently smallg. On the other hand, for thermodynamically
unstable states, such agnq, some of the eigenvalues of the
16F [p(-),x] operator in the right-hand side of E(.8) are larger than 1,
opi+1(X)= | ————— Spi(x)dx'+0(8p?). which make the iterative mag$2) and(14) unstable, so that
o dp(x’) p such solutions cannot be found iteratively. This completes
(15  the demonstration of the equivalence of the two stabilities.

=pg
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V. DISCUSSION 25

(1) In the previous sections we revealed the existence of
collapse and associated with it a discontinuity in the entropy
in the microcanonical ensemble of particles with“lattrac- /' \
tion for 0<a<3. This discontinuity was an infinite jump if S [
no short-range cutoff was present. A carefully introduced & 157 / \
short-range cutoff leaves the properties of precollapsed sys- /! !
tem virtually unaffected, but makes the entropy jump finite o~ -7 !
and allows to observe the collapsed phase. We proved that |
the stability of the iterative method of solution of the integral A
equation for a saddle-point density profile is a sufficient con- 05 - AN
dition for the profile to make the entropy a maximum and, -7.0 —20 3.0
therefore, be either stable or metastable. We modified the €

iterative method to make the reverse also t'rue. . FIG. 5. Entropy derivative8(e) = ds(€)/de vs energye plot for

(2) In the range ofe we have been working with,Qa =2 and central core radius 0(50lid line), and =1 and soft
<3, the potential is often called “nonintegrable,” since the potential radius 0.0%dashed ling
integral fd®r/r ¢ diverges at its upper limit. As the potential _ _ L
becomes integrablea(>3), the continuum approach used 19- 9 [7=9]. Hence there is an intrinsic difference between
here becomes inapplicable because the short-range densm}a normal and the gra\_ntatlonal first-order ph_a_se transitions.
fluctuations, which the continuous approach cannot account Even more, f.‘°r_ma' f|r§t-order phase transitions are found
for, become dominant over the long-range effects. Formally'f0 r_eplace grawta'uonal first-order phase tran_smons tha_t oc-
the short-range nature of the behavior of the systemsrfor cur in the self-attracting systems that we consider here, if the
>3 manifests itself as the divergence of the integidr /r short-range cutoff is sufﬂment-ly increased. As was note.d n
at its lower limit Ref.[5] for =1, there is a critical excluded volume radius

(3) A very important question which remains is that of the ¢ 3P0ve which there is no discontinuity in the entropy vs
order of the gravitation-like phase transition. Here we havé"€r9y pIo(;. r:/vﬁj o?se[)veg thatl t2|sdtrer;d IS gendenchor all 0
to distinguish between the collapse itself, that happers at ,<a<3 and holds for (?t, excluded volume and so poten-
and the phase transition which happens at the enefgy t""’_‘l Cl_JIOffS' NOW the critical CUt.Off r.ad'U$°(a) Increases
where the entropies of noncollapsed and collapsed states a‘f’@ﬂh3 increasinga, roughly varying in value from below
equal(see Fig. 3 Since the entropy at the collapse poigt 10 ° for a—_1/4, to above 1_0 for «=5/2, respectively. For
exhibits a discontinuous jump, the collapse is often called & SyStém with a cutoff radius larger thag(«), the entropy
zero-order phase transitid@]. However, the collapse is not VS energy pI(_)t is continuous and (.E?(thItS all charactensucs
a normal phase transition since it converts a metastable stadé & normal first-order phase transitipn,9J: the convex dip
into a stable one, which can be singular or finite, dependin@?d assozc_|ated _\_N'th it an interval Of energies, _Where
on the presence of the short-range cutoff. d°s(e)/de” is positive and the heat capacity is nggaﬁﬁ&g.

On the other hand, the “true” phase transition between?): We leave the more detailed study of the difference be-
stable phases, which happen4t is sometimes referred to tween the gravitational-like and the normal first order phase
as a “gravitational first-order phase transition5]. Its dis- transitions and the nature of crossover between them for a
tinct features include an inability of the two phageencol- ~ fUture paper.
lapsed and collapse¢do coexist and a discontinuoyd(e),

i.e., temperaturd5]. Yet in the “normal” ME first-order ACKNOWLEDGMENTS

phase transition in a long-range interacting sysfsutch as a The authors are grateful to B. Miller and especially to H.

mean-field Potts modgl B(e) remains continuous and J. de Vega for helpful discussions. This work was supported
smooth, but exhibits non monotonous behavior: the intervaby the Office of Basic Engineering Science of the U.S. De-

of energies where phases coexist includes an interval whefgartment of Energy, under Grant No. DE-FG 02-88-ER
dB(e)/de is positive and the specific heat is negatisee  13847.

[1] V.A. Antonov, Vestn. Leningr. Univ., Ser. 4: Fiz., Khin7, [7] 1. Ispolatov and E.G.D. Cohen, Physica2A5, 475(2002.

135(1962. [8] R.W. Gerling and A. Hlier, Z. Phys. B: Condens. Matt@0,
[2] H.J. de Vega and N. ®ahez, astro-ph/0101567-/0101568. 207 (1993.
[3] T. Padmanabhan, Phys. Re€88 285 (1990.
[4] P.J. Klinko and B.N. Miller, Phys. Rev. B2, 5783(2000.
[5] V.P. Youngkins and B.N. Miller, Phys. Rev. B2,
4583(2000.
[6] M.K.-H. Kiessling, J. Stat. Phy&5, 203(1989.

[9] D.H.E. GrossMicrocanonical Thermodynamics: Phase Tran-
sitions in “Small” SystemsLecture Notes in Physics, Vol. 66
(World Scientific, Singapore, 2001

[10] F. Bavaud, Rev. Mod. Phy$§3, 129(1991).

056103-6



