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Determining the density of states for classical statistical models:
A random walk algorithm to produce a flat histogram
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We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very
accurate estimate of the density of states for classical statistical models. The density of states is modified at
each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification
factor, we allow the density of states to converge to the true value very quickly, even for large systems. From
the density of states at the end of the random walk, we can estimate thermodynamic quantities such as internal
energy and specific heat capacity by calculating canonical averages at any temperature. Using this method, we
not only can avoid repeating simulations at multiple temperatures, but we can also estimate the free energy and
entropy, quantities that are not directly accessible by conventional Monte Carlo simulations. This algorithm is
especially useful for complex systems with a rough landscape since all possible energy levels are visited with
the same probability. As with the multicanonical Monte Carlo technique, our method overcomes the tunneling
barrier between coexisting phases at first-order phase transitions. In this paper, we apply our algorithm to both
first- and second-order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simu-
lational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to
200% 200 and Ising models on lattices up to 26B56. Our simulational results are compared to both exact
solutions and existing numerical data obtained using other methods. Applying this approach to a three-
dimensionak: J spin-glass model, we estimate the internal energy and entropy at zero temperature; and, using
a two-dimensional random walk in energy and order-parameter space, we obté&ioutje canonical distri-
bution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition
temperature is about 1.2 and that better estimates can be obtained with more extensive application of the
method. This simulational method is not restricted to energy space and can be used to calculate the density of
states for any parameter by a random walk in the corresponding space.
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[. INTRODUCTION for exactly solvable models such as the two-dimensional
(2D) Ising model,g(E) is impossible to calculate exactly for
Computer simulation now plays a major role in statisticala large syst_enﬁS]. _

physics[1], particularly for the study of phase transitions and ~ The multicanonical ensemble methf@-9] proposed by
critical phenomena. One of the most important quantities ifBerg et al. has been proved to be very efficient in studying
statistical physics is the density of stagg€), i.e., the num- first-order phase transitions where simple canonical simula-
ber of all possible state®r configurations for an energy tions have _dlf_flculty overcoming the _tl_,lnnelmg barrier be-
level E of the system, but direct estimation of this quantity tWeen coexisting phases at the transition temperd&ys-
has not been the goal of simulations. Instead, most converkél- In the multicanonical method, we have to estimate the
tional Monte Carlo algorithmfL] such as Metropolis impor- d€nsity of stateg(E) first, then perform a random walk with
tance sampling2], Swendsen-Wang cluster flippiri,4] a flat histogram in the desired region in the phase space, such
etc., generate ace,monical distributigfE) e~ E/*eT atagi,ve7n as between two peaks of the canonical distribution at the

temperature. Such distributions are so narrow that, with Conf_wst-order transition temperature. In a multicanonical simu-

- . . . lation, the density of states need not necessarily be very ac-
ventional Monte Carlo simulations, multiple runs are re- Y y Y

. ) . . curate, as long as the simulation generates a relatively flat
quired if we want to know thermodynamic quantities over ahistogram and overcomes the tunneling barrier in energy

significant range of temperatures. In the canonical distribu-space. This is because the subsequent re-weigh6rg)

tion, the density of states does not depend on the temperatugges not depend on the accuracy of the density of the states
at all. If we can estimate the density of stagg&) with high 35 |ong as the histogram can cover all important energy lev-
accuracy for all energies, we can then construct canonical|s with sufficient statisticgIf the density of states could be
distributions at any temperature. For a given model in statiScalculated very accurately, then the problem would have
tical physics, once the density of states is known, we cameen solved in the first place and we need not perform any
calculate the partition function &=3¢g(E)e #E, and the  further simulation such as with the multicanonical simula-
model is essentially “solved” since most thermodynamic tional method.

quantities can be calculated from it. Though computer simu- Lee [17] independently proposed the entropic sampling
lation is already a very powerful method in statistical physicsmethod, which is basically equivalent to multicanonical en-
[1], it seems that there is no efficient algorithm to calculatesemble sampling. He used an iteration process to calculate
the density of states very accurately for large systems. Evethe microcanonical entropy & which is defined byS(E)
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=In[g(E)] whereg(E) is the density of states. He also ap- each step of the random walk and use the updated density of
plied his method to the 2D ten-stat® 10) Potts model states to perform a further random walk in energy space. The
and the 3D Ising model; however, just as for other simplemodification factor of the density of states is controlled care-
iteration methods, it works well only for small systems. Hefully, and at the end of simulation the modification factor
obtained a good result with his method for thex224 2D  should be very close to one which is the ideal case of the
Q=10 Potts model and the>d4 x4 3D Ising model. random walk with the true density of states.

de Oliveiraet al. [18—20 proposed the broad histogram At the very beginning of our simulation, the density of
method with which they calculated the density of states bystates isa priori unknown, so we simply set all entries to
estimating the probabilities of possible transitions betweerg(E)=1 for all possible energiels. Then we begin our ran-
all possible states of a random walk in energy space. Usindom walk in energy space by flipping spins randomly and
simple canonical average formulas in statistical physics, thethe probability at a given energy level is proportional to
then calculated thermodynamic quantities for any temperat/g(E). In general, ifE; andE, are energies before and after
ture. Though the authors believed that the broad histograra spin is flipped, the transition probability from energy level
relation is exact, their simulational results have systemati&; to E, is
errors even for the Ising model on a:332 lattice in refer-
ences[18,21]. They believed that the error was due to the
particular dynamics adopted within the broad histogram p(E;—E5)=min
method[22]. Very recently, they have reduced the error near
T. to a small value fol.=32[23].

It is thus an extremely difficult task to calculate density of Each time an energy levé is visited, we modify the exist-
states directly with high accuracy for large systems. Alling density of states by a modification factér-1, i.e.
methods based on accumulation of histogram entries, such §¢E) —g(E)f. (In practice, we use the formula[b(E)]
the histogram method of Ferrenberg and Swendsah, —In[g(E)]+In(f) in order to fit all possibley(E) into double
Lee’s version of multicanonical methdéntropic sampling ~ precision numbers for the systems we will discuss in this
[17], broad histogram methdd8,21,25, and flat histogram paper) If the random walk rejects a possible move and stays
method[21] have the problem of scalability for large sys- at the same energy level, we also modify the existing density
tems. These methods suffer from systematic errors when sysf states with the same modification factor. Throughout this
tems are large, so we need a superior algorithm to calculatgaper we have used an initial modification factorfeff,
the density of states for large systems. =el=2.71828. .., which allows us to reach all possible

Very recently, we introduced a new, general, efficientenergy levels very quickly even for a very large systenigIf
Monte Carlo algorithm that offers substantial advantagess too small, the random walk will spend an extremely long
over existing approaché&6]. In this paper, we will explain time to reach all possible energies. However, too large a
the algorithm in detail, including our implementation, and choice offy will lead to large statistical errors. In our simu-
describe its application not only to first- and Second-ordetations, the histograms are generally checked about each
phase transitions, but also to a 3D spin glass model that hd€$)000 Monte CarldMC) sweeps. A reasonable choice is to
a rough energy landscape. make (,)°°°®have the same order of magnitude as the total

The remainder of this paper is arranged as follows. In Semumber of states@" for a Potts model During the random
Il, we present our general algorithm in detail. In Sec. Ill, wewalk, we also accumulate the histogr&h{E) (the number
apply our method to the 2 =10 Potts model that has a of visits at each energy lev@) in the energy space. When
first-order phase transition. In Sec. IV, we apply our methodhe histogram is “flat” in the energy range of the random
to a model with a second-order phase transition to test thevalk, we know that the density of states converges to the
accuracy of the algorithm. In Sec. V, we consider the8D  true value with an accuracy proportional to that modification
spin glass model, a system with rough landscapes. Discugactor In(f). Then we reduce the modification factor to a finer
sion and the conclusion are presented in Sec. VI. one using a function liké, =/, reset the histogram, and
begin the next level random walk during which we modify
the density of states with a finer modification facteduring
each step. We continue doing so until the histogram is “flat”
again and then reduce the modification fadtar, = \/f; and
restart. We stop the random walk when the modification fac-

Our algorithm is based on the observation that if we pertor is smaller than a predefined valusuch as fpy
form a random walk in energy space by flipping spins ran-=exp(10 ) =1.000 000 01]. It is very clear that the modifi-
domly for a spin system, and the probability to visit a givencation factor acts as a most important control parameter for
energy leveE is proportional to the reciprocal of the density the accuracy of the density of states during the simulation
of states 1g(E), then a flat histogram is generated for the and also determines how many MC sweeps are necessary for
energy distribution. This is accomplished by modifying thethe whole simulation. The accuracy of the density of states
estimated density of states in a systematic way to produce @epends on not onl¥;,,, but also many other factors, such
“flat” histogram over the allowed range of energy and si- as the complexity and size of the system, criterion of the flat
multaneously making the density of states converge to thaistogram, and other details of the implementation of the
true value. We modify the density of states constantly duringalgorithm.

@

g(Ep)
o(Ey) ’4

Il. A GENERAL AND EFFICIENT ALGORITHM TO
ESTIMATE THE DENSITY OF STATES
WITH A FLAT HISTOGRAM
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It is impossible to obtain a perfectly flat histogram and thebut we only use it to check whether the histogram is flat
phrase “flat histogram” in this paper means that histogramenough to go to the next level random walk with a finer
H(E) for all possibleE is not less tharx% of the average modification facton.
histogram{H(E)), wherex% is chosen according to the size ~ We should point out here that the total number of con-
and complexity of the system and the desired accuracy of thBgurations increases exponentially with the size of the sys-
density of states. For the=32, 2D Ising model with only ~t€m; however, the total number of possible energy levels
nearest-neighbor couplings, this percentage can be chosenig§reases linearly with the size of system. It is thus easy to
high as 95%, but for large systems, the criterion for “flat- calculate the density of states with a random walk in energy

ness” may never be satisfied if we choose too high a per§%acet];?r aPIatrtge sys(;telm. In thésXpLaple;_for ex_{ahmple, Wetcon—
centage and the program may run forever. sider the Folls model on a attice with nearest-

One essential constraint on the implementation of the alpe|ghbor mtergchongal]. ForQ=3, thze_number of possible
nergy levels is aboutN?, whereN=L* is the total number

. . . . e
gorithm is that the density of states during the random Wal.kof the lattice site. However, the average number of possible

paper has this property. The accuracy of the densiy of statgures o COTTIUratonson each energy level s as arge as

is proportional to Inf) at that iteration; however, Iffa)  hin andQN is the total number of possible configurations of

cgnnot pe chosen arbitrary ;mall or the _mpdlfletgdﬁ)] the system. This is the reason why most models in statistical

will pqt d!ffer from the unqullfled one to within the number physics are well defined, but we cannot simply use our com-

of digits in the double precision numbers used in the calcupyters to realize all possible states to calculate any thermo-

lation. If this happens, the algorithm no longer converges tqyynamic quantities, this is also the reason why efficient and

the true value, and the program may run forever. EvéR,if  fast simulational algorithms are required in the numerical

is within range but too small, the calculation might take ex-investigations.

cessively long to finish. By the end of simulation, we only obtain relative density,
We have chosen to reduce the modification factor by aince the density of states can be modified at each time it is

square-root function, andapproaches one as the number ofvisited. We can apply the condition that the total number of

iterations approaches infinity. In fact, any function may bepossible states for th@ state Potts model E:g(E)= QN or

used as long as it decreagemonotonically to one. A simple the number of ground state @to get the absolute density of

and efficient formula i, ;=f'", wheren>1. The value states.

of n can be chosen according to the available CPU time and

expected accuracy of the simulation. For the systems that we Ill. APPLICATION TO A FIRST-ORDER

have studied, the choice of=2 yielded good accuracy in a PHASE TRANSITION

relatively short time, even for large systems. When the modi-

fication factor is almost one and the random walk generates a

uniform distribution in energy space, the density of states In this section, we apply our algorithm to a model with a

should converge to the true value for the system. first-order phase transitiof82,33. We choose the 2D ten
Procedures for allowing—1 have been examined by state Potts moddi31] since it serves as an ideal laboratory

Huller [27] who used data from two densities of states forfor temperature-driven first-order phase transitions. Since

two different values of to extrapolate td =1. However, his some exact solutions and extensive simulational data are

data for a small Ising system vyield larger errors than ouravailable, we have ample opportunity to compare our results

direct approach. The applicability of his method to large syswith other values.

tems also needs a more detailed study. We consider the two-dimension@=10 Potts model on
The method can be further enhanced by performing mulL XL square lattice with nearest-neighbor interactions and

tiple random walks, each for a different range of energyperiodic boundary conditions. The Hamiltonian for this

either serially or in parallel fashion. We restrict the randommodel can be written as

walk to remain in the range by rejecting any move out of that

range. The resultant pieces of the density of states can then He —E S5(0 .91 %)

be joined together and used to produce canonical averages i tr

for the calculation of thermodynamic quantities at any tem-

perature. andg=1,2,... Q. The Hamiltonian(or energy is in the
Almost all recursive methods update the density of statesinit of the nearest coupling We assumd=1 for simplic-

by using the histogram data directly only after enough histoity in this paper. During the simulation, we select lattice sites

gram entries are accumulatdé,7,11,13-16,28—-30 Be- randomly and choose integers betwg¢é&nQ] randomly for

cause of the exponential growth of the density of states imew Potts spin values. The modification facfgrchanges

energy space, this process is not efficient because the histbem f,=e'=2.71828 at the very beginning tdy

gram is accumulated linearly. In our algorithm, we modify =exp(10 )=1.000000 01 by the end of the random walk.

the density of states at each step of the random walk, and thifo guarantee the accuracy of thermodynamic quantities at

allows us to approach the true density of states much fastéow temperatures in further calculations, in this paper we use

than conventional methods especially for large systéWie.  the condition that the number of the ground stateQ it

also accumulate histogram entries during the random walkjormalize the density of states. The densities of states for

A. Potts model and its canonical distribution
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FIG. 1. (a) Density of stategg(E) for the 2D Q=10 Potts
model. (b) The canonical distributions &;. (c) Extrapolation of

L

finite lattice “transition temperatures.”

100x 100, 150< 150, and 20& 200 are shown in Fig. (d).
It is very clear from the figure that the maximum density of implemented, the simulation fdc=100 can be completed

states forL =200 is very close to 18°°°which is actually  within two weeks in a single 600 MHz Pentium Ill proces-
about 5.7% 10°°°%7 from our simulational data.

Conventional Monte Carlo simulatidsuch as Metropolis

sampling [1,2]) realizes a canonical distributioR(E,T)
by generating a random walk Markov chain at a givenenergy range with high accuracy. If we are only interested in
temperature

PHYSICAL REVIEW E64 056101

P(E,T)=g(E)e eT. )

The temperature is defined in the unit kg with J=1.
From the simulational result for the density of statg&),

we can calculate the canonical distribution by the above for-
mula at any temperature without performing multiple simu-
lations. In Fig. 1b), we show the resultant double-peaked
canonical distributio33], at the transition temperatufe,

for the first-order transition of th® =10 Potts model. The
“transition temperatures” are determined by the tempera-
tures where the double peaks are of the same height. Note
that the peaks of the distributions are normalized to one in
this figure. The valley between two peaks is quite deep, e.g.,
is 7x 10 ° for L=100. The latent heat for this temperature-
driven first-order phase transition can be estimated from the
energy difference between the double peaks. Our results for
the locations of the peaks are listed in the Table I. They are
consistent with the results obtained by multicanonical
method[6] and multibondic cluster algorithi®] for those
lattice sizes for which these other methods are able to gen-
erate estimates. As the table shows, our method produces
results for substantially larger systems than have been stud-
ied by these other approaches.

Because of the double peak structure at a first-order phase
transition, conventional Monte Carlo simulations are not ef-
ficient since an extremely long time is required for the sys-
tem to travel from one peak to the other in energy space.
With the algorithm proposed in this paper, all possible en-
ergy levels are visited with equal probability, so it over-
comes the tunneling barrier between the coexisting phases in
the conventional Monte Carlo simulations. The histogram for
L = 100 is shown in an inset of the Fig(d. The histogram
in the figure is the overall histogram defined by the total
number of visits to each energy level for the random walk.
Here, too, we choose the initial modification facfgr=e?,
and the final one as exp(18)=1.00000001; and the total
number of iterations is 27. In our simulation, we do not set a
predetermined number of MC sweeps for each iteration, but
rather give the criterion that the program checks periodically.
Generally, the number of MC sweeps needed to satisfy the
criterion increases as we reduce the modification factor to a
finer one, but we cannot predict the exact number of MC
sweeps needed for each iteration before the simulation. We
believe that it is preferable to allow the program to decide
how great a simulational effort is needed for a given modi-
fication factorf;. This also guarantees a sufficiently flat his-
togram resulting from a random walk that in turn determines
the accuracy of the density of states at the end of the simu-
lation. We nonetheless need to perform some test runs to
make sure that the program will finish within a given time.
The entire simulational effort used was about-313’ visits
(6.6x10° MC sweeps for L=100. With the program we

sor.
To speed up the simulation, we need not constrain our-
selves to performing a single random walk over the entire

a specific temperature range, such as figarwe could first
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TABLE |. Estimates of “transition temperatureT. and positions of double peal&®*, ET'®* for the
Q=10 Potts model with our method, the multicanoni¢®dUCA) ensemble[6], and the multibondic
(MUBO) cluster algorithn{9]. ET"®* and E'®* are the energy per lattice site at the two peaks of canonical
distribution atT..

Size Our method MUCA MUBO

L Tc ETaX E?ax Tc ETaX Eg]ax Tc ETaX El’zﬂaX

12 0.70991 0.8402 1.7013 0.710540 0.806 1.688 0.7105402 0.833 1.72
16 0.706 53 0.8694 1.6967 0.706544 0.844 1.676 0.7065144 0.867 1.71
20 0.70511 0.8925 1.6875 0.7047891 0.883 1.69
24 0.703 62 0.8940 1.6765 0.703730 0.908 1.698
26 0.70317 0.9002 1.6805 0.7034120 0.908 1.682
30 0.702 89 0.9233  1.6888
34 0.70258 0.9343 1.6732 0.702553 0.927 1.683 0.7025530 0.921 1.676
40 0.702 39 0.9337 1.6731
50 0.70177 0.9416 1.6776 0.7018765 0.940 1.674
60 0.70171 0.9522 1.6733
70 0.70153 0.9519 1.6717 0.701562 0.9511 1.670
80 0.70143 0.9576 1.6701
90 0.70141 0.9551 1.6727
100 0.70135 0.9615 1.6699 0.701378 0.9594 1.6699
120 0.70131 0.9803  1.6543
150 0.70127 0.9674 1.6738
200 0.70124 0.9647 1.6710

oo 0.701 236-0.000 025
exact 0.70123. ..

perform a low-precision unrestricted random walk, i.e., overand can then obtain an accurate estimate for the density of
all energies, to estimate the required energy range, and thasates with relatively short runs on each processor. The den-
carry out a very accurate random walk for the correspondingities of states for 150150 and 20& 200, shown in Fig.
energy region. The inset of Fig(l) for L=100 only shows 1(b), were obtained by joining together the estimates ob-
the histograms for the extensive random walks in the energyined from 21 independent random walks, each constrained
range betweelt/N=—1.90 and—0.6. If we need to know jthin a different region of energy. The histograms from the
the density of states more accurately for some energies, Wgdividual random walks are shown in the second inset of
also can perform separate simulations, one for low-energyq () for 200x 200 lattice. In this case, we only require
levels, one for high-energy levels, the other for middle env, 4 the histogram of the random walk in the corresponding

;a_rgy, f[N_It"ChT'hn.dUdﬁs dOUbli pe?ks of tze cant?]nlca_ll d'IStr_'bu'energy segment is sufficiently flat without regard to the rela-
lon atT,. This scheme not only speeds up the simulationy;,e famess over the entire energy range. In Fig),1the

Itzali/telzl?‘grI\?vzziﬁsgostr:hrﬁagirr%%?:\"!\tz dor;ii?rzisn?cgng: ;ntirgyesults for large lattices show clear double peaks for the ca
nonical distributions at temperaturgg(L)=0.701 27 forL

distributions occur by performing the random walk in a rela- .
tively small energy range. If we perform a single random_ +°9 andT(L)=0.701243 for. = 200. The exact result is
walk over all possible energies, it will take a long time to 1¢—0-701232..., for theinfinite system. ConS|d_elrgng the
generate rare spin configurations. Such rare energy levelélley which we find for. =200 is as deep as>910" ~, we
include the ground-energy level or low-energy levels withCan understand why it is impossible for conventional Monte
only a few spins with different values and high energy levelsCarlo algorithms to overcome the tunneling barrier with
where all, or most, adjacent Potts spins have different value@vailable computational resources.

With the algorithm in this paper, if the system is not If we compare the histogram fdr=100 with that forL
larger than 10& 100, the random walk on important energy =200 in Fig. 1b), we see very clearly that the simulation
regions(such as that which includes the two peaks of theeffort for L=200 (9.8< 1CP visits per energy levglis even
canonical distribution af) can be carried out with a single less than the effort fot. =100 (3.3< 10’ visits per energy
processor and will give an accurate density of states withievel). It is more efficient to perform random walks in rela-
about 10 visits per energy level. However, for a larger sys- tively small energy segments than a single random walk over
tem, we can use a parallelized algorithm by performing ranall energies. The reason is very simple, the random walk is a
dom walks in different energy regions, each using a differentocal walk, which means for a givel;, the energy level for
processor. We have implemented this approach using PVNhe next step only can be one of nine levels in the energy
(parallel virtual machingwith a simple master-slave model range[E;—4,E,;+4] (for the Potts model discussed in this
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section. The algorithm itself only requires that the histogramthe density of states, we can calculate thermodynamic quan-
on such local transitions is flatA single random walk, sub- tities at any temperature. For example, the internal energy
ject to the requirement of a flat histogram for all energycan be calculated by

levels, will take quite long.For random walks in small en-

ergy segments, we should be very careful to make sure that z Eg(E)e PE
all spin configurations with energies in the desired range can E
be equally accessed so we restart the random walk periodi- UM =—=(B)r. 6)
cally from independent spin configurations. 2 g(E)e FE
An important question that must be addressed is the ulti- E

mate accuracy of the algorithm. One simple check is to esti- h havi £ the i |
mate the transition temperature of the 5= 10 Potts model 1© Study the behavior of the internal energy n&armore
for L=c since the exact solution is known. According to the carefully, we calculate the internal energy for-60, 100,

finite-size scaling theory, the “effective” transition tempera- and 200 neaff; as presented in Fig.(@. A very sharp
ture for finite systems behaves as jump” in the internal energy at transition temperatuFeis

visible, and the magnitude of this jump is equal to the latent
heat for the(first-orde) phase transition. Such behavior is
related to the double peak distribution of the first-order phase
transition. WhenT is slightly away fromT., one of the
double peaks increases dramatically in magnitude and the
other decreases.

Since we only perform simulations on finite lattices, and
use a continuum function to calculate thermodynamic quan-
tities, all our quantities for finite-size systems will appear to
be continuous if we use a very small scale. In the inset of
Fig. 2(a), we use the same density of states again to calculate
the internal energy for temperatures very clos& toOn this
ur%‘cale, the “discontinuity” at the first-order phase transition
. . . o disappears and a smooth curve can be seen instead of a sharp
simulational data isT () =0.7014+0.0004, which is con- “jump” in the main portion of Fig. Za). The discontinuity

sistent with the exact solutionT¢=0.701232. .. ) f(_)r the in Fig. 2@ is simply due to the coarse scale, but when the
infinite system. To get an even more accurate estimate, arg/

: . stem size goes to infinity, the discontinuity will be real.
also test the accuracy of the density Qf states from single run From the density of states we can also estimate the spe-
for large systems, we performed a single, long random Wa"&ific heat from the fluctuations in the internal energy
on large lattices I{ =50~200). The results, plotted as a
function of lattice size in the inset of the figure, show that the JU(T)  (E?) —<E>2
transition temperature extrapolated from the finite systems is C(T)= — T T
T.(0)=0.701236-0.000 025, which is still consistent with aT T2
the exact solution.

We also compare our simulational result for te=10 In Fig. 2b), the specific heat so obtained is shown as a
Potts model with the existing numerical data such as estifunction of temperature. We calculate the specific heat in the
mates of transition temperatures and double peak locationgcinity of the transition temperatur€;. The finite-size de-
obtained with the multicanonical simulational method bypendence of the specific heat is clearly evident. We find that
Berg and Neuhaus] and the multibondic cluster algorithm specific heat has a finite maximum value for a given lattice
by Janke and Kappld9]. All results are shown in Table I. size L that, according to the finite-size scaling theory for
With our random walk simulational algorithm, we can cal- first-order transitions should vary as
culate the density of states up to 20200 within 10 visits
per energy level to obtain a good estimate of the transition c(L, T)L e f([T—Tg(o) LY, (7
temperature and locations of the double peaks. Using the
multicanonical method and a finite scaling guess for the denwherec(L,T)=C(L,T)/N is the specific heat per lattice site,
sity of states, Ber@t al. only obtained results for lattices as L is the linear lattice sized=2 is the dimension of the
large as 108100 [6], and multibondic cluster algorithm lattice. T(L=2)=0.70123. .., is theexact solution for the
data[9] were not given for systems larger than>580. Q=10 Potts modef31]. In the inset of Fig. &), our simu-

In Sec. IV, the accuracy of our algorithm will be further lational data for systems with=60, 100, and 200 can be
tested by comparing thermodynamic quantities obtained fowell fitted by a single scaling function, moreover, this func-

TC<L>=Tc<oo)+§, @

whereT4(L) and T () are the transition temperatures for
finite- and infinite-size systems, respectivdlyis the linear
size of the system and is dimension of the lattice.

In Fig. 1(c), the transition temperature is plotted as a func-
tion of L™9. The data in the main portion of the figure are
obtained from small system& &€10~30), and the error
bars are estimated by results from multiple independent run
Clearly the transition temperature extrapolated from o

(6)

2D lIsing model with exact solutions. tion is completely consistent with the one obtained from lat-
tice sizes fromL=18 to L=50 by standard Monte Carlo
[33].

B. Thermodynamic properties of the Q=10 Potts model With the density of states, we not only can calculate most

One of the advantages of the our method is that the derthermodynamic quantities for all temperatures without mul-
sity of states does not depend on temperature; indeed witliple simulations but we can also access some quantities,
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FIG. 2. Thermodynamic quantities calculated from the density of states f@th&0 Potts model(a) internal energy(b) specific heat
and the finite-size scaling functioft) free energy, andd) entropy.

such as the free energy and entropy, which are not directlgver other thermodynamic quantities, such as specific heat,
available from conventional Monte Carlo simulations.Thebut the result is not always reliable since the specific heat
free energy is calculated using itself is not easy to determine accurately, particularly consid-
ering the “divergence” at the first-order transition. With an
accurate density of states estimated by our method, we al-
ready know the free energy and internal energy for the sys-
tem, so the entropy can be calculated easily

z= > e =3 g(E)e "
{config} E

F kTlog(Z). (8) o U(T) —F(T) .
Our results for the free energy-per-lattice site is shown in (M) T ' ©)
Fig. 2(c) as a function of temperature. Since the transition is
first-order, the free energy appears to have a “discontinuity” It is very clear that the entropy is very small at low tem-
in the first derivative aff,. This is typical behavior for a perature and af=0 is given by the density of states for the
first-order phase transition, and even with the fine scale useground state. We show the entropy as a function of tempera-
in the inset of Fig. &), this property is still apparent even ture in a wide region in Fig. (&)).
though the system is finite. The transition temperafiyés The entropy has a very sharp “jump” &, just as does
determined by the point where the first derivative appears tthe internal energy and such behavior can be seen very
be discontinuous. With a coarse temperature scale we can naearly in the inset of Fig. @), when we recalculate the
distinguish the finite-size behavior of our model; however,entropy neafT.. The change of the entropy &t shown in
we can see a very clear size dependence when we view thibe figure can be obtained by the latent heat divided by the
free energy on a very fine scale as in the inset of F{g).2 transition temperature, and the latent heat can be obtained by

The entropy is another very important thermodynamicthe jump in internal energy &t in Fig. 2(a).

guantity that cannot be calculated directly in conventional With the histogram method proposed by Ferrenberg and
Monte Carlo simulations. It can be estimated by integratingSwendseri24], it is possible to use simulational data at spe-
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cific temperatures to obtain complete thermodynamic infor-  1¢® .
mation near, or between, those temperatures. Unfortunately © Random walk in energy space
it is usually quite hard to get accurate information in the = Random walk in real space/I
region far away from the simulated temperature due to diffi- 10" [ 2 Multicanonical e
culties in obtaining good statistics, especially for large sys- * Heat bath &
tems where the canonical distributions are very narrow. With

the algorithm proposed in this paper, the histogram is “flat” —
for the random walk and we always have essentially theZ
same statistics for all energy levels. Since the output of our® ;43 %
simulation is the density of states, which does not depend or
the temperature at all, we can then calculate most thermody
namic quantities at any temperature without repeating the 10* | i
simulation. We also believe the algorithm is especially useful
for obtaining thermodynamic information at low temperature ,
or at the transition temperature for the systems where the 10,5 10° 10*
conventional Monte Carlo algorithm is not so efficient. Ng

4

10

. . _ FIG. 3. Tunneling timesr for the Q=10 Potts model for our
C. The tunneling time for the Q=10 Poits model afT, random walk algorithm in energy space, and for an ideal random
To study the efficiency of our algorithm, we measure thewalk in real space, for the multicanonical ensemble method, and for
tunneling timer, defined as the average number of sweepghe heat bath algorithm. The solid lines show the ideal case with
needed to travel from one peak to the other and return to th&(Ne) ~Ne.

staréing pe?II: in Znergy_ s?lacg. Since the histogram that Ohll’ﬁodified at each step during the walk in energy space. At the
ran olr'n wa pro_”uges Ihs atin ener?y SFr)laC?d W? expectft &nd of our random walk, the modification factor approaches
tgnnelz N9 t:jme Wi Ike the Isame as for the idea c?]se O %ne, and the estimated density of states approaches the true
simple random walk in real space, i.e(Ng)~Ne, where 516 The two processes are then almost identical.

Ne is the total number of energy levels. To compare our  cqnyentional Monte Carlo algorithnisuch as the heat-
simulational results to those for the ideal case, we also_perbath algorithm have an exponentially fast growing tunneling
form a random walk in real space. We always use a fixeqne according to Berg's study in Ref7], the tunneling
g(x;)=1 in one-dimensional real space, whegeis a dis-  {ime obeys the exponential law(L) = 1.46.21%%%% The
crete coordinate of position that can be chosen simply ag,iicanonical simulational method has reduced the tunnel-
1,_2,3,4. - ZNE' The r_a_ndom walk is a local random walk ing time from an exponential law to a power law a8\g)

with transition probabilityp(x;—x;) =1/2, wherex;=x;.,. — _na However, the exponent is as large as=1.33[6],

We use the same definition of the tunneling time to measursvhigh is far away from the ideal case=1. Very recently

the behaypr of this quantny. The tunneling time for the IdealJanke and Kappler introduced the multibondic cluster a’lgo-
case saﬂsﬂgs the simple power Iayv ﬂNE),’VNE and Fhe rithm, the exponentr is reduced to as small as 1.05 for 2D
exponenta is equal to 1. ¢ is defined using the unit of o qtate Potts modéd]. In Fig. 3, we also show the result
sweep ofNg sites) Our simulational data for random walks ,piained with the multicanonical method and the heat bath
in energy space yield a tunneling time that is well described,qqrithm in Ref.[6]. We should point out that just like the
by the power lawr~N® as shown in Fig. 3. The solid lines ,,ticanonical simulational method, our algorithm has a
in the graph have the simple power law#&e)~Ne, and  yoer increasing tunneling time with a smaller exponent
we see that our simulation result is very close to the ideakqy, gmall systems, our algorithm offers less advantage be-
case. Since our method needs an extra effort to update the,se of the effort needed to modify the density of states
density of_states to produce a flat hlstogr_am QUrlng the raNquring the random walk. Very recently, Neuhaus has gener-
dom walk in energy space, the tunneling time is much longegjizeq this algorithm to estimate the canonical distribution
than the real space case. Also, because the tunneling timg, T<T,, in magnetization space for the Ising mog].

depends on the accuracy of the density of states, which igg found that for small systems, the exponent for CPU time
constantly modified during the random walk in energy spaceyersys | for our algorithm and multicanonical ensemble

itis not a well-defined quantity in our algorithm. The tunnel- gjn 1ations are almost identical. Our results in Fig. 3 are
ing time, shown in Fig. 3 is the overall tunneling time, which only for single-range random walks, and multiple-range ran-

includes all iterations with the modification factors frd®  jom walks have been proven more efficient for larger
—ele ; i ot
=e=2.71828. .., to thefinal modification factorf, systems.

=exp(10 )=1.000 000 01.

We should point out that the two processes are not exactly
the same, since the random walk in real space uses the exact
density of statefg(x;)=1]. However, the random walk in
energy space requires knowledge of the density of states, The algorithm we proposed in this paper is very efficient
which isa priori unknown. The algorithm we propose in this for the study of any order phase transitions. Since our
paper is a random walk with the density of states that ianethod is independent of temperature, it reduces the critical

IV. APPLICATION TO A SECOND-ORDER
PHASE TRANSITION
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FIG. 4. Density of states (lad g(E)]) of the 2D Ising model
for L=256 (multiple range random walksThe overall histogram
of the random walk is shown in the inset.

FIG. 5. The errors in the density of states for random walks in
different energy ranges for the 2D Ising model. In the inset, we
show the specific heats calculated from the density of states for the
random walk in the rangeS/N=[ —1.9,—1.0] (solid line), the ex-

slowing dOV\_/n at the second-order phase _transﬁl’grand .. act density(dotted ling, and the density of states that the two high-
slow dynamics at low temperature. We estimate the densﬂ}gst energy entries are deleted BN=[ — 1.9~ 1.0] (dashed ling

of states very accurately with a flat histogram, the algorithm
will be very efficient for general simulational problems by levels is N—1 and we perform random walks only on
avoiding the need for multiple simulations at multiple tem-[ —2,0.2) out of[ — 2,2]. The real simulational effort is about
peratures. 6.1x 10° MC sweeps for the Ising model with=256. With

To check the accuracy and convergence of our methodhe program we implemented, it took about 240 CPU hours
we apply it to the 2D Ising model with nearest neighboron a single IBM SP Power3 processor.
interactions on & X L square lattice. This model provides an  The density of states in Fig. 4 is obtained by the condition
ideal benchmark for new algorithni24,35,3G and is also an  that the number of ground states is two for the 2D Ising
ideal laboratory for testing theoifyp,37]. This model can be model(all up or down. This condition guarantees the accu-
solved exactly, therefore we can compare our simulationalacy of the density of states at low energy levels that are very
results with exact solutions. important in the calculation of thermodynamic quantities at

In Fig. 4, we show our estimation of the density of statesow temperature. With this condition, whé@n=0, we can get
of Ising model on 25& 256 lattice. Since the density of exact solutions for internal energy, entropy, and free energy
states forE>0 has almost no contribution to the canonical when we calculate such quantities from the density of states.
average at finite positive temperature, we only estimate thé we apply the condition that the total number of statesNs 2
density of states in the regioB/Ne[—2,0.2] out of the for the ferromagnetic Ising model, we cannot guarantee the
whole energy —2,2]. To speed up our calculation, we di- accuracy of the energy levels at or near ground states be-
vide the desired energy regipn-2,0.2] into 15 energy seg- cause the rescaled factor is dominated by the maximum den-
ments, and estimate the density of states for each segmesity of states.
with independent random walks. The modification factor For L=256, we perform multiple random walks on dif-
changes fromfy=e'=2.718B... to fh=exp(107) ferent energy ranges, and one problem arises, that is the error
=1.0000001...,. Theresultant density of states can be of the density of states due to the random walk in a restricted
joined from adjacent energy segments. To reduce the boun@énergy range. We perform three independent random walks
ary effects of the random walk on each segment, we keem the range€€/N=[—-1.7-1.2], E/N=[-1.8,—1.1], and
about several hundred overlapping energy levels for randor/N=[ —1.9,—1.0] to calculate the densities of states on
walks on two adjacent energy segments. The histograms afiese ranges. In Fig. 5, we show the errors of our simulation
random walks are shown in the inset of this figure. We onlyresults from the exact values. We make our simulational den-
require a flat histogram for each energy segment. To reducsities of states match up with the exact results at the left
the error of the density of states relevant to the accuracy oédges. It is very clear that the width of the energy range of
the thermodynamic quantities nefigf we optimize the pa- the random walks is almost not relevant to the errors of the
rameter and perform additional multiple random walks fordensity of states. The reason is that the random walks only
the energy range/N e[ — 1.8,— 1] with the same number of require the local histogram to be flat as we discussed in the
processors. For this we use the density of states obtaingstevious section.
from the first simulations as starting points and continue the To study the influence of the errors of the densities of
random walk with modification factors changing from states on the thermodynamic quantities calculated from
exp(10 ®)=1.000 001 to exp(10?)=1.000 000 001. The to- them, in the energy range that we perform random walks, we
tal computational effort is about 921(P visits on each en- replace the exact density of states with the simulational den-
ergy level. Note that the total number of possible energysity of states. In the inset of Fig. 5, the specific heat calcu-
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lated from such density of states is shown as a function of
temperature. We also show the exact value with the simula- | 256x256 Ising model
tional data, the difference is obvious. To reduce the boundary simulation ¢
effect, we delete the last two density entries, and insert therr I exact

into the exact density of states again, then the difference
between exact(dotted ling and simulational datglong a4l 107
dashed lingis not visible with the resolution of the figure. .
With our test in the three different ranges of energy, it is = (@) =10
quite safe to conclude that the boundary effect will not be
present in our multiply random walks if we have a couple of 15| 10°°
energy levels overlap for adjacent energy ranges. In our rea
simulations for large systems, we have hundreds of overlap: 107
ping energy levels.

Since the exact density of states is only available on small -2
systems, it is not so interesting to compare the simulational
density of states itself. The most important thing is the accu-
racy of estimations for thermodynamic quantities calculated 0.8

U(TYN

TN

from such density of states on large systems. With the den- 256x256 Ising model
simulation

sity of states on large systems, we apply canonical averag:
formulas to calculate internal energy, specific heat, free en-
ergy, and entropy. Ferdinand and Fisia8] obtained the
exact solutions of above quantities for the 2D Ising model on
finite-size lattices. Our simulational results on finite-size lat- £
tice can be compared with those exact solutions. E 04 ¢
The internal energy is estimated from the canonical aver-»3
age over energy of the system as Ef).. The exact and
simulational data perfectly overlap with each other in awide 4, |
temperature region froni=0 to T=8. A stringent test of
the accuracy is provided by the inset of Fig. 6, which shows

0.6 1

the relative errorg(U). Here, the relative error is generally T
defined for any quantit by i p 8
o |Xsim_ Xexacl
e(X)= X—t (10) FIG. 6. Thermodynamic quantities for the 2D Ising model cal-
exac

culated from the density of states. Relative errors with respect to the
exact solutions by Ferdinand and Fisher are show@irior inter-

With the density of states obtained with our algorithm, thenal energyU, (b) for entropyS

relative error of simulational internal energy fbr=256 is
smaller than 0.0_9% for the temperature region_ fr‘ﬁm_o to V. APPLICATION TO THE 3D +J EA MODEL
8. From Eq.(5), it is very clear that the canonical distribu-
tion serves as a weighting factor, and since the distribution is Spin glasse$40] are magnetic systems in which the in-
very narrow,U(T) is only determined by a small portion of teractions between the magnetic moments produce frustra-
the density of stategFor theL =50 2D Ising model af, tion because of some structural disorder. One of the simplest
only the density of states fd&/N [ —1.6,— 1.2] contributes  theoretical models for such systems is the Edwards-
in a major way to the calculationTherefore the errog(U)  Anderson mode{EA mode) [41] proposed twenty five years
is also determined by the errors of the density of states in thego. For such disordered systems, analytical methods can
same narrow energy range. provide only very limited information, so computer simula-
The entropy of the 2D Ising model can be calculated withtions play a particularly important role. However, because of
Eq. (9). In Fig. 6b), the simulational data and exact resultsthe rough energy landscape of such disordered systems, the
are presented in the same figure. With the scale in the figuréglaxation times of the conventional Monte Carlo simulations
the difference between our simulational data and exact solgre very long. The dynamical critical exponent was estimated
tions are not visible. In the inset of Fig(l§, the relative as large ag=6 [42—-44. Normally, simulations can be per-
errors of our simulational data are plotted as a function oformed only on rather small systems, and many properties
temperature. For the Ising model on a 25866 lattice, the ~ concerning the spin glasses are still left unclarifiéd—53.
relative errors are smaller than 1.2% for all temperature In this paper, we consider the three-dimensiohdllsing
range. Very recently, with the flat histogram metfi8d] and  spin glass EA model. The model is defined by the Hamil-
the broad histogram methdd8—20, the entropy was esti- tonian
mated with 16 MC sweeps for the same model on>332
lattice; however, the errors in RdR21] are bigger than our H=— Jj0i0;, (11)
errors for 256< 256. i
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TABLE II. Estimates of entropy,) and internal energye) per lattice site at zero temperature for the
3D EA model by our method and the multicanonical metidUCA) [15].

Size Our method MUCA
L So € So €
4 0.075+0.027 —1.734+0.006 0.0724:0.0047 —1.7403-0.0114
6 0.061+0.025 —1.767£0.024 0.04890.0049 —1.7741-0.0074
8 0.0493-0.0069 —1.779t0.016 0.04590.0030 —1.7822+-0.0081
12 0.0534-0.0012 —1.780+0.012 0.04910.0023 —1.7843+0.0030
16 0.0575-0.0037 —1.7758+0.0041
20 0.0556- 0.0034 —1.7745-0.0043

whereo is an Ising spin and the couplingj is quenched to The value atT=0 can be different from one in the case

+1 randomly. The summation runs over the nearestwhere the ground state is highly degenerate.

neighbors(i,j) on a simple cubic lattice. In our simulation, there is no temperature introduced dur-
One of the most important issues for a spin-glass model ifg the random walk. And it is more efficient to perform a

the low-temperature behavior. Because of the slow dynamicsandom walk in single system than two replicas. So the

and rough phase-space landscape of this model, it is also oeder-parameter can be defined by

of the most difficult problems in simulational physics. The

algorithm proposed here is not only very efficient in estimat- N o

ing the density of states but also very aggressive in finding q= Z oio;i/N |, (14)

the ground states. From a random walk in energy space, we 1

can estimate the ground-state energy and the density of Stat\?v%ere{ 0} is one of spin configurations at around states and
very easily. For a spin-glass system, after we finish the ran-" . i . P 9 9
oi} is any configuration during the random walk. The be-

dom walk, we can obtain the absolute density of states by the” 1. . - .
y y avior of g we defined above is basically the same as the

condition that the total number of states & The entropy at . ;
zero temperature can be calculated from  eithg order parameter defined by Edwards a_nd Andefddh It is
not exact same order-parameter defined by Edwards and

=Infg(Eo)] or “mTHOU_F/T’ where By is the energy at Anderson, but was used in the early numerical simulations
ground states. Both relations will give the same result sincgy Morgenstern and Bindé¢63,54.

U andF are calculated from the same density of states. Our After first generating a bond configuration, we perform a
estimates fosy=S,/N andey=Ey/N per lattice site, listed one-dimensional random walk in energy space to find a spin
in Table Il, agree with the corresponding estimates madeonfiguration{s?} for the ground states. Since the order pa-
with the multicanonical method. With our algorithm, we can rameter is not directly related to the energy, to get a good
estimate the denSity of states Uthe: 20 by a random walk estimate of this quantity we have to perform a two-
in energy space for few hours on a 400 MHz processor.  dimensional random walk to obtain the density of states

If we are only interested in the quantities directly relatedg (g, q) with a flat histogram irE-q space. This also allows
to the energy, such as free energy, entropy, internal energyis to overcome the barriers in parameter sp@aceconfigu-
and specific heat, one-dimensional random walk in energyation spacgfor such a complex system. The rule for the 2D
space will allow us to calculate these quantities with a highyandom walk is the same as the 1D random walk in the
accuracy as we did in the 2D Ising model. However forenergy space.

spin-glass systems, one of the most important quantities is \yjith the density of state§(E,q), we can calculate any

the order parameter that can be defined 4] guantities as we did in the previous sections. It is very inter-
N esting to study the roughness of this model. First, we study
EA(T)=lim lim q(T.t), T.t)= (0)o:(1)/N the canonical distribution as a function of the order param-
qFAM=lim lim q(T.0),  a(T.n={ 2 ai(0)a(t) otor
(12
Here,N=L2 is the total number of the spins in the systém, P(q,T)= ; G(E,q)e FkeT. (15

is the linear size of the system(T,t) is the autocorrelation
function, which depends on the temperattirand the evo-
lution timet, andq(T,0)=1. Whent—~, g(T,t) becomes
the order parameter of the spin glass. This parameter tak
the following values:

In Fig. 7(a), we show a 3D plot for the canonical distri-
bution at different temperatures for one bond configuration
St L=6 EA model. At low temperatures, there are four
peaks, and the depth of the valleys between peaks depends

=1 if T=0 upon temperature. When the temperature is high, the mul-
EA _ ) tiple peaks converge to a single central peak. Because we use
q=4(T)y =0 if T=T,4 (13)  the linear scale to show our result in Figay it is not clear
#0 if 0<T<T,. how deep the dips among peaks are. In Figp),7we show
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all states will be visited with more or less the same probabil-
ity and trapping is not a problem.

With the density of state&(E,q), we also can calculate
the energy landscape by

) EG(E,q)e #E
U(q,T)=— . (16
G(E,q)e FE
E,q

0.01 4~

In Fig. 8b), we show the internal energy as a function of
order parameter for temperaturés-0.1~2.0. We find that

the landscape is very rough at low temperatures. The rough-
ness of the energy landscape agrees with the one for canoni-
cal distribution. But the maxima in energy landscape are cor-
responding to the minima approximately in the canonical
distribution.

As we already noted in the previous paragraph, the rough-
ness of the landscape of the spin-glass model makes the con-
ventional Monte Carlo simulation extremely difficult to ap-
ply. Therefore, even a quarter of a century after the model
was proposed, we even cannot conclude whether there is a
finite phase transition between the glass phase and the disor-
dered phase. With Monte Carlo simulations on a large sys-
tem (64 128) and a finite-size scaling analysis on a small
lattice, Marinariet al. [55] expressed doubt about the exis-
tence of the “well-established” finite-temperature phase
transition of the 3D Ising spin glag€2,45. Their simula-
tional data can be described equally well by a finite-
temperature transition or byTe=0 singularity of an unusual
type. Kawashima and Young’s simulational data could not
rule out the possibility off ;=0 [46]. Thus, even the exis-
tence of the finite-temperature phase transition is still contro-
-1 05 0 05 1 versial, and thus, the nature of the spin-glass state is uncer-
(b) q tain. Although the best available computer simulation results

[13,50,568 have been interpreted as a mean-fieldlike behavior

FIG. 7. (a) Overview of the rough topology of the canonical with replica-symmetry breakingRSB) [57], Moore et al.
distribution in the order-parameter space for one bond configuratioghowed evidence for the droplet pictUf8] of spin glasses
of the 3D EA model on arL=6 simple cubic lattice(b) The  \ithin the Migdal-Kadanoff approximation. They argued
logarithmic plot for the canonical distribution as a function of the {hat the failure to see droplet model behavior in Monte Carlo
order-parameter for the 3D EA model at the temperalure).S. simulations was due to the fact that all existing simulations

are done at temperatures too close to transition temperature

so that system sizes larger than the correlation length were
the canonical distribution using logarithmic scale for thenot used. As discussed in the previous paragraph, the lower
same distribution but only af=0.5, and we find that the the temperature is, the rougher the canonical distribution and
dips are as deep as 10 We also noted there actually are six energy landscape are; hence, it is almost impossible for con-
peaks, but the plot with a linear scale does not show all o/entional Monte Carlo methods to overcome the barrier be-
them because two are as small as 3@ompared to other tween local minima and globe minima. It is possible to heat
four peaks. the system up to increase the possibility of escape from local

In Fig. 8@), we show the roughness of the canonical dis-minima by simulated annealing and the more recent simu-
tribution for another realization on ar? 8attice. Because of lated tempering methofb9] and parallel tempering method
the wide variation in the distribution at low temperature, we[60,61], but it is still very difficult to perform equilibrium
used a logarithmic scale: the relative size of dips are as deegimulations at low temperatures. Very recently, Hatano and
as 1030 at T=0.1. There are several local minima even atGubernatis proposed a bivariate multicanonical Monte Carlo
high temperatures. With conventional Monte Carlo simula-method for the 3D+ J spin-glass model, and their result also
tions, it is almost impossible to overcome the barriers at théavors the droplet pictur€l6,62. Marinari, Parisiet al. ar-
low temperature, so the simulation will get trapped in one ofgued, however, that the data were not thermaliz§]. The
the local minima as shown in the figure. With our algorithm, nature of spin glasses thus remains controvefdia|.
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The algorithm proposed in this paper provides an alternaef aboutL® states, the simulation is only practical for a small
tive for the study of complex systems. Because we need teystem [ =<8). The results in the figure are the average over
calculate the order parameter with high accuracy, and thi400 realizations fol.=4, 50 realizations fo. =6, and 20
quantity is not directly related to the energy, we need tdfor L=38.
perform a random walk in the two-dimensional energy-order We notice that the behavior ¢fj(T)) is very similar to
parameter space. After we estimate the density of states ilme magnetizatiorithe order parameter for the Ising moyel
this 2D space, we can calculate the order parameter at arut the finite value at low temperature is not necessarily
temperature from the canonical average. In Fitp),9we  equal to one because of the high degeneracy of the ground
show our results for the 3D EA model f&r=4, 6, and 8. state for the spin-glass model. The fluctuation of the order
Because we need to perform a 2D random walk with a totaparameter at the different temperatureslfer4, 6, and 8 is
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1 temperatures. We conclude that the error bars in the figure
arise almost completely from the randomness of the system.
The computational resources devoted here to the EA
model were not immense. All our simulations for one bond
configuration (=4, 6, and 8 were performed within two
days on(multiple) Linux machines (206 800 MHz) in the
Center for Simulational Physics. This effort should thus be
viewed as a feasibility study, and substantially more effort
would be required to determine the nature of the spin-glass
phase or to estimate the transition temperature with high ac-
curacy. Nonetheless, we believe that these results show the
applicability of our method to systems with a rough land-
scape. Because the number of states is aNddor 2D ran-
0 . . dom walks, such calculations not only require huge memory
3 4 during the simulation but also substantial disk space to store
the density of states for the later calculation of thermody-
namic quantities.

a(m)

o
-
—n |

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed an efficient algorithm to cal-
culate the density of states directly for large systems. By
modifying the estimate at each step of the random walk in
energy space and carefully controlling the modification fac-
tor, we can determine the density of states very accurately.
Using the density of states, we can then calculate thermody-
namic quantities at any temperature by applying simple sta-
tistical physics formulas. An important advantage of this ap-
proach is that we can also calculate the free energy and
entropy, quantities that are not directly available from con-
%5 1 15 > 25 3 ventional Monte Carlo simulations.

T We applied our method to the 2Q=10 Potts model that
demonstrates a typical first-order phase transition. By esti-
from the density of stateS(E,q) resulting from a 2D random walk g]oaél? goér,]?/vediglsé%agd St:]aefeiitev;l:; éﬁgfgj :pseclfflil;:g?le:f:

in energy-order parameter spa¢a; The order parameter vs tem- free ener and entropy in a wide temperature region. We
perature(b) The temperature dependence of the fourth order cumus 9y, Py P gion.

lant of the order parameter. The cumulants for different lattice size;ogn(?, a typ|ca_l first-order phase transition with a dIS'COI’ltI-
cross around’,=1.2. nuity” for the internal energy and entropy at.. The first

derivative of the free energy also shows such a discontinuity
shown in the inset of the figure. at T.. The transition temperature estimated from simula-

To estimate the transition temperature of the spin-glasgonal data is consistent with the exact solution.
system, we calculated the fourth-order cumulant as a func- We also applied our algorithm to the 2D Ising model,
tion of temperature. In Fig.(®), we show our simulational which shows a second-order phase transition. It was also
results forL=4, 6, and 8. All curves clearly cross around possible to calculate the density of states for a 2366
Ty=1.2. Below this temperature, the spin configurations ardattice with a computational effort of 6:110° Monte Carlo
frozen into some disorder ground state and the order paransweeps. With the accurate density of states, we calculated the
eter assumes a finite value. Above this temperalyrethe internal energy and entropy. For all temperatures between
system is in a disordered state and the order parametdr—=0 andT=8, the relative errors are smaller than 0.09%
vanishes. for internal energy, 1.2% for entropy.

One complication for simulation of such random systems The algorithm was also applied with success to the 3D
is the determination of the relative importance of the errortJ EA spin-glass model for which we could determine the
due to the simulation algorithm and the error due to the finiteoughness of the energy landscape and canonical distribution
sampling of bond distributions. From Figga@and 9b), we in the order-parameter space. The internal energy and en-
cannot tell what the origin of the error bars is so we alsotropy at zero temperature were estimated up to a lattice size
performed multiple independent simulations for the same20®, and the transition temperature was estimated at about
bond configuration on ah=6 3D EA model. We found that Ty=1.2.
the statistical errors for the order parameter and the fourth- In this paper, we only concentrated the random walk in
order cumulant from these simulations were much smalleenergy spacéand order-parameter spachowever, the idea
than the error bars shown in Figs(ap and 9b) for all is very general and we can apply this algorithm to any pa-

FIG. 9. Properties of the 3D EA spin glass model calculated
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rameterd 11]. The energy levels of the models treated herd 63,64 from the authors, who estimated the density of states
are perfectly discrete and the total number of possible energlyom the histogram of microcanonical simulations. To get an
levels is known before simulation, but in a general modelaccurate density of states over all the energy range, they
such information is not available. Since the histogram of theperformed independent simulations in multiple small win-
random walk with our algorithm tends to be flat, it is very dows in energy space. Their method is similar to our
easy to probe all possible energies and monitor the histogramultiple-range random walk, but our random walk algorithm
entry at each energy level. For some models where all pognaintains a flat histogram even in small windows in energy
sible energy levels can not be fitted in the computer memorgpace. They have successfully estimated the density states
or the energy is continuous, e.g., the Heisenberg model, wior the L=10, 3D Ising model with the nearest-neighbor
may need to discretize the energy levels. According to ouinteractions[63] and theL=1000, 1D Ising model with
experience on discrete and continuous models, if the totdbng-range interaction64].

number of possible energies is around the number of lattice
sitesN, the algorithm is very efficient for studying both first-
or second-order phase transitions.

In this paper, we only applied our algorithm to simple  We would like to thank S. P. Lewis, H.-B. Schuttler, T.
models, but since the algorithm is very efficient even forNeuhaus, and A. Hler for comments and suggestions, and
large systems it should be very useful in the studies of genK. Binder, N. Hatano, P. M. C. de Oliveira, and C. K. Hu for
eral, complex systems with rough landscapes. It is cleahelpful discussions. We also thank M. Caplinger for support
however, that more investigation is needed to better detemn technical matters and P. D. Beale for providing his
mine under which circumstances our method offers substarMATHEMATICA program for the calculation of the exact den-
tial advantage over other approaches and we wish to encousity of states for the 2D Ising model. The research project is
age the application of this approach to other models. supported by the National Science Foundation under Grant

Note added in proofRecently, we learned about Refs. No. DMR-0094422.

ACKNOWLEDGMENTS

[1] D.P. Landau and K. BindeA Guide to Monte Carlo Methods [22] P.M.C. de Oliveira(private communication
in  Statistical Physics (Cambridge University Press, [23] P.M.C. de Oliveira, Braz. J. Phy80, 4659(2000.

Cambridge, 2000 [24] A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. L&df.
[2] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. 2635(_1988? 63, 1195(1989;-
Teller, and E. Teller, J. Chem. Phyal, 1087(1953. [25] A.R. Lima, P.M.C. de Oliveira, and T.J.P. Penna, J. Stat. Phys.

99, 691 (2000.
[26] F. Wang and D.P. Landau, Phys. Rev. L&&, 2050(2001).
[27] A. Hiiller, e-print cond-mat/0011379.
[28] U. Hansmann, Phys. Rev. &6, 6200(1997).

[3] R.H. Swendsen and J.-S. Wang, Phys. Rev. LB&. 86
(1987.
[4] U. Wolff, Phys. Rev. Lett62, 361(1989.

[5] P.D. Beale, Phys. Rev. Lef6, 78 (1996. [29] U. Hansmann and Y. Okamoto, Phys. Re\64 5863(1996.
[6] B.A. Berg and T. Neuhaus, Phys. Rev. L&&, 9 (1992. [30] W. Janke, B.A. Berg, and A. Billoire, Comput. Phys.
[7] B.A. Berg and T. Celik, Phys. Rev. Le®9, 2292(1992. Commun.121-122 176(1999.

[8] B.A. Berg and T. Neuhaus, Phys. Lett. 2867, 249 (1991. [31] F.Y. Wu, Rev. Mod. Phys54, 235 (1982.

[9] W. Janke and S. Kappler, Phys. Rev. L&d, 212 (1995. [32] K. Binder, K. Vollmayr, H.P. Deutsch, J.D. Reger, M.
[10] W. Janke, Int. J. Mod. Phys. 8 375(1992. Scheucher, and D.P. Landau, Int. J. Mod. Phys5,C1025
[11] B.A. Berg, U. Hansmann, and T. Neuhaus, Phys. Re¥7B (1992.

497 (1993. [33] M.S.S. Challa, D.P. Landau, and K. Binder, Phys. Re\34B
[12] W. Janke, Physica 254, 164 (1998. 1841(1986.
[13] B.A. Berg and W. Janke, Phys. Rev. L6380, 4771(1998. [34] T. Neuhaudprivate communication
[14] B.A. Berg, Nucl. Phys. B53, 982(1998. [35] J.S. Wang, T.K. Tay, and R.H. Swendsen, Phys. Rev. 8&ft.
[15] B.A. Berg, T. Celik, and U. Hansmann, Europhys. L&g, 63 476 (1999.

(1993. [36] R.H. Swendsen, J.S. Wang, S.T. Li, B. Diggs, C. Genovese,
[16] N. Hatano and J.E. Gubernatis, @omputer Simulation Stud- and J.B. Kadane, Int. J. Mod. Phys.10, 1563(1999.

ies in Condensed Matter Physi¥dl, edited by D.P. Landau, [37] D.P. Landau, Phys. Rev. B3, 2997(1976.

S.P. Lewis, and H.-B. SchuttléBpringer, Berlin, 2000 [38] A.E. Ferdinand and M.E. Fisher, Phys. R&@5 832 (1969.
[17] J. Lee, Phys. Rev. Let?1, 211(1993. [39] J.S. Wang, Eur. Phys. J. & 287(1998.
[18] P.M.C. de Qliveira, T.J.P. Penna, and H.J. Herrmann, Braz. J40] K. Binder and A.P. Young, Rev. Mod. Phys8, 801 (1986.

Phys.26, 677 (1996. [41] S.F. Edwards and P.W. Anderson, J. Phys. F: Met. Phys.
[19] P.M.C. de Oliveira, T.J.P. Penna, and H.J. Herrmann, Eur. 965 (1975.

Phys. J. B1, 205(1998. [42] A.T. Ogielski and I. Morgenstern, Phys. Rev. Lefg, 928
[20] P.M.C. de Oliveira, Eur. Phys. J. & 111(1998. (1985.
[21] J.S. Wang and L.W. Lee, Comput. Phys. Commiiz, 131 [43] F. Wang, N. Kawashima, and M. Suzuki, Europhys. L88.

(2000. 165(1996.

056101-15



FUGAO WANG AND D. P. LANDAU

[44] F. Wang, N. Kawashima, and M. Suzuki, Int. J. Mod. Phys. C
7, 573(1996.

[45] R.N. Bhatt and A.P. Young, Phys. Rev. Ledt, 924 (1985.

[46] N. Kawashima and A.P. Young, Phys. Rev. 38, R484
(1996.

[47] M. Palassini and A.P. Young, Phys. Rev. Le®2 5128
(1999.

[48] M. Palassini and A.P. Young, Phys. Rev. Le®3, 5126
(1999.

[49] M. Palassini and A.P. Young, Phys. Rev. Le85, 3017
(2000.

[50] E. Marinari, Phys. Rev. LetB2, 434(1999.

[51] M.A. Moore, H. Bokil, and B. Drossel, Phys. Rev. Le#,
4252(1999.

[52] J. Houdayer and O.C. Martin, Phys. Rev. LeBR2 4934
(1999.

[53] I. Morgenstern and K. Binder, Phys. Rev.2B, 288 (1980.

[54] K. Binder, in Fundamental Problems in Statistical Mechanics

PHYSICAL REVIEW E64 056101

V, edited by E.G.D. CohenNorth-Holland, Amsterdam,
1980.

[55] E. Marinari, G. Parisi, and F. Ritort, J. Phys. 2V, 2687
(1994.

[56] E. Marinari, G. Parisi, F. Ricci-Tersenghi, and F. Zuliani,
e-print cond-mat/0011039.

[57] G. Parisi, Phys. Rev. Lett43, 1754 (1979; 50, 1946
(1983.

[58] D.S. Fisher and D.A. Huse, Phys. Rev.3B, 386(1988.

[59] E. Marinari and G. Parisi, Europhys. Lelt9, 451(1992.

[60] K. Hukushima and K. Nemoto, J. Phys. Soc. J6B, 1604
(1996.

[61] K. Hukushima, inComputer Simulation Studies in Condensed
Matter PhysicsXlll, edited by D.P. Landau, S.P. Lewis, and
H.-B. Schuttler(Springer, Berlin, 2000

[62] N. Hatano and J.E. Gubernatis, e-print cond-mat/0008115.

[63] G. Bhanot, R. Salvador, S. Black, P. Carter, and R. Toral,
Phys. Rev. Lett59, 803(1987).

[64] R. Salazar and R. Toral, Phys. Rev. L&8, 4233(1999.

056101-16



