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Synchronization using dynamic coupling

Lutz Junge and Ulrich Parlitz
Drittes Physikalisches Institut, Universit&attingen, BugerstraBe 42-44, D-37073 @&mgen, Germany
(Received 20 March 2001; revised manuscript received 10 August 2001; published 22 October 2001

A systematic coupling procedure is introduced for synchronizing arbitrary chaotic dynamical systems. This
coupling exploits the existing contraction properties of the flow and surpresses divergence only along those
directions in state space, where the underlying flow is not contracting. In this way, systems can be synchro-
nized using a minimum of transmitted information for guaranteed high-quality synchronization. Applications
in combination with sporadic driving and in partitioned state spaces are numerically illustrated.
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Synchronization of periodic signals is a well-known phe-whereU andV are orthogonal matrices ai= diag(w;) is
nomenon in science and engineering, and even chaotic sya-diagonal matrix with positive elements, , the singular
tems may be coupled in a way such that their oscillations argalues(SVs) of Df. The matrix Cf(y,,) depends on the cur-
synchronized1]. If the coupled systems are very similar or rent state as the matrices of the SVD do, but here, and in the
(almos} identical, their state vectossandy converge during following, we shall indicate this dependence explicitly only
a synchronization transient to the safehaotig trajectory. in cases where misunderstandings have to be avoided. Let us
The fact that chaotic systems may synchronize despite theassume now that af,, locally k noncontracting directions
sensitive dependence on initial conditions can be explainedxist, that are given by the column vectars . . . v, of the
by a surpression of expanding dynamics in state space trangatrix V with corresponding SVsv,, ... ,w,=1. Our goal
versal to the synchronization manifokd=y due to the cou- is to design a coupling matri€ = C(y,) that surpresses the
pling. Conventional coupling schemes are mainly based ofocal expansion of the flow along these directions. We shall
global coupling forces and make no systematic use of théirst consider the case of unidirectional coupling where the
contraction properties of the underlying flow. We introducedesired coupling can be written as
in the following, a way to design a coupling for arbitrary
pairs of (identica) systems that suppresses exponential di- Yri1=F(Yn)+C(Xn—Yn), 1)
vergence of the dynamics of the synchronization exrer,
and fully exploits the contraction properties of the flow of yjelding an error dynamics
the given systems.

Dynamic couplingWe shall introduce the dynamic cou- e,.1=[Df—Cle,.
pling scheme, first for discrete dynamical systems, and then
for continuous systems. Let Choosing

Xn+1=F(Xp) and  yn.1=F(y,) C=U-diagwy, ... W,0,...,0-V", 2

be two identicalm-dimensional chaotic dynamical systems the matrix Of — C governing the error dynamics is given by
that we want to synchronize by means of a suitable coupling) - diag(Q . . . ,0W, 4, ... W) VY and thus possesses
mechanism. Since the systems are assumed to be chaotihly SVs that are smaller than one. The choice of this matrix
any pair of orbits{x,} and{y,} starting at closely neighbor- C guarantees the linear stability of the synchronized state.
ing initial conditions{x,} and{yy} will (exponentially di-  Using this coupling matrixC, the coupling term can be re-
verge. As long as the distance between the orbits is small th@ritten
evolution of the synchronization erra,=y,,—x, is gov-
erned by the linear system k
ClX=Yal= 2 Wil (% V)= (Yo V) Iui, ()
i=1
€+1=Df(yn) €y,

. ) where(,) denotes the standard scalar producty,fis close
where X(y,) denotes the Jacobian matrix baty,. The o X, , <th>e matrixV(y,) of the SVD of D (y,) an be ap-

increase of the erra,, i.e., the divergence of orbits can best roximated[2] by the matrixV/(x,) of the SVD of Df(x,)
be analyzed and described in terms of the singular valu nd we obtain thelynamic couplning n

decompositionSVD) of the Jacobian matrix

Xne1=T(Xg,),
Df=U-W-Vtr, n+1 ( n)

k

=f(yn)+ 2 Wi[si(X,)—S; Ui, 4
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based ori=1, ... k scalar signals;(x,) =(x,,Vv(X,)) and k
Si(Yn) ={Yn,Vi(Yn)). The same reasoning yields for bidirec- C(x—y)=_2 CiL{X Vi)=Y, Vi) ]vi,
tional coupling the scheme =1
1k wherev; denotes again the column vectors of the orthogonal
X1 = F(Xn) 5 E Wi (Xn)[Si(Yn) = Si(%n) JUi(Xn), matrix V. Hence the coupling term is expressed in terms of

= some constants;>d;/2 that are related to the non-negative
eigenvaluesd;, of B=Df"+Df and the corresponding
18 eigenvectory;, and depends in this way on the Jacobian of
Yn+1=f(Yn)+ 5 '21 Wi (Yn)[Si(Xn) = Si(Yn) JUi(Yn)- the vector fieldDf along the orbit.
o An analysis for bidirectionally coupled continuous sys-

For continuous dynamical systems, a similar result can b&ms yields the same form of the coupling matrix except that
derived starting again from two uncoupled systems: only half of the coupling strength for unidirectional is nec-
essary to stabilize the synchronized state.

Henon map.To demonstrate the efficiency of the pro-
posed couplind4), we shall now consider then=2 dimen-
The evolution of the distance=y—x between two neigh- sional Heon map:
boring orbits is given by the linearized equation

x=f(x) and y=f(y).

Xt =1-a(x})?+bx2,

e=Df(y)-e. (5)
Xﬁ+1:Xrlv
For a small time step\t, the solution of Eq.(5) may be

approximated bye(At)=A-&(0), where A(At) =1+ AtDf with a=1.4 andb=0.3. The SVs of the Jacobian

is an approximation of the linearized flow of the systdm, —2axt b
denotes the identity matrix, are{0) is the initial condition. Df(xy)= " )
SVD of A(At)=U-W- V' provides SVsw;(At) of A(At) 10

that may be interpreted in the same way as the SVs of the
linearization of discrete systems, but still depend on(tre
bitrary) time stepAt. To eliminate this dependence dit,

are given by the square roots of the eigenvalues of the matrix
(Df)'-Df and thus depend or! only. For the first, SV
holdsw;=>1, |nd|cat|ng expansion except fat=0. Since

we consider
w,=<b<1 for all x}, only a single noncontracting direction
A A=1+At(Df"+Df)+At2Df". Df. exists and the dynamic coupling is given by the scalar signal
S1(Xn) :<Xn yV1(Xn)>-
Neglecting terms of higher order ifit and defining In order to avoid numerical artifacts, white noigeni-
formly distributed random numbersf amplitude 10 is
B=Df'"+Df, added to the dynamical variables during all following simu-

lations. Furthermore, the lHen map possesses not only the
we obtain |+AtB=A"-A=V-W2.V" and thus B  chaotic H®on attractor we want to study, but also orbits that
=V-D-V' with D=diag(d,, ... .dn)=(W?—1)/At. The diverge. Unfortunately, the chaotic Ren attractor is located
diagonal elementsl; are the eigenvalues of the matik  quite close to the basin of this coexisting attractor at infinity.
Solving for the SVs of A(At), we obtain w;(At) Therefore, the coupling is not applied in those cases where it
=1+ Atd;. Contraction withw;<1 thus occurs for those would kick the driven system towards a diverging solution.

directions wherad;<0. This stability criterion will now be The first question we want to address with thénble
forced by introducing a suitabl@inidirectiona) coupling example is how much the approximation of the local singular
values and vectors at the response system degrades the per-
y=f(y)+C(x—y). formance of this coupling. For this purpose we have com-

pared the coupling given in Ed4) with a corresponding
The coupling matrixC has to be chosen in a way that all coupling(3) withoutapproximations. Figure 1 shows the de-

eigenvalues of crease of the synchronization erm#|x—y|| as a function
of time n for the proposed dynamic coupling using only a
B=Df'—C'"+Df-C=B—(C"+C) scalar time series;(x,) (solid curvg and the ideal dynamic

coupling (dotted curve where the vectov,(x,) also has to
are negative. This goal can be achieved using a symmetrige transmitted to the response system. As can be seen only
matrix C that manipulates all non-negative eigenvaluesfor synchronization errors below 16, both curves are sig-

d;, ... ,d,:=0 of B: nificantly different and the convergence of the proposed cou-
pling (4) becomes slower than that of the ideal coupliBg
C'+C=2C=2V-diagcy, ... 0,...,0-V" The efficiency of dynamic coupling allows for deactivat-
ing the coupling from time to time in order to reduce the
with ¢;>d,/2 fori=1, ... k. This yields a matrixB with information flow from the drive to the response system. We

negative SVs and results in the following coupling term:  shall now discuss two ways to exploit this feature.

055204-2



RAPID COMMUNICATIONS

SYNCHRONIZATION USING DYNAMIC COUPLING PHYSICAL REVIEW E64 055204R)
10° 7] (a)
109 3 2
© 107°
107103 ®)
10—15 4 . <
0 20 40
n T T T T
0 20 40 60 80 100
FIG. 1. Synchronization errae=|x—y]|| vs timen of the dy- [#]
namic coupling(solid curve and the ideal dynamic couplinglot- (c) 30
ted curve. 25
20
Sporadic driving.An obvious way to reduce the informa- ® 15
tion flow from drive to response isporadic driving[3], 10
where T iterations are performed before the next coupling 5
signal is computed from the current state and transmitted to 0
the response system where it is applied in the coupling. Us- 0 5 T 10 15
u

ing dynamic coupling4) for the Henon system, synchroni-
zation in terms of negative conditional Lyapunov exponents g, 2. Largest conditional Lyapunov exponekt vs SV
occurs forT<7, and high quality synchronization, without thresholdw,,;, (a) and vs percentage of iterations where coupling is
intermittent bursts of the synchronization erfdr5], can be  active (b). (c) Histogram of the numbeT, of iterations between
achieved withT<5. Thus only every fifth iterate of the two subsequent coupling events.

Henon map has to transmitted as a coupling signal to the

response system, reducing the information flow considerycnievd if the ten most important celiglotted as black and
ably. Note that the commonly used coupling sigsalx; for  gark gray squaresare used in the coupling. For selecting
the Heon map has to be applied for each iteration to guarthese ten cells, the invariant measugegC;;) of all cells
antee high-quality synchronization. have been estimated and multiplied with the largest local
Partition based couplingAnother way to reduce the in- gingular valuew;. The ten cells possess the largest SV-
formation flow of the dynamic coupling is motivated by the \yejghted measures and cover about 25% of the total invari-
observation that the singular values of Df(x,) depend, in  ant measure. If instead of cell number ten, the 11th @eH
general, on the statg, . Therefore, one may restrict the cou- cording to our ordering is used for implementing the
pling to those regions in the state space where strong expagpupling, strong intermittent bursts of desynchonization oc-
sion has to be surpressed. Since for thedtemap the larg-  cur. Therefore, the proper location of cells is crucial when

est SV is a function of the first state component only  ysing a small number of coupling cells, only. Using a com-
(with a local minimum atx;=0) one may activate coupling

only if |x4|>x.>0, or equivalently, ifw;>w,,. Figures

2(a) and Zb) show the resulting largest conditional :H-'?::::-ﬂ_,,,
Lyapunov exponent versus the coupling threshalgl,, and 1.0 7 o
the percentage of iterations where coupling is activated, re- ]
spectively. Figure @) shows a histogram of the number of 0.5 —

iterations between activation of the coupling fef,;,=2.8. ]
The dynamic coupling as defined in E@,) requires the -

repeated computation of the SVD of the Jacobian at different 0.0 7

states. To avoid these computations, one may partition the ]

state space such that in each cell the required singular values —05 - g )

and vectors are approximated by their average values in the ] ,

particular cell, which are stored in a database. The number of - e

necessary cells depends, of course, on the dynamical system. g

In the case of the H®n map, we achieve synchronization S —

using a dynamical coupling based on a coarse partition with -10 -05 00 05 1.0

2% 2 cells. Furthermore, one may restrict coupling again to %

those cells of the partition that are visited with a high prob-

ability and/or possess large SVs. Figure 3 shows a partition FIG. 3. Black squares indicate the location of cells where the

with 20X 20 cells. High-quality synchronization is already dynamic coupling is activated.
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mon start cel(to avoid long transienjsand the configuration
of coupling cells as ddiscrete key, one may in this way
devise communication protocols where between the coupling
signals encoded messages are transmitted that can be ddere the coupling matric is designed as given in E(R) to
coded using the state of the synchronized response systenforce convergence, and the matf ! is used to translate
Coupling partitions may also be used with other couplingdifferences of states from the reconstruction space to the
schemes. Furthermore, partitioning and constant approximariginal state space. In a similar way, bidirectional coupling
tions of singular values and vectors can also be combinethay be defined, and for continuous systems, one could also
with sporadic driving. In this case, coupling is activated ex-use derivative coordinates.
actly afterT iterations regardless of the current cell. Simula-  Conclusion.A systematic coupling scheme has been pre-
tions with the Heon map showed that for a partition with sented that exploits ideally the contraction properties of the
20X 20 cells, sporadic driving witf<5 leads to high qual- underlying flow and ensures linear stability of the synchro-
ity synchronization. nized state in all points of the state space. This approach is
Delay embeddingA drawback of the coupling schen4)  similar in spirit, but conceptionally different from other
is the fact that for each noncontracting direction, a couplingnethods for chaos control and observer de$ig8]. Besides
signal si(x,) (i=1,... k) is required. To avoid the trans- coupling using expansion directions given by singular vec-
mission of suchk-dimensional coupling vectors, we shall tors, we have also investigated schemes based on unstable
extend the coupling now by some delay embedding proceeigenvectors. A comparison showed that the SVD-based
dure [6]. Let h(x,) be a scalar observable such that thecoupling presented in this Rapid Communication is superior

Ynr1=F(yn)+C- DF_l(qn)'(pn_Qn)-

d-dimensional embedding p,= (h(x,),hof ~1(x,), ... h
of17K(x,))) fulfills Takens’ theoren{7]. Then a diffeomor-
phic delay embedding map exists that maps, to p,

=F(x)) and y, to dy=F(yn)=(h(yn),hof " *(yy), ... h

of17K(y,)). Taylor expansion of the inverde ! yields for
neighboring states, andy,
Xn_yn%DFil(Qn)'(pn_qn)a (6)

whereDF ~%(q,) denotes thdpseudo inverse of the Jaco-
bian matrixDF of F. The matrixDF can be computed ex-
plicitly for given functionsh and f, and for its inversion
again, SVD may be used yieldinBF=Ug-Wg- VY and
DF '=Ve-W-t.UY. Substituting Eq.(6) for the differ-
ence of states in Ed1), we obtain a coupling that depends
on the present and past values of the scalar coupling sign
s,=h(x,) entering the delay vectqy,:

to methods using eigenvalues and eigenvectors.

Information about the local expanding directions can give
important hints for the design of a global coupling function
because it allows one to locate regions in the state space
where a given coupling signal or scheme may fail due to
strong expansion rates. On the other hand, an analysis of
local expansion can also be used to evaluate the suitability of
a given coupling signal for synchronization of two systems.
Only if this signal contains significant components along the
expanding direction during the time evolution, will it lead to
synchronization when used in somarbitrary) coupling
mechanism.
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