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Phase transitions in systems with 1Õr a attractive interactions
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~Received 19 June 2001; published 17 October 2001!

Collapse, or a gravitational-like phase transition is studied in a microcanonical ensemble of particles with an
attractive 1/r a potential. A mean-field continuous integral equation is used to determine a saddle-point density
profile that extremizes the entropy functional. For all 0,a,3, a critical energy is determined below which the
entropy of the system exhibits a discontinuous jump. If an effective short-range cutoff is applied, the entropy
jump is finite; if not, the entropy diverges to1`. A stable integral equation solution represents a state with
maximal entropy; the reverse is always true only for a modified integral equation introduced here.
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I. INTRODUCTION

The behavior of systems with long-range interactions
often different from those considered in traditional therm
dynamics. As an example we take self-gravitating syste
i.e., particle ensembles with purely attractive 1/r interactions.
It is known that such systems exhibit collapse, sometim
called a zero-order phase transition, when the energy in
microcanonical ensemble~ME! or the temperature in the ca
nonical ensemble~CE! drop below a certain critical valueec

or Tc , respectively@1–3#. During such a transition, the cor
responding thermodynamic potentials~entropy in the ME or
free energy in the CE! exhibit a discontinuous jump. If the
interaction between the particles is purely attractive and
short-range cutoff is introduced, then the discontinuous ju
is infinite and the entropy and free energy go to1` and
2`, respectively. This makes all normal~noncollapsed!
states of the self-attractive system metastable with respe
such a collapse; the collapse energyec is in fact an energy
below which the metastable state ceases to exist. If, on
other hand, some form of short-range cutoff is introduc
the entropy and free energy jumps are finite. In this case
result of the collapse, the system goes into a nonsing
state with a dense core, the precise nature of wh
depends on the details of the short-range behavior of
potential. Then only the normal states that are in so
interval of energies above the collapse point are met
able with respect to such a transition~see Fig. 1!.

There is an energye* for which both collapsed and nor
mal system have the same entropy~cf. e1* ande2* in Fig. 1!;
above this energy the collapsed state becomes metas
and at some higher energy it ceases to exist@4,5#. It is pos-
sible to regard the energye* as that where a true phas
transition occurs. When the effective cutoff vanishes, s
phase transition energye* increases to infinity, so that with
out a cutoff all the finite energy states are metastable@6#.
However, the value ofe* is highly sensitive to the details o
the short-range cutoff. On the contrary, the collapse ene
ec depends on the long-range part of the interparticle in
actions and is almost unaffected by a cutoff, provided tha
is sufficiently short range. Therefore, in studies of the ph
behavior of the long-range interacting systems, the colla
phenomena usually gain the most attention, considering
1063-651X/2001/64~5!/056103~6!/$20.00 64 0561
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a phase transition ate* as a mere artifact of an often auxi
iary cutoff.

While these rather elaborate studies of gravitational c
lapse have usually been motivated by cosmological appl
tions and were performed solely for an 1/r potential, a natu-
ral question is, what happens if the particles interact via
attractive 1/r a potential with arbitrarya. Apart from pure
theoretical interest and possible astrophysical applicatio
systems with 1/r a potentials are often found in condense
matter physics. It has been noticed before that in syste
with nonintegrable interactions, i.e., whena is less than the
dimensionality of the space, first-order phase transitions
cur differently in the ME than in the CE, even forN→` @7#.
However, in the examples considered in the literature,
potential energy was always bounded from below~usually
by putting the system on a lattice!, allowing only for normal
first-order phase transitions and excluding any singular c
lapse.

In this work we consider a possibility of collapse in sy
tems, similar to the gravitational self-attracting Hamiltoni
particle systems, but with a general 1/r apotential. The paper
is organized as follows: after this brief introduction we fo

FIG. 1. Sketch of an entropy vs energy plot for a system w
gravitational-like collapse. The entropy of the normal~noncol-
lapsed! state is shown by a solid line, the entropies of the tw
collapsed states for different cutoff radiar 1 and r 2 , r 2,r 1, are
shown by dashed lines. The entropies of the two collapsed st
intersect the entropy of the normal state at energiese1* ande2* .
©2001 The American Physical Society03-1
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I. ISPOLATOV AND E. G. D. COHEN PHYSICAL REVIEW E64 056103
mally define the model and derive an integral equation
solve for a saddle-point density profile. Then we describe
results obtained by a numerical iterative solution of t
equation for various 0,a,3. After this, we look at the
local stability of the solutions of the integral equation a
link their stability to the stability~metastability! of the cor-
responding states of the self-attracting system. Finally,
discuss the results and directions for further investigation

While the collapse is shown to be a generic property
self-gravitating systems occurring in both the ME and
CE, the ME allows to obtain more information about t
system than the CE. For example, negative heat-capa
states, that precede the collapse in the ME, are not acces
in the CE, as it is in the much better studied case of nor
first-order phase transitions@8,7,9#. In the rest of our pape
we consider systems only in the ME. In our studies
strongly rely on the large body of existing results derived
a51, often rigorously@2,3,10#.

II. THE MODEL

Let us consider a three-dimensional ME ofN particles
each having massm, interacting with an attractive pair po
tential Vi j 52G/urW i2rW j ua. These particles are confined to
spherical container with radiusR; the total energy of the
particles isE. The microcanonical entropy~equal to the loga-
rithm of the density of states; here and in the following w
put kB51) can be expressed as

S~E!5 lnH 1

N! E . . . E )
k51

N
dpW kdrWk

~2p\!3 dFE2(
l 51

N pl
2

2m

2(
i 51

N

(
j 5111

N

Vi j G J . ~1!

After integrating over the momenta and introducing a
mensionless energye5ERa/GN2 and radial coordinatesxi
[r i /R, Eq. ~1! can be reduced to

S~e!5S01 lnF E . . . E )
k51

N

dxW kQ~ekin!ekin
3N/221G , ~2!

whereekin is a dimensionless kinetic energy

ekin5e1
1

N2 (
1< i , j <N

1

uxi2xj ua
, ~3!

andS0 is an energy-independent term

S05 lnF2mS m

2p\2D 3N/2S GN2

Ra D 3N/221
R3N

G~3N/2!N! G . ~4!

HereG(x) is a Gamma function,Q(x) is a unit step function
that guarantees positiveness of the kinetic energy, and
integration for eachdxW i runs over a three-dimensional un
sphere. It follows from Eq.~2! that the entire thermodynam
cal behavior of our system depends on the single variable;
and for a system to remain in the same state when the n
05610
o
e

e

f
e

ity
ble
al

e
r

-

he

m-

ber of particles is varied but the energy per particle is fix
the system sizeR should scale asR;N1/a. This indicates
that a53 is the largest value ofa for which no thermody-
manic scaling is observed and hence some nontraditio
phase transitions may exist.

We assume that the number of particlesN is large and go
to a continuum limit, replacing a 3N-dimensional configura-
tional integral in Eq.~2! by a functional integral over pos
sible density profilesr(xW ) ~see, for example,@2,3#!,

S~e!'S01 lnH E DrE
2 i`

1 i` dg

2p i E2 i`

1 i` db

2p i

3exp$Ns̃@r~• !,e,g,b#%J , ~5!

where the ‘‘effective action’’ functionals̃ is defined

s̃@r~• !,e,g,b#5bS e1
1

2E E r~xW1!r~xW2!

uxW12xW2ua
dxW1dxW2D

1gS E r~xW !dxW21D2
3

2
ln b

2E r~xW !ln
r~xW !

e
dxW . ~6!

Here we introduced two auxiliary Fourier integrations: o
over db to replace theQ function in Eq.~4! ~see e.g.@2#!,

xsQ~x!5
G~s11!

2p E
2`

1`

eivx
dv

~ iv!s11
, ~7!

and similarly one overdg to express thed function
d@*r(xW )dxW21#. Equation~5! is applicable only for 0,a

,3 when the integrals ondxW1 anddxW2 are convergent at the
lower limit.

Using thatN is large, the integral in Eq.~5! can be evalu-
ated by the saddle-point~mean field! method. To determine
the dominant contributions to the integral, we differentia
Eq. ~6! with respect to g,b, and r(xW ) and look for

$gs ,bs ,rs(xW )%, which give the extrema to the effective a
tion ~6!. As a result, unique solutions are obtained f

$gs ,bs%; while for rs(xW ) a nonlinear integral equation is ob
tained for which the number and the nature of solutions
generally unknown,

gs52 lnH E expF bsrs~xW1!

uxW12xW2ua
dxW1GdxW2J ,

bs5
3

2 F e1
1

2E E rs~xW1!rs~xW2!

uxW12xW2ua
dxW1dxW2G21

, ~8!

rs~xW !5expFgs1bsE rs~xW1!

uxW12xW ua
dxW1G .
3-2
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PHASE TRANSITIONS IN SYSTEMS WITH 1/r a . . . PHYSICAL REVIEW E 64 056103
It follows from Eq. ~8! that bs is equal to 3/2 of the inverse
kinetic energy, hence it is equal to the entropy derivat
with respect to the energy, i.e., to the inverse temperat
bs5@]s(e)/]e#R[1/T.

Using Eqs.~6! and~8! and ignoring terms independent o
e, we obtain for the entropy per particles(e)5S(e)/N in the
saddle-point approximation

s~e!5
3

2
lnF e1

1

2E E r~xW1!r~xW2!

uxW12xW2ua
dxW1dxW2G

2E r~xW !ln@r~xW !#dxW1OS 1

ND . ~9!

The mean-field saddle-point approximation works only if t
second derivatives of the effective action functionals̃ are not
too small; we will return to the question of its validity in Se
IV.

The above equations look similar to those for the grav
tional (a51) cases that are derived, for example, in Re
@2,3#, to where the reader is referred for a more detai
description of the derivation. However, we cannot proce
further along the lines developed in the references mentio
above, all of which deal with the gravitational case. F
unlike the gravitational case, when theD(1/r )524pd(r )
property of a Coulomb interaction 1/r allows one to reduce
Eq. ~8! to a second-order differential equation, no such pr
erty exists for a generala, and we have to deal with th
integral equation forrs(xW ) in Eq. ~8! directly.

In what follows a further simplification is made by disr
garding the angular dependence for the saddle-point den
profile, i.e., r(xW )5r(x); for the gravitational case this i
justified in Refs.@2,3#. After performing a straightforward
angular integration in the exponential of Eq.~8!, we obtain
for aÞ2,

r~x!5r0expH 2pbs

~22a!xE0

1

r~x1!x1@~x1x1!(22a)

2ux2x1u(22a)#dx1J ,

r05H E
0

1

expF 2pbs

~22a!x8
E

0

1

r~x1!x1~~x81x1!(22a)

2ux82x1u(22a)!dx1Gdx8J 21

, ~10!

bs5
3

2 H e1
4p2

~22a!
E

0

1E
0

1

r~x1!r~x2!x1x2@~x11x2!(22a)

2ux12x2u(22a)#dx1dx2J 21

;

and fora52,
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r~x!5r0expH 2pbs

x E
0

1

r~x1!x1@ ln~x1x1!

2 lnux2x1u#dx1J ,

r05H E
0

1

expF2pbs

1x8
E

0

1

r~x1!x1@ ln~x81x1!

2 lnux82x1u#dx1Gdx8J 21

, ~11!

bs5
3

2 H e14p2E
0

1E
0

1

r~x1!r~x2!x1x2@ ln~x11x2!

2 lnux12x2u#dx1dx2J 21

.

Once the Eqs.~10! and ~11! have been solved and th
entropy~9! has been calculated, the nature of the phase
havior of the system can be deduced from an entropy-ene
plot. In the next section we analyze the Eqs.~10! and ~11!
numerically.

III. NUMERICAL SOLUTION

If bs is considered an independent parameter rather th
factor depending one and rs , the Eq.~8! is often called a
generalized Poisson-Boltzmann-Emden equation@10#. Very
little is known about this equation even in the gravitation
a51 case. The only exactly known, so called ‘‘singular
solution is for bs52 @10# and has the formrsing(x)
5(4px2)21, which leads toe521/4 ands5 ln(A2p)22.
However, we are interested here in generala ande; andbs
in the ME is not an independent variable but a function
es . As we will discuss below, this has a crucial effect on t
numerical accessibility of solutions in a certain interval ofe.

To solve the Eqs.~10! and~11! numerically for generala
and e, we use a simple iterative method. For a fixeda we
start at a relatively high value ofe with a flat density profile,
r053/4p, which is the solution of Eqs.~10! and ~11! for e
→1`. Puttingr0 into Eqs.~10! and ~11!, we calculatebs
and obtain a new density profiler1(x). In other words, an
iterative map

r i 11~x!5Fe@r i~• !,x#, ~12!

is introduced, with a nonlinear functionalFe@r i(•),x# de-
fined by Eqs.~10! and ~11!.

After a sufficient convergence of the iterations Eq.~12! is
achieved, i.e., when

4pE
0

1

ur i 11~x!2r i~x!ux2dx,d!1, ~13!

the entropy is calculated with Eq.~9!. We then move to a
lower-energy point, use the previous energy point den
profile as r0, and repeat the procedure again. Caution
3-3
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I. ISPOLATOV AND E. G. D. COHEN PHYSICAL REVIEW E64 056103
selecting the initial energy as well as the energy step ha
be exercised to maintain the positiveness of the kinetic
ergy. In fact the initial energy has to be larger tha
2@32222a/(62a)(42a)(32a)#, which is the potential
energy for the flat density profile. As we progress towa
lower energies, the density profiles get more and m
peaked near the origin, and the absolute value of the po
tial energy increases. To allow for improper integrals in t
numerical integration of Eqs.~10! and~11!, we use a simple
midpoint trapezoid rule. Uniform meshes of 1000–20
points were usually sufficient. However, in order to det
mine the position of a phase transition point with a su
ciently high precision in order to compare our results to
existing ones fora51, and to achieve also a discontinuo
phase transition for smallera, we had to use finer meshe
with up to 5000 points. The convergence parameterd was
usually set to be 1026.

The main conclusion that can be derived from the num
cal results obtained is the following: for all 0,a,3, as for
a51, there is a certain energyec(a) below which the sys-
tem collapses and the entropy exhibits a discontinuous ju
The results forec(a) are presented in Fig. 2. To verify ou
calculations ofec(a), we compare our result forec(a51)
with the existing data obtained by other methods. Our nu
ber, ec(a51)520.3346, is consistent withec(a51)
520.335, quoted in Refs.@3,4#.

Since the behavior of self-attractive systems is quant
tively similar for all 0,a,3, let us consider in more detai
for example, a system witha51/2. Plots of entropys(e) and
inverse temperaturebs(e)5ds(e)/de are presented in
Fig. 3.

As we go down along the energy axise, the entropy de-
creases as well, passing through an inflection pointe i where
b reaches its maximumbm . For energies below this inflec
tion point, the system has a negative specific h
@d2s(e)/de2.0# and is, therefore, unstable in the CE. As w
pass through thee i point and continue decreasing the energ
the convergence of Eq.~12! becomes slower and slower, an
at the pointec the iterations start to diverge. It is straightfo
ward to show for all 0,a,3 ~see, e.g.,@10# for a51) that
the entropy is unbounded from above with respect to unifo
squeezing of all the matter into a sphere with a radius go

FIG. 2. Plot of collapse energyec(a) vs potential exponenta.
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to zero. Hence, if no short-range cutoff is present, it is r
sonable to assume that the entropy discontinuity atec(a) is
infinite.

If some form of a short-range cutoff is introduced, th
entropy discontinuity may become finite. To investigate t
we tried two approaches. One, suggested in Ref.@4#, is to
place a small spherical excluded volume with a radiusr 0 in
the center of the system, or, in other words, to replac
spherical container with a spherical shell container. T
other approach is to replace the original ‘‘bare’’ potent
1/r a with a ‘‘soft’’ potential of the form 1/(r 21r 0

2)2a. For a
reasonably small short-range cutoff (r 0;1023 for small a,
r 0;1022 for a.3 for both approaches! the behavior of the
precollapsed system is virtually unaffected. A finiteness
the integration mesh can also play the role of an effect
central excluded volume; for our method of integration t
size of such an effective excluded volume is roughly of t
order of the mesh step. Our numerical studies indicate
both the central core and the soft potential short-range cu
approaches lead to qualitatively similar phase behavior.

Introduction of a short-range cutoff makes the existen
of a nonsingular collapsed phase possible. However, be
applied directly, the iterative method~12! still diverges when
e,ec . To make it convergent, we introduced a map with
variable ‘‘step’’

r i 11~x!5sF@r i~• !,e#1~12s!r i~x!, ~14!

where 0,s<1 is the step size parameter. Choosings suf-
ficiently small ~as small as;1022–1023), we were able to
make the algorithm convergent fore,ec . The connection
between the numerical stability of the iterative algorithm a
the thermodynamic stability of the corresponding phase
analyzed in the next section. A typical density profile in t
collapsed phase exhibits a much higher concentration aro
the origin than to the normal~uncollapsed! phase; plots of
density profiles fora51/2 are presented in Fig. 4.

A collapsed phase exists not only fore,ec , but for e
.ec as well. In fact, this phase is globally stable in the ran
of energies where its entropy is higher than that of the n
mal phase, i.e., whene,e* . For e.e* , the collapsed phase
is metastable and above some energyeu becomes unstable

FIG. 3. Plots of entropys(e) and entropy derivativeb(e) for
a51/2. The radius of excluded central volumer 05531024. The
pointsec ,e* ,eu , ande i are defined in the text.
3-4
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even locally~see Fig. 3!. However, being cutoff dependen
e* and eu are not directly related to the fundamental pro
erties of the original 1/r aself-attracting system.

Finally we return to the exactrsing(x)5(4px2)21 solu-
tion that exists fore521/4 anda51. Our attempts to ap
proach this solution by the numerical iterative methods~12!
and ~14! failed. In fact, even after substituting thersing(x)
into Eq. ~14! as an initial approximationr0(x), the iterative
solution of Eq.~14! evolved either to a normal or to a co
lapsed solution depending on the value of the steps. We
calculated the entropies for the three solutions, that exis
e521/4: a normalsn , a collapsedsc ~with a sufficiently
small central core, so that it still exists at this energy!, and a
ssing for rsing . It turns out thatssing,min$sn ,sc%, which,
together with the evidence obtained from the iterative pro
dures mentioned above, strongly suggests that in the spa
solutions~or fixed points! of Eq. ~14!, both normal and col-
lapsedr(x) are at least locally stable~attractive!, while rsin
is unstable~repulsive!.

IV. STABILITY OF THE THERMODYNAMIC STATE
AND THE ITERATIVE MAP

The iterative solutions of the integral equations~10! and
~12! for the saddle point density profilers(x) of the self-
attracting system correspond to thermodynamically stabl
unstable states. In this section we will give the necessary
the sufficient conditions for the thermodynamic stability
thers(x) in terms of the stability of the iterative solutions o
the integral equation~10!. To that end we will look at the
stability of Eq.~12! for a certain trial functionr i(x). Let us
assume thatrs(x) is a solution~fixed point! of ~12!, and
dr i(x)5r i(x)2rs(x) is a small deviation of theith iteration
from the solutionrs(x). After one iteration we obtain for
dr i 11(x)5r i 11(x)2rs(x),

dr i 11~x!5E
0

1dFe@r~• !,x#

dr~x8!
U

r5rs

dr i~x8!dx81O~dr2!.

~15!

FIG. 4. Density profilesr(x) for a51/2 for normal ~dashed
line! and collapsed~solid line! phases for the energye* 520.708,
when entropies of both phases are the same. The radius o
excluded central volume isr 05531024.
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For the iterations to converge,udr i 11(x)u,udr i(x)u for all x.
This condition is equivalent to a requirement that the ab
lute values of all the eigenvaluesl i of the first variation
operator defined below are less than one,

l i f i~x!5E
0

1dFe@r~• !,x#

dr~x8!
U

r5rs

f i~x8!dx8, ~16!

where thef i are the eigenfunctions corresponding tol i .
Recalling the definition ofFe@r(•),x# ~8!,~10!,~11! we note
that it can be expressed through a first variation of the eff
tive action functionals̃@r(•),e,g,b#,

Fe@r~• !,x#5expF d s̃@r~• !,e,g,b#

dr~x!
U

g5gs ,b5bs

1 lnr~x!G .

~17!

Then one obtains for the first variation ofFe@r(•),x#,

dFe@r~• !,x#

dr~x8!
U

r5rs

5rs~x!
d2s̃@r~• !,e,g,b#

dr~x!dr~x8!
U

g5gs ,b5bs ,r5rs

1d~x2x8!. ~18!

Now for a staters(x) to be thermodynamically stable and fo
the saddle-point approximation to be applicable at all,
second variation of the effective actions̃ on the right-hand
side of Eq.~18! must be negative for allx and x8. This is
equivalent to the requirement that all the eigenvalues of
operator on the right-hand side of Eq.~18! are less than one
For, the only eigenvalue of the delta functiond(x2x8) is
one with any function being its eigenfunction and the dens
rs(x) is strictly positive for all 0<x<1. Hence, the conver
gence of the map~12! to the functionrs(x) is a sufficient
condition for the thermodynamic stability ofrs(x) and the
validity of the saddle-point approximation. However, the r
verse is not true, i.e., stable thermodynamic states do
necessarily correspond to stable iterative solutions. For,
operator on the left-hand side of Eq.~18! may have eigen-
values that are less than21, which will make the map~12!
unstable. Therefore, let us instead of Eq.~12! consider the
variable step map~14! with eigenvalues of its first variation
l i* (s)5sl i1(12s). Then for any negativel i we can
choose an appropriates so thatul i* (s)u,1. Evidently, this
is what happened in the case of the collapsed phase, w
possessing the highest entropy, is definitely stable, but ca
accessed numerically only by using Eq.~14! with a suffi-
ciently smalls. On the other hand, for thermodynamical
unstable states, such asrsing , some of the eigenvalues of th
operator in the right-hand side of Eq.~18! are larger than 1,
which make the iterative maps~12! and~14! unstable, so that
such solutions cannot be found iteratively. This comple
the demonstration of the equivalence of the two stabilitie

he
3-5
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V. DISCUSSION

~1! In the previous sections we revealed the existence
collapse and associated with it a discontinuity in the entro
in the microcanonical ensemble of particles with 1/r a attrac-
tion for 0,a,3. This discontinuity was an infinite jump i
no short-range cutoff was present. A carefully introduc
short-range cutoff leaves the properties of precollapsed
tem virtually unaffected, but makes the entropy jump fin
and allows to observe the collapsed phase. We proved
the stability of the iterative method of solution of the integ
equation for a saddle-point density profile is a sufficient c
dition for the profile to make the entropy a maximum an
therefore, be either stable or metastable. We modified
iterative method to make the reverse also true.

~2! In the range ofa we have been working with, 0,a
,3, the potential is often called ‘‘nonintegrable,’’ since th
integral*d3r /r a diverges at its upper limit. As the potentia
becomes integrable (a.3), the continuum approach use
here becomes inapplicable because the short-range de
fluctuations, which the continuous approach cannot acco
for, become dominant over the long-range effects. Forma
the short-range nature of the behavior of the systems foa
.3 manifests itself as the divergence of the integral*d3r /r a

at its lower limit.
~3! A very important question which remains is that of t

order of the gravitation-like phase transition. Here we ha
to distinguish between the collapse itself, that happens atec ,
and the phase transition which happens at the energye*
where the entropies of noncollapsed and collapsed state
equal~see Fig. 3!. Since the entropy at the collapse pointec
exhibits a discontinuous jump, the collapse is often calle
zero-order phase transition@2#. However, the collapse is no
a normal phase transition since it converts a metastable
into a stable one, which can be singular or finite, depend
on the presence of the short-range cutoff.

On the other hand, the ‘‘true’’ phase transition betwe
stable phases, which happens ate* , is sometimes referred to
as a ‘‘gravitational first-order phase transition’’@5#. Its dis-
tinct features include an inability of the two phases~noncol-
lapsed and collapsed! to coexist and a discontinuousb(e),
i.e., temperature@5#. Yet in the ‘‘normal’’ ME first-order
phase transition in a long-range interacting system~such as a
mean-field Potts model!, b(e) remains continuous an
smooth, but exhibits non monotonous behavior: the inter
of energies where phases coexist includes an interval w
db(e)/de is positive and the specific heat is negative~see
05610
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Fig. 5! @7–9#. Hence there is an intrinsic difference betwe
the normal and the gravitational first-order phase transitio

Even more, normal first-order phase transitions are fou
to replace gravitational first-order phase transitions that
cur in the self-attracting systems that we consider here, if
short-range cutoff is sufficiently increased. As was noted
Ref. @5# for a51, there is a critical excluded volume radiu
r c above which there is no discontinuity in the entropy
energy plot. We observed that this trend is generic for a
,a,3 and holds for both excluded volume and soft pote
tial cutoffs. Now the critical cutoff radiusr c(a) increases
with increasinga, roughly varying in value from below
1023 for a51/4, to above 1021 for a55/2, respectively. For
a system with a cutoff radius larger thanr c(a), the entropy
vs energy plot is continuous and exhibits all characteris
of a normal first-order phase transition@7,9#: the convex dip
and associated with it an interval of energies, whe
d2s(e)/de2 is positive and the heat capacity is negative~Fig.
5!. We leave the more detailed study of the difference
tween the gravitational-like and the normal first order pha
transitions and the nature of crossover between them f
future paper.
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FIG. 5. Entropy derivativeb(e)5ds(e)/de vs energye plot for
a52 and central core radius 0.5~solid line!, and a51 and soft
potential radius 0.05~dashed line!.
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