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Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo
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The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially
«e” ", for perturbation strengthe greater than the level spacing. We present numerical evidence for a
dynamical system that the decay ratés given by thesmallestof the Lyapunov exponeri of the classical
chaotic dynamics and the level broadeningf A that follows from the golden rule of quantum mechanics. This
implies the range of validity)>+\A for the perturbation-strength independent decay rate discovered by
Jalabert and Pastaws?hys. Rev. Lett86, 2490(2001)].
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The search for classical Lyapunov exponents in quantunime ¢, that is smaller than the Lyapunov exponent by a
mechanics is a celebrated problem in quantum cHdds factor logarithmic in the system’s effective Planck constant.
Motivated by NMR experiments on spin echd@$, Jalabert  |n our numerics we do not have enough orders of magnitude
and PastawsKi3] have given analytical evidence, supportedpetween 14z and\ to distinguish between the two, so that
by computer simulation$4], that the Lyapunov exponent our findings remain somewhat inconclusive in this respect.

governs the time dependence of the fidelity Becausd" cannot become bigger than the band wigth
. ) 5 of Hy (we are intErested in the reginé;<H,), a conse-
M (1) =|(4lexpiHt)exp(—iHqt)| )%, @) quence of a decayl ccexd —t min(A,I')] is that the regime of

Lyapunov decay can only be reached with increasini§

is considerably less thaB That would exclude typical fully
chaotic systems, in which andB are comparable, and set
limits of observability of the Lyapunov decay.

The crossover from the golden rule regime to a regime
th a perturbation-strength independent decay, obtained
ere for the Loschmidt echo, should be distinguished from
perturbation theory by Perds]. the corresponding crossover in the local spectral density

Perturbation theory breaks down once a typical matri{(E)’ obtained by Cohen and Hellgg]. The Fourier trans-
. ; . f M I I E) if I
elementU of H; connecting different eigenstates ldf, be- orm of M(t) would be equal tp(E) it ¢ would be an

ter than the level doThen the ei tat eigenstate oH, rather than a wave packet. The choice of a
comes greater than the level spaciglhen the eigenstates  q packet instead of an eigenstate does not matter in the
of H, decomposed into the eigenstatedHgf contain a large

olden rule regime, but is essential for a decay rate given b
number of non-negligible components. The distribufidi) g . g - I y g y

local | densitvof th h the Lyapunov exponent.
(local spectral densityof these components over energy has 1o gynamical model that we have studied is the kicked
a Lorentzian form

top [9], with Hamiltonian

with which a wave packey can be reconstructed by invert-
ing the dynamics with a perturbed Hamiltonidh=H,
+H4. They have called this the problem of the “quantum
Loschmidt echo.” The fidelityM (t) can equivalently be in-
terpreted as the decaying overlap of two wave functions tha\}vi
start out identically and evolve under the action of two,
slightly different Hamiltonians, a problem first studied in

p(E)= 2) Ho=(m/27)S,+(K/2S)S2 >, 8(t—nr). 3)

2m(E2+T%4)’

with a spreading widtH'=U?/A given by the golden rule It describes a vector sp(m_agnitudeS) that u'nd(.argoes qfree
[6,7]. A simple calculation in a random-matrix model gives Precession around theaxis perturbed periodicallyperiod

an average decaM~exp(-Tt) governed by the same 7) by sudden rotations around tkeaxis over an angle pro-

golden rule width. This should be contrasted with the expo_portional t0S,. The time evolution of a state aftarperiods

, — ) is given by thenth power of the Floquet operator
nential decayM «exp(—A\t) obtained by Jalabert and Pastaw-
ski [3], which is governed by the Lyapunov exponenbf FO:exp[—i(K/ZS)Sg]exp:—i(w/Z)Sy]. (4)
the classical chaotic dynamics.

Since the random-matrix model has by construction arDepending on the kicking strengkf the classical dynamics
infinite Lyapunov exponent, one way to unify both resultsis regular, partially chaotic, or fully chaotic. The dependence
would be to have an exponential decay with a rate set by thef the Lyapunov exponent on K is plotted in the inset to
smallest ofl" and A. We will in what follows present nu- Fig. 1(cf. Ref.[10]). The error bars reflect the spread\inn
merical evidence for this scenario, using a dynamical systerdifferent regions of phase space, in particular the presence of
in which we can vary the relative magnitude Bfand\.  islands of stability. FOK=9 the error bars vanish because
There exists a third energy scale, the inverse of the Ehrenfettte system has become fully chaotic. For the reversed time

1063-651X/2001/645)/0552034)/$20.00 64 055203-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

JACQUOD, SILVESTROV, AND BEENAKKER PHYSICAL REVIEW B4 055203R)
0 0
10 K T | T | T ‘ E 10 B T T | T | T | E
Mo : Moo\ ]
i N q
-1 &
I — — \
107+ E 107 ¢ E
: 1 1 1 1 : : :
- 0 5 10 15 20 25 L
107 & 4 ,
F ] 10 ¢ 3
10_3 L | 1 1 | [ 1 | i
0 0.2 04 0.6 0 1
2
@t
FIG. 1. Decay of the average fideli@ for the quantum kicked FIG. 2. Decay ofM in the golden rule regime for kicking

top withK=13.1 andS=500, as a function of the squared rescaled strength&k =13.1, 17.1, and 21.1 as a function of the rescaled time
time (¢t)2. The perturbation strengths range between10 7 and  ¢°t. Perturbation strengths range frog=10"* to 10 3. Inset:
10" 8. The straight line corresponds to the Gaussian dégayalid Local spectral density of states fd{=13.1 and perturbation
in the perturbative regime. Inset: Numerically computed Lyapunovstrengths ¢=2.5x10"4,5x10"4,10°%. The solid curves are
exponent for the classical kicked top as a function of the kickingLorentzian fits, from which the decay rafé~0.84¢°S’ is ex-
strengthK. Dots correspond to averages taken ovet ib@ial con- tracted. The solid line in the main plot gives the decu_y
ditions (see Ref[10]). The error bars reflect different results ob- «exp(~I't) with this value ofl.

tained with different initial conditions. The vanishing of error bars

indicates the disappearance of islands of regular dynamics.

ferences can be calculated in first-order perturbation theory.
We then expect the Gaussian decay
evolution we introduce as a perturbation a periodic rotation

of constant angle around theaxis, slightly delayed with M aexp( — U2t2)=In M« (t)2. (6)
respect to the kicksl,

This decay is evident in Fig. 1, which shoWwsas a function
Hy= ¢SS s(t—nr—e). 5 Of (¢t)? on a semilogarithmic scale fah< 10_*5. The decay
n (6) stops whernM approached ., =1/2S, being the inverse
of the dimension of the Hilbert space. This saturation reflects
The corresponding Floquet operator fis=exp(—i¢S)Fo. the finiteness of the system and eventually prevails at long
We have seti=1 and in what follows we will also set times independently of the strength of the perturbation.
=1 for ease of notation. For ¢> ¢, one enters the golden rule regime, where the
Both H andH, conserve the spin magnitude. We chooselLorentzian spreading of eigenstates Fofover those offF,
the initial wave packets as coherent states of the spi2SU results in the exponential decay
group[11], i.e., states that minimize the Heisenberg uncer- . o
tainty in phase spadén our case on a sphere of fixed radius Mocexp( —U?t/A)=In M« ¢?t. (7)
at the effective Planck constahtz~S™ . The correspond-
ing Ehrenfest time isg=\"1In S[12]. We takeS=500 and  The data presented in Fig. 2 clearly confirm the validity of

averageM (t=n)=|(y|(F")"F{|4)|? over 100 initial coher-  the scaling(7). There is no dependence M on K in this

ent statesy. regime of moderatébut nonperturbativevalues of¢, i.e.,
We first show results in the fully chaotic reginke>9,  no dependence on the Lyapunov exponentvéries by a

where we choose the initial states randomly over the entir¢actor of 1.4 for the different values & in Fig. 2).

phase space. The local spectral dengifw) of the eigen- We cannot satisf\<I" in the fully chaotic regime, for

states ofF (in the basis of the eigenstatesfef with eigen-  the reason mentioned in the Introduction: The band wiith

phasesy) is plotted for three differeng’s in the inset to Fig.  (which is an upper limit fol") is B=#/2 (in units of 1/),

2. The curves can be fitted by Lorentzians from which wewhile A\=1 for fully developed chaos in the kicked t¢gee

extract the spreading width. (It is given up to numerical the inset to Fig. L For this reason, when the perturbation

coefficients byl'=U?%A, U= ¢S, A=1/S). The golden strength¢ is further increased, the golden rule decay rate

rule regimel’=A is entered aip,~1.7x10 %, For ¢<¢.  saturates at the bandwidth — before reaching the Lyapunov

we are in the perturbative regime, where eigenstatésad  exponent. This is shown in Fig. 3. There is no trace of a

not appreciably differ from those df, and eigenphase dif- Lyapunov decay in this fully chaotic regime.
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FIG. 3. Decay oMM in the golden rule regime without rescaling FIG. 4. Decay of M in the Lyapunov regime, forg
of time, for K=13.1, ¢=jx107%, (j=1,1.52...5) (solid =2.1x103 K=2.7,3.3,3.6,3.9,4.2. The time is rescaled with the

curves and K=21.1, $=3%x10"2 (circles. Dashed and dotted Lyapunov exponenk, ranging from 0.22—0.72. The straight solid

lines show exponential decays with Lyapunov exponantsl.65  line indicates the decap <exp(—\t). Inset: M for K=4.2 and

and 2.12, corresponding t§=13.1 and 21.1, respectively. The different $=jx 1074, j=1,2,3,4,5,9,17,25. The decay slope satu-

decay slope saturates @t=2.5x 103, whenT reaches the band- rates at the valugh~1.7x 103 for which I'~\, even though’

width. keeps on increasing. This demonstrates the decay Mw
cexp(—y) with y=min(,A).

We therefore reduc& to values in the range 29K
<4.2, which allows us to vary the Lyapunov exponent overperturbation strength independent decay in the Lyapunov re-
a wider range between 0.22 and 0.72. In this range the clagiime is reached in our simulationXf<I", which prevents its
sical phase space is mixed and we have coexisting regulaccurrence for fully developed chaos in the model consid-
and chaotic trajectories. We choose the initial coherent statesyed here. Our numerics are limited by a relatively small
in the chaotic regioriidentified numerically through the par- window between\ and 1/ (a factor InS~6). It remains to
ticipation ratig. Because the chaotic region still occupiesbe seen if the Lyapunov decay can be observed under con-
more than 80% of the phase space for the smallest valle of ditions of fully developed chaos adtd<\ by increasingSso
considered, nonuniversal effe¢esg., nonzero overlap of our that 1/ becomes larger thaR. It is noteworthy that for a
initial wavepackets with regular eigenfunctionskef or F) Lyapunov decayM<exp(-\t), the saturated fidelityM .
should be negligible. We expect a crossover from the golden- 1/25 js reached at the Ehrenfest time (as can also be

rule decay(7) to the Lyapunov deca}g] seen in Fig. % so that a Lyapunov decay for 7¢ rules out
_ _ golden rule decay for later times. Similar investigations in
M=exp—At)=InMaxAt, (8)  strongly chaotic systems with small Lyapunov exponents

(like the Bunimovich stadium with short straight segments

oncel” exceeds\. This expectation is borne out by our nu- ;.o highly desirable.

merical simulations, see Fig. 4.

In conclusion, we have presented numerical evidence for This work was supported by the Swiss National Science
the existence of three distinct regimes of exponential decafFoundation and by the Dutch Science Foundation NWO/
of the Loschmidt echo: the perturbative regin®, the  FOM. We acknowledge helpful comments from D. Cohen,
golden rule regime?7), and the Lyapunov regimé). The F. Haake, and R. A. Jalabert.
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