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We consider the microcanonical ensemble of a classical Hamiltonian dynamical system, the Hamiltonian
being parameter dependent and in the possible presence of other first integrals. We describe a thermodynamic
formalism in which a first law of thermodynamics, or fundamental relation, is based upon the bulk-entropy,
Sy . Under an ergodic hypothesiS;, is shown to be an adiabatic invariant. Expressions for derivatives and
thermodynamic relations are derived within the microcanonical ensemble itself.
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Equilibrium properties of an isolated Hamiltonian dy- eters, denoted=A4, ...,A,. By contrast we do not allow
namical system with many, say #0degrees of freedom is the other first integrals to depend @n This is for technical
probably best described using a thermodynamic formalismmeasondcf. below), though in some cases such a condition
for a canonical ensemble at a fixed temperature, even thougfould be relaxed. For fixed values of parametérs; \, of
this means introducing fluctuations in an otherwise conAirst integralsfF =1, and of the energyl, =E, the subspace,
served quantity, the energy. For a more moderate number @&=A[E,|,\]={£e R?%:H,(£§)=E,F(¢)=1}, is invariant
degrees of freedom, say 3010, numerical simulations be- under the dynamics dfl, . We will assume that values are
come feasible, and it is desirable to obtain a description irthosen so that the differentiagH, dF,, ... ,dF,,, are all
terms of the microcanonical ensemble itself where the valuegdependent o[ E,I,\]. This in particular implies thad is
of the first integrals are fixed quantities. In such an approacha smooth co-dimensiom+ 1 submanifold of our Euclidean
geometrical properties of the level surfaces reflect thermodyspace.
namic relations and, by invoking the ergodic hypothesis, also In the literature one will find(at least two definitions
dynamical properties of the underlying system. In particular(denoted bulk and surfagef a microcanonical entropy and
when energy is the only first integral, measurements mayemperature. It turns out that we shall need both. Thus we
then be done by time averagifef. Refs.[1,2]). The purpose  define
of this Rapid Communication is to develop such a microther-
modynamic formalism further, taking into account parameter
dependency and the presence of other first integrals. Within eS“(E"'A)Ef mO(E—H,)4s(1-F), (1)
this framework we will alsaSec. 1) discuss a natural for-
mulation of a first law of thermodynamics, or fundamental
relation, based upon the bulk-entroi8s, . We refer to Abra-
ham and Marsde[B] as well as Landau and Lifshi{#] for
a general introduction to thermodynamic ensembles, to Leb- eSM(Ev'MEf mé&(E—H, 1 —F). 2
owitz et al. [5] for an illustrative example of some differ-
ences between the ensembles and to Evans and Mp#iliss
for practical calculations carried out in the micro canonical
ensemble. We also refer to Jepgisal. [7] where the pres-
ence of other(approximative first integrals is of relevance i: @ i: @ &)
and to Otter[8] who studied reaction events using mixed To 0E' T, JE°
ensemble averages.

where® denotes the Heaviside function and

|The bulk- and the surface-temperature are then given by

Derivatives with respect to other first integrals are considered

in Sec. lll. We also have generalized bulk- and surface-
I. MICROCANONICAL ENSEMBLES pressures
For simplicity, we consider a Euclidean phase spdte, i dSq i S, .
=R?9, d=1, and a Hamiltonian functionH:Q— R, pQ:Tﬂa)\i’ Pu=Tugn, i=1,...n. (4

bounded from below and of sufficient rapid growth at infin-
ity. The dynamics preserves the Liouville measure, here the
Lebesgue measure=d%d’p. There may be other first in-
tegrals, denote&=F,, ... F,, m=0 Note that in Sec. lll
we shall write Fo=H for the Hamiltonian which is then
considered at the same footing as the other first integrals. All f m&(E—H,,I—-F)¢
first integrals are assumed to be in involution. We also as- (¢),=(|E,I \)=
sume that all functions are known analytically and that the K

Hamiltonian depends smoothly on some external real param-

Taking an average in the microcanonical ensemble will
here mean taking the surface-average, i.e.,

.
f m&(E—H, 1 —F)
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In practice(¢),, , is often calculated by time-averagi@s-  which ergodic averaging takes place. We may then look at
suming ergodicity, thus giving a dynamical preference to the time-average of an observable over an intermediate time-
the surface-average relative to other ensemble-averages. scale,ro;<6t<A. This time-scale is short enough so that
The calculation of either of the two entropies may bedoes not change significantly but long enough so that a dy-
difficult or even impossible when the number of degrees ohamical average may be replaced by a microcanonical aver-
freedom in the system is large. On the other hand, the assage. Under this “adiabatic ergodic hypothesis” we get for
ciated temperatures and generalized pressures may be proldeé energy-change
using time-averagin¢cf. Sec. ). A bulk-pressurepg, , may

. 1 (e+atdH, o &(t dH
be calculated as follows: _J NORSS )dt~ (D) E(t),I A(D). (9
ot Jy dt dt
[ ﬂ - (I E.| )\> (6)
Pa o\, u ong | Over the time-scalegt, the \-derivative is almost con-

stant(because of the scaling with) and may therefore be
To see this we note that the derivative of a Heavysidetaken outside the average:
function yields ad-function. It follows that 1T = dS, / JE

=eSu/eSe, and therefore, E(t+ 6t)— E(t) JH d\,
o~ | gn OO (20
Jmé(E—H)\,l—F)(ﬂH)\/(”\i) . o )
T 9Sa (7 an expression which is correct to ordeg,/A. Taking the
Po=Ta ON; ' A—oo limit we get an identity between differentials,
mS(E—H, ,| —F)
oH
By the very definition, there is always a first law of ther- dE:Zi N E.l.N)dN;, 11

modynamics for the bulk-entropy:

valid precisely in the adiabatic limit. By Eq&) and(8), we
TodSy=dE+ >, pLaN; . (8)  see that the bulk-entrop$, , is indeed an adiabatic invari-
i ant. In 1+1 dimensions the bulk-entropy is just the action
) o . integral and the phenomena is well-knovadiabatic invari-
The same kind of relation is, of course, valid for the surface- e of the action, cf. Arnol@d]). In higher dimensions a

entropy but, as we shall see, adiabatic invariance clearlyjnijar result was obtained by Kazufi0], though in a dif-
gives a preference to the version involving the bulk-entropY¢arent context.
Now, the bulk-entropy is fortiori strictly increasing as a
Il. ADIABATIC INVARIANCE function of the energyat given parameter- and first integral-

a/alues). One particular gratifying, though nontrivial conse-
n ) ; - .

pauence is that by traversing a loop adiabatically the energy
must return to its original value.

An adiabatic process is characterized by a slow a
smooth change in parameters during which ‘thermal equili
rium’ is maintained. For example, slowly moving a piston of : : . : o
a cylinder containing a gas of particles, in order to avoid It IS easy tofplﬁ(.th? adlabaftlg ergod|fc hyp(l)tr:_essf Into a
what is known as parametric resonance, we fix a smooth pai ioc::s(; rlltg?sroﬁzwg/ermvi?trlﬂlsl oim e(;?syib(l)e (t:cc))r(r:i:cllg r;nlzja?(;i_-
in parameter spacee[0,1]—>c(s) < R", and traverse this call 'if suéh a cond,ition reaﬁl hpolds in a given situatiz/)n
path in rescaled time, i.efe[0A]=A(t)=c(t/4), for Ong serious problem is that c)r/itical slowin gdo‘(wmeanin .
someA>0. A physical trajectory&(t), is evolved from an US p . g . 9

. : . . that 7,4 diverges occurs if one encounters an additional first
(almos} arbitrary point, £(0) e A[E,I,\], using the time- . 9 .
SAYS . integral along the traversed path. On the other hand, singu-
andA- dependent HamiltoniarH,, . The goal is to deter- N .
. i : . larities in the energy surface are likely to pose problems only
mine the microcanonical state, i.e., the values Bfl |, of

S . . ... in low dimensiongnotably 1+1).
:Eles ?{ljttsr;aztau\:vn;[ déﬁr-]rehf"?r:ﬁc;sjols t%ae”ﬁg“?g;bgg_ if Should one allow other first integrals to depend on the
ing on the initial state £,1.\) and the path. but not on the parameters, the bulk-entropy, as we have defined it, is in

choice of initial point, cf. Amold9], section 52. Here again general no longer an adiabatic invariant. We have not been

. e successful in finding a good replacement for the bulk-
we do not permit the other first integrals to depend/on entropy (the reader igs engourage(? to try for himsedind
Being time-independent and commuting with the Hamil-

. : . consequently not allowed such a parameter dependence.
tonian, they therefore remain constant under the time- d y P P

involution. The energy,E(t)=H,(&(t)), being time-

dependent through, is in general not constant in time. Ill. SURFACE DERIVATIVES

Instead  we ~get by Hamilton's equationsdE/dt Close to equilibrium we may express response functions
=ZidgH), [oNi(dA;/dt), and the “adiabatic” problem is as derivatives of averages with respect to parameters and
then to see iE(A) has a well-defined limit ad —oo. values of the first integralén this section this includes the

In order to attain the adiabatic limit\ should be very Hamiltonian. When the Hamiltonian is the only first integral
large, in particular larger than the time-scalg,,, over and there is no parameter dependence, it was showh2h
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(cf. also[7,11]) that energy derivatives of a microcanonical

average may themselves be calculated as averages. The gen- o7 | méd o | mod - md

eral case turns out to be quite similar. ——{(¢),=— S : , (19
Our assumption on the first integrals being independent al; f ms f mé J mé

means that in a neighborhood of the integral surface,

A[E,I,\], we may construct vector field¥,, ... X, for

which by the definition of averages and generalized tempera-

which
tures reduces to
_ _ qi
Geometrically, the vector fieldX;, is transversal to th&; g_|i<¢>#_<v'(¢’xi)>ﬂ Bu<¢>#5' (20)
=1; surface but parallel to the other surfacBs=1;, j#i.

We make the observation thatfifx) is a (suitably smooth ~ We calculate in the same way,

function anaV is a vector field for whicld f(V)=0, then the 5 M

Lie-derivative, Lyo(f(x))=(V-V)d(f(x))=0, vanishes v _ v | 2 ok

identically. This is clearly true if thes-function were a &)\k<¢>" <V (‘{’m\ X°)> Pul - (2D
smooth function and the claim then follows by approxima- g

tion (a rigorous proof is quite lengthy This applies to our These thermodynamic identities provide the natural generali-
Hamiltonian setup, since for allj=0, ... m zations of the results found ifl,2]. In the above formulas
the other first integrals may, in fact, be allowed to be param-
eter dependentessentially because there is no Heavyside

J
o T V) function in the above The straight-forward derivation of

(9|| (lj_FJ):(S”_(S”:O (13)

formulas in this case is no more difficult and left to the
Hence, if¢ is any smooth function, reader.

P We alsozyote that if the Liouville measure has the form
v - Py dm=p(&)d-%¢ (for instance, in local coordinates on a sym-
f me al; X V)) o(1-F)=0. (14 plectic manifold, the only change in the above formulas is to

replace the divergence of a vector fieM;V, by (1p)V
Taking thel; derivative outside the integral and carrying the . (,v) (cf. Ref.[2]).
Lie-derivative out by partial integration we obtain

IV. BULK DERIVATIVES

Should one wish to take derivatives in the bulk-ensemble
the procedure is slightly different. Restricting our attention to
The identity,[ 9/ I\ + dH) 1dN(d/JE)]S6(1 —F)=0 (re-  the energy derivative, suppose théis a smooth vector field

call that only the Hamiltonian depends ar), also implies such thafcompare with Eq(12)]

% m5(I—F)¢:fm5(I—F)V~(¢Xi). (15)

d oH Y= B = <ism.

= m5(I—F)¢>=—f m5(I—F)V~(¢m\}‘XO). V-Y=1 and dF(Y)=0, 1<i=m. (22

K k 16 One may certainly find suckf when there are no other first

integrals present. In the general case it is less clear because

The surface entropy is the logarithm of a surface integralhere we need the vector field to be defined “smoothly”

Hence, when taking derivatives a normalization factor apthroughout the “bulk.” Assuming, however, that we have

pears which precisely turns the derivative into a microcafound such a vector field we note that

nonical average. Thus, for the inverse *“generalized”

su.rface-temperatures;{:&SM/(?Ii (with ,Bsz 1/T,), we get eS“:f m(V-Y)O(E—H)8(1—F), (23)

using Eq.(15) and settingp=1,

J which by partial integration yields
T mé(l —F) ¢
i _ Y —
W= =(V-X[ELA). (1D essz:f mdH,(Y)S(E—H,| —F). (24)
f mé(l —F)¢
o _ ) In particular, we obtain the following formuléwhich is
Similarly for the “generalized” pressures, using H46), well-known, when energy is the only first integrdbr the
bulk-temperature:
_PSu_ \Y @x E,IL\) (18
Pu= N, g 0| A To=e5%"Su=(dH, (Y)|E,I,\). (25)
When taking a derivative of an average and writifrg (| For comparison we note that in the canonical ensemble
—F) we have where an integral ot) looks as follows:
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One solution to this paradox suggests itself: Move to a
j me AMS(1—F) ¢, (26)  frame where the average velocity vanishes. Such a procedure
is, in fact, a natural consequence of our microcanonical for-
the same calculation shows that malism. To get the prefactors right we carry out the detalils:
If P=(py, --..,pPn.0, .. .,0) denotes the full momentum vec-
Tear= B~ '=(dH\(Y)|B,1.\). (27 torin R¥Nx (R/Z)3N andv=3;p;/=;m; is the average veloc-

. . . ity, then the reduced momentum vector and kinetic energy is
In the literaturedH(Y) is therefore often used to “define” v 9y

the microcanonical temperatuf@gain measured by time- Z"Eer(‘pb_yrf \/:)2(lpzln: mrle\zlspecni\)/g&msljt\r/a?ghtfo?v)va?dn?:;éegla
averaging. With no other first integrals present one may take,. 'L I . ; :

Y to ge ?he canonical momentagdivid%d by the num)t/)er oftl.ons glvedH(Z.)ZZK'ed anddptot(_Z)EO. The latter is pre-
degrees of freedom, ieY=P/d. In that case.dH(Y) cisely the requirement of “parallelism” needed for both Egs.

=(1d)dH(P)=1/d=q;p; is the normalized reduced action (Vl ng%dHE%)):F(%TEe_rT? iez’)\/’\gKh ad\;gA%tngt(h,\é_alp)p;r:;r?-
(proportional to the kinetic energy, when quadratic in mo- rec,

X . k . ) ate normalization, formulagl7) and (25) yield the surface-
menta. By time-averaging, we obtain a quantity proportional
R L ._and bulk-temperatures
to the reduced action-integral. This is extremal under varia-

tions of the trajectory preserving the ener@aupertius

principle, [9] Section 4%. One would thus expect a finite 1 /3(N-1)-2 ] 2Kieg
time-a\_/erage oﬁH(P_) to “probe” a larger neighborhood of _ T_M_ 2K req and To= 3(N—1)
the trajectory than time-averages of other observables. This " (28)

suggests a faster ergodic averaging, whence stronger numeri-

cal stability, when calculating time-averagesddi(P) rela-
tive to other observables of the same ensemble-variance. In both cases the conservation of three momenta results in a
subtraction of three degrees of freedom as compared to the
V. AN EXAMPLE unconstrained cas@leasing on physical grounddt is in-
teresting also to note that the above formulas involving the
Consider an ensemble of particles moving on a reduced kinetic energy are valid irrespective of the total mo-
3-dimensional torus, K/Z)®, under the influence of pair- mentum being preserved or not. When the total momentum
potentials. Putting things on a torus compactifies the configuis only approximately preserved one could use the above
rational space but otherwise does not affect our results. Theonstruction to define an approximate “instantaneous” and
Hamiltonian, H=2iN:0pi2/2mi+2i,jU(xi—xj), is transla- possibly “local” temperature. In Ref[7], such a problem
tional invariant, hence the total moment@,=2=p;, pro- was considered and the solution suggested was to choose a
vides three first integrals in addition to the Hamiltonian. If vector field,Z, depending on the configurational coordinates
one uses the normalized total kinetic energy here as a meanly. This automatically ensures ‘“parallelism,” i.e.,
sure of the temperature one runs into the following paradoxdp;,(Z)=0, and leads to what is often denoted the “con-
A configuration which minimizes the potential energy butfigurational temperature.” On the other hand, for numerical
has all particles moving at the same constant velogjyjs  reasons the reduced kinetic energy may be preferable.
stationary. With no “apparent activity” one should assign a The case of a conserved angular momentam experi-
temperature zero to this configuration, but this is clearly noment involving an axial symmetyy follows the same

what the total kinetic energy does. straight-forward procedure and is left to the reader.
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