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Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo
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The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially
}e2gt, for perturbation strengthsU greater than the level spacingD. We present numerical evidence for a
dynamical system that the decay rateg is given by thesmallestof the Lyapunov exponentl of the classical
chaotic dynamics and the level broadeningU2/D that follows from the golden rule of quantum mechanics. This
implies the range of validityU.AlD for the perturbation-strength independent decay rate discovered by
Jalabert and Pastawski@Phys. Rev. Lett.86, 2490~2001!#.
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The search for classical Lyapunov exponents in quan
mechanics is a celebrated problem in quantum chaos@1#.
Motivated by NMR experiments on spin echoes@2#, Jalabert
and Pastawski@3# have given analytical evidence, support
by computer simulations@4#, that the Lyapunov exponen
governs the time dependence of the fidelity

M ~ t !5u^cuexp~ iHt !exp~2 iH 0t !uc&u2, ~1!

with which a wave packetc can be reconstructed by inver
ing the dynamics with a perturbed HamiltonianH5H0
1H1. They have called this the problem of the ‘‘quantu
Loschmidt echo.’’ The fidelityM (t) can equivalently be in-
terpreted as the decaying overlap of two wave functions
start out identically and evolve under the action of tw
slightly different Hamiltonians, a problem first studied
perturbation theory by Peres@5#.

Perturbation theory breaks down once a typical ma
elementU of H1 connecting different eigenstates ofH0 be-
comes greater than the level spacingD. Then the eigenstate
of H, decomposed into the eigenstates ofH0, contain a large
number of non-negligible components. The distributionr(E)
~local spectral density! of these components over energy h
a Lorentzian form

r~E!5
G

2p~E21G2/4!
, ~2!

with a spreading widthG.U2/D given by the golden rule
@6,7#. A simple calculation in a random-matrix model give
an average decayM̄}exp(2Gt) governed by the sam
golden rule width. This should be contrasted with the ex
nential decayM̄}exp(2lt) obtained by Jalabert and Pasta
ski @3#, which is governed by the Lyapunov exponentl of
the classical chaotic dynamics.

Since the random-matrix model has by construction
infinite Lyapunov exponent, one way to unify both resu
would be to have an exponential decay with a rate set by
smallest ofG and l. We will in what follows present nu-
merical evidence for this scenario, using a dynamical sys
in which we can vary the relative magnitude ofG and l.
There exists a third energy scale, the inverse of the Ehren
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time tE, that is smaller than the Lyapunov exponent by
factor logarithmic in the system’s effective Planck consta
In our numerics we do not have enough orders of magnit
between 1/tE andl to distinguish between the two, so th
our findings remain somewhat inconclusive in this respec

BecauseG cannot become bigger than the band widthB
of H0 ~we are interested in the regimeH1,H0), a conse-
quence of a decayM̄}exp@2t min(l,G)# is that the regime of
Lyapunov decay can only be reached with increasingU if l
is considerably less thanB. That would exclude typical fully
chaotic systems, in whichl and B are comparable, and se
limits of observability of the Lyapunov decay.

The crossover from the golden rule regime to a regi
with a perturbation-strength independent decay, obtai
here for the Loschmidt echo, should be distinguished fr
the corresponding crossover in the local spectral den
r(E), obtained by Cohen and Heller@8#. The Fourier trans-
form of M (t) would be equal tor(E) if c would be an
eigenstate ofH0 rather than a wave packet. The choice o
wave packet instead of an eigenstate does not matter in
golden rule regime, but is essential for a decay rate given
the Lyapunov exponent.

The dynamical model that we have studied is the kick
top @9#, with Hamiltonian

H05~p/2t!Sy1~K/2S!Sz
2(

n
d~ t2nt!. ~3!

It describes a vector spin~magnitudeS) that undergoes a free
precession around they axis perturbed periodically~period
t) by sudden rotations around thez axis over an angle pro
portional toSz . The time evolution of a state aftern periods
is given by thenth power of the Floquet operator

F05exp@2 i ~K/2S!Sz
2#exp@2 i ~p/2!Sy#. ~4!

Depending on the kicking strengthK, the classical dynamics
is regular, partially chaotic, or fully chaotic. The dependen
of the Lyapunov exponentl on K is plotted in the inset to
Fig. 1 ~cf. Ref. @10#!. The error bars reflect the spread inl in
different regions of phase space, in particular the presenc
islands of stability. ForK*9 the error bars vanish becaus
the system has become fully chaotic. For the reversed t
©2001 The American Physical Society03-1
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evolution we introduce as a perturbation a periodic rotat
of constant angle around thex axis, slightly delayed with
respect to the kicksH0,

H15fSx(
n

d~ t2nt2e!. ~5!

The corresponding Floquet operator isF5exp(2ifSx)F0.
We have set\51 and in what follows we will also sett
51 for ease of notation.

Both H andH0 conserve the spin magnitude. We choo
the initial wave packets as coherent states of the spin SU~2!
group @11#, i.e., states that minimize the Heisenberg unc
tainty in phase space~in our case on a sphere of fixed radiu!
at the effective Planck constantheff;S21. The correspond-
ing Ehrenfest time istE5l21 ln S @12#. We takeS5500 and
averageM (t5n)5u^cu(F†)nF0

nuc&u2 over 100 initial coher-
ent statesc.

We first show results in the fully chaotic regimeK.9,
where we choose the initial states randomly over the en
phase space. The local spectral densityr(a) of the eigen-
states ofF ~in the basis of the eigenstates ofF0 with eigen-
phasesa) is plotted for three differentf ’s in the inset to Fig.
2. The curves can be fitted by Lorentzians from which
extract the spreading widthG. ~It is given up to numerical
coefficients byG.U2/D, U.fAS, D.1/S). The golden
rule regimeG*D is entered atfc'1.731024. For f!fc
we are in the perturbative regime, where eigenstates ofF do
not appreciably differ from those ofF0 and eigenphase dif

FIG. 1. Decay of the average fidelityM̄ for the quantum kicked
top with K513.1 andS5500, as a function of the squared rescal
time (ft)2. The perturbation strengths range betweenf51027 and
1026. The straight line corresponds to the Gaussian decay~6! valid
in the perturbative regime. Inset: Numerically computed Lyapun
exponent for the classical kicked top as a function of the kick
strengthK. Dots correspond to averages taken over 104 initial con-
ditions ~see Ref.@10#!. The error bars reflect different results o
tained with different initial conditions. The vanishing of error ba
indicates the disappearance of islands of regular dynamics.
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ferences can be calculated in first-order perturbation the
We then expect the Gaussian decay

M̄}exp~2U2t2!⇒ ln M̄}~ft !2. ~6!

This decay is evident in Fig. 1, which showsM̄ as a function
of (ft)2 on a semilogarithmic scale forf<1026. The decay
~6! stops whenM̄ approachesM`51/2S, being the inverse
of the dimension of the Hilbert space. This saturation refle
the finiteness of the system and eventually prevails at l
times independently of the strength of the perturbation.

For f.fc one enters the golden rule regime, where t
Lorentzian spreading of eigenstates ofF over those ofF0
results in the exponential decay

M̄}exp~2U2t/D!⇒ ln M̄}f2t. ~7!

The data presented in Fig. 2 clearly confirm the validity
the scaling~7!. There is no dependence ofM̄ on K in this
regime of moderate~but nonperturbative! values off, i.e.,
no dependence on the Lyapunov exponent (l varies by a
factor of 1.4 for the different values ofK in Fig. 2!.

We cannot satisfyl,G in the fully chaotic regime, for
the reason mentioned in the Introduction: The band widthB
~which is an upper limit forG) is B5p/2 ~in units of 1/t),
while l*1 for fully developed chaos in the kicked top~see
the inset to Fig. 1!. For this reason, when the perturbatio
strengthf is further increased, the golden rule decay ra
saturates at the bandwidth — before reaching the Lyapu
exponent. This is shown in Fig. 3. There is no trace o
Lyapunov decay in this fully chaotic regime.

v
g

FIG. 2. Decay ofM̄ in the golden rule regime for kicking
strengthsK513.1, 17.1, and 21.1 as a function of the rescaled ti
f2t. Perturbation strengths range fromf51024 to 1023. Inset:
Local spectral density of states forK513.1 and perturbation
strengths f52.531024,531024,1023. The solid curves are
Lorentzian fits, from which the decay rateG'0.84f2S2 is ex-

tracted. The solid line in the main plot gives the decayM̄
}exp(2Gt) with this value ofG.
3-2
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We therefore reduceK to values in the range 2.7<K
<4.2, which allows us to vary the Lyapunov exponent ov
a wider range between 0.22 and 0.72. In this range the c
sical phase space is mixed and we have coexisting reg
and chaotic trajectories. We choose the initial coherent st
in the chaotic region~identified numerically through the par
ticipation ratio!. Because the chaotic region still occupi
more than 80% of the phase space for the smallest valueK
considered, nonuniversal effects~e.g., nonzero overlap of ou
initial wavepackets with regular eigenfunctions ofF0 or F)
should be negligible. We expect a crossover from the gol
rule decay~7! to the Lyapunov decay@3#

M̄.exp~2lt !⇒ ln M̄}lt, ~8!

onceG exceedsl. This expectation is borne out by our nu
merical simulations, see Fig. 4.

In conclusion, we have presented numerical evidence
the existence of three distinct regimes of exponential de
of the Loschmidt echo: the perturbative regime~6!, the
golden rule regime~7!, and the Lyapunov regime~8!. The

FIG. 3. Decay ofM̄ in the golden rule regime without rescalin
of time, for K513.1, f5 j 31023, ( j 51,1.5,2, . . . 5) ~solid
curves! and K521.1, f5331023 ~circles!. Dashed and dotted
lines show exponential decays with Lyapunov exponentsl51.65
and 2.12, corresponding toK513.1 and 21.1, respectively. Th
decay slope saturates atf'2.531023, whenG reaches the band
width.
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perturbation strength independent decay in the Lyapunov
gime is reached in our simulation ifl,G, which prevents its
occurrence for fully developed chaos in the model cons
ered here. Our numerics are limited by a relatively sm
window betweenl and 1/tE ~a factor lnS'6). It remains to
be seen if the Lyapunov decay can be observed under
ditions of fully developed chaos andG,l by increasingSso
that 1/tE becomes larger thanG. It is noteworthy that for a
Lyapunov decayM̄}exp(2lt), the saturated fidelityM`

51/2S is reached at the Ehrenfest timetE ~as can also be
seen in Fig. 4!, so that a Lyapunov decay fort&tE rules out
golden rule decay for later times. Similar investigations
strongly chaotic systems with small Lyapunov expone
~like the Bunimovich stadium with short straight segmen!
are highly desirable.

This work was supported by the Swiss National Scien
Foundation and by the Dutch Science Foundation NW
FOM. We acknowledge helpful comments from D. Cohe
F. Haake, and R. A. Jalabert.

FIG. 4. Decay of M̄ in the Lyapunov regime, forf
52.131023, K52.7,3.3,3.6,3.9,4.2. The time is rescaled with t
Lyapunov exponentl, ranging from 0.22–0.72. The straight sol

line indicates the decayM̄}exp(2lt). Inset: M̄ for K54.2 and
different f5 j 31024, j 51,2,3,4,5,9,17,25. The decay slope sa
rates at the valuef'1.731023 for which G'l, even thoughG

keeps on increasing. This demonstrates the decay lawM̄
}exp(2gt) with g5min(G,l).
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