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“Strange” Fermi processes and power-law nonthermal tails from
a self-consistent fractional kinetic equation
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This study advocates the application of fractional dynamics to the description of anomalous acceleration
processes in self-organized turbulent systems. Such procgssesd “strange” accelerationsnvolve both
the non-Markovian fractal time acceleration events associated with a generalized stochastic Fermi mechanism,
and the velocity-space Levy flights identified with nonlocal violent accelerations in turbulent media far from
the (quas)equilibrium. The “strange” acceleration processes are quantified by a fractional extension of the
velocity-space transport equation with fractional time and phase space derivatives. A self-consistent nonlinear
fractional kinetic equation is proposed for the stochastic fractal time accelerations near the turbulent nonequi-
librium saturation state. The ensuing self-consistent energy distribution reveals a power-law superthermal tail
P(E)«E " with slope 6= »<7 depending on the type of acceleration procgessistent or antipersistent
The results obtained are in close agreement with observational data on the Earth’s magnetotail.
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Complex kinetic processes in nonlinear thermodynamicaktein’s Brownian motion ifw}. Here,A,, is the Laplacian,
systems are often governed by self-organization mechaand = y(t,w) is the particle velocity distribution function

nisms. An example is anomalous particle transport in twonormalized by the plasma number density n(t), i.e.,
dimensional hydrodynamic turbulent flows. In fact, above a

critical value of Reynolds numbeR, (typically, ~15), the

flow evolves into a set of discrete vorticgs. The vortices f gdw=n. 2
can be considered as self-organized coherent structures con-

sisting of localized regions of swirling motidi,2]. As vor- Based on the Gaussian variance, EQ.ignores in prin-

tices trap and convect particles, the transport is enhanced @iple the long-range dynamical correlations operating in tur-
large (coherent scales[2]. The phenomenon reveals an bulent systems with self-organizati¢f]. The effect of cor-
anomalous dispersion law consistent with superdiffusive berelations appears in multiscale nonrandom acceleration
havior[3]. events which do not comply with the standard velocity dif-

The effects of particle convection with coheréwortical)  fusion (1). Suitable extensions of Eql) to the inherently
structures and the ensuing bursts of anomalous turbulent flusorrelated turbulent fields can be found beyond the underly-
have been recognized in lo@-plasma[4]. The observed ing Einstein’s Brownian motiorj10,11. In our study, we
signatures were discussed by employing self-organizatioadvocate a fractional dynamics approdd] to a descrip-
principles[2]. Anomalous(superdiffusivé transport regimes  tion of the stochastic acceleration processes in the presence
associated with self-organization of magnetic “vortices” of the long-range correlations. Fractional generalizations of
(magnetic flux tubesin the solar photosphere were analyzedEinstein’s Brownian motion and the ensuing fractional ki-
in Ref. [5] in the framework of a Lie group approach. netic equations are believed to be a powerful framevibgf

In a high8 plasma, self-organization mechanisms cus-which could be of use for many systefi0,12-14.
tomarily lead to formation of coarse-grained turbulent pat- Before we start off with the appropriate fractional exten-
terns [6]. The nonstationary patterns, appreciably varyingsion of the velocity-space diffusion EL), we would like to
with time, support stochastic acceleration phenomena domaddress the diverse physical implications of the fractional
nating the particle motion. Particle acceleration in nonstaderivatives over timét) and spaceW) variables. In fact, a
tionary coarse-grained turbulent fields can be considered asfeactional extension of the Laplacia, (given by the Riesz/
transport process in velocity space. An example is stochastid/eyl fractional operatgrincorporates bursty dynamics with
Fermi acceleration which profits from the chaotic collisionsmultiscale long-range jumps like Levy fligh{d2]. Levy
of particles with randomly moving graingnagnetic clouds  flights are Markovian processes characterized by a power-
[7]. The term “randomly” is customarily identified with the law jump length distribution and diverging variance
Gaussian variancéV2(t))«t for the velocities of the scat- (dw?(t))—. The problem of the diverging variance is of-
terersV(t). The Gaussian leads to linear time dependencéen circumvented by replacing Levy flights with Levy walks
(6wA(t))ot of the mean squared particle displacement in thghrough a spatiotemporal coupling posing a continuous dy-

velocity spacgw} and the standard Markovian velocity dif- namics[12]. Conversely, a fractional generalization of the
fusion equatiori8] time derivative d/dt corresponds to a continuous random

walk process without identifiable jump42]. Occasionally,
Iyl at=A . (1)  such processes are referred to as fractal time random walks
(FTRW's) [15]. The FTRW's imply a power-law waiting
Equation (1) describes the acceleration dynamics as Eintime distribution functiong(t)e1/t**? leading to nonlinear
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time growth(sw?(t))=t” of the mean squared particle dis- Equation(4) is but the fractional diffusion equation in the
placement in the velocity spade}. The quantityy has the  Vvelocity space{w}. This equation contains a stochastic ac-
sense of fractal dimension in timd4]. In our study, we celeration mechanisnito be considered as the “strange”
distinguish persistent(1< y<2) and antipersistent(0<y Fermi processwhich profits from particle collisions with the
<1) FTRW's, depending on the exact value pf Antiper-  long-range correlated turbulence graifidear the turbulence
sistent FTRW's can be associated with a fractal time definedduasjequilibrium, the “random” motion of the grains can
on the(everywhere disconnecte@antor set (8<y<1); this  be associated with the non-Gaussian variaf\¢&t))ot?.]
accounts for the multiscale particle trappings in the velocityThe “strange” Fermi process is a fractal time acceleration
space{w! when the fractal time does not progress. In con-corresponding to a velocity-space FTRW with the fractal
trast, persistent FTRW's operate in fractal times with dimentime dimension 6 y<2.
sion vy |arger than 1, the imp"ca‘[ion is an enhanced continu- The exact definition of the fractional time derivative
ous random process penalizing trappings on all time scaleg.#/dt” on the left of Eq.(4) is given by the Riemann-
Following Ref.[16], from (Sw?(t))=t” one arrives at the Liouville fractional operatof12]
correlation functionC(t)=2?"1—1=constt) for the past
and future particle displacements in the velocity sppek A7 (t, W) 1 M [t P(9,w)
PersistentiantipersistentFTRW's carry positive(negative y ) am | e qnirymo Vs ®

. ) okl ot F(m=v) gt™Jo(t—9)
correlation functionC(t) and correspond to superdiffusion
(subdiffusion in the velocity spacdw}. The FTRW'’s are
essentially non-Markovian dynamical processes ot 1
[since C(t)#0]. The Markovian case/=1 based orC(t)

wherem—1<y=m, mis an integer number, and is the
Euler gamma function. The fractional derivati{®) is re-

=0 reproduces the Einstein’s Brownian motiti. duced to the standard first-order time derivatig/ ot for

The fractional velocity-space transport equation includingy_)l' (This recovers the Riemann-Liouville identiyn the

both the FTRW'gi.e., the fractal time random acceleratipns _Sl_tﬁtic limit Yr o,krelatilo , (E;)hyields aotlég'W)MtOE(ffgt'W).
and the nonlocal jump statistics can be written as € power-law Kernel in the opera ensures the non-

Markovian nature of the acceleration procéésfor y+#1.
Assuming isotropic acceleration, we have(t,w)

IVl =V i, @ - (t,w) andA,=A,,, wherew=|w|, and
where V|, denotes the Riesz/Weyl fractional operator of or- P o
der I=so=<2 in the three-dimensional velocity spafes}, Ayp=— -~ 2Dy — (6)
and g7yl dt” is the fractional generalization of the time de- w? IW W
rivative g/ gt to ordery+# 1. (Note thatVfVEAW .) Equation
(3) addresses an extension of the fractionaR,14 or is the radial part of the Laplaciah,,. The quantity
“strange” [13] kinetics for real-space anomalous transport
processes to turbulent acceleration phenomena, such as frac- _<é\N2(7')>
tal time accelerations and velocity-space Levy flights. These D= e (@)

events might be termed “strange” acceleration processes.

Velocity-space Levy flights deriving from the Riesz/Wey| is the generalized velocity-space transport coefficient,
fractional operatoW , of ordero<2 model violent accelera- _, ;v is the characteristiémicroscopi¢ time step of the
tions in the turbulent medium when a particle can almost, ;ejeration process, is the turbulence coherence length
instantly gain a finite portion of kinetic energy from the en- (i.e., the typical size of the grainsow?(7))~g2r2 deter-
wronmen't. Physical reaI|zat|or]s can be fo_und in turbulgn ines the mean squared variation of the particle velocity
systems in the course of the violent relaxation characterize uring the time intervak, andg denotes the particle average

by intense energy exchange between the subsystems Qe ojeration in the turbulent medium. The anomalous factor
volved. Examples are turbulent fluids at extremely high val-7_7 (instead of %) stands for the fractional differentiation

ues of t_he Reynolds numpelez 10%) [17]. In our study, we J"ylat” on the left of Eq.(4). [Note that (ow2(t))
are mainly concerned with turbulent systems that have aI-Nngz(t/T)7 for t>7.] Hence

ready bypassed the stage of violent relaxatidiote that the ' '
particles that undergo stochastic acceleration must be consid-
ered as a subsystem of the turbulent fielthe ensuing non-
thermal turbulent stat@vhich can be stable or quasistahite
sometimes termed “turbuleriuasjequilibrium” [9] and is
dominated by long-range temporal correlations between th
constituent subsystems. The velocity-space transport equ
tion at turbulent(quasjequilibrium follows from Eq.(3) in
the limiting caseo=2, when the Riesz/Weyl fractional op-
eratorVy, is reduced to the standard Laplaciag :

Dy~ 9272 T/~ Kw?™ 2, (8

where K= const{v). The anomalous scaling laws for the
fransport coefficienD,, versus the dimensionless parameter
él_z 2V?/xg>1 can be derived following Ref18]. (Here,V
Is the characteristic velocity of the grain§ubstituting Eq.
(8) in EqQ. (4), we get

Y
APl atT= A (4) K sty w2 ow W
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A general solution to Eq(9) can be obtained for arbitrary The creation of turbulence grains by relatively hot par-
initial conditions in terms of the Fox functionsee Ref. ticles can be described by an interaction functiogak
[12]). For the sake of simplicity, here we proceed as follows.yhich balances the velocity diffusion tert, on the right

Let us multiply both sides of Eq9) by w*~” and integrate hand side of Eq(4). By its nature, the interaction functional
over the velocity spacfw}: deE47_TfBCW2<_jW_- Onthe left  for a self-organized electromagnetic system must be qua-
of Eq. (9), we remove the time differentiation out of the gratic over electric currentémagnetic fields Hence 7y
integral sign and replace the partial derivati’éat” by the — _ Q,,j*%i", whereQ,, is the interaction matrix, anft* («

full time derivatived?/dt”. The remaining integral ovawis  _ 1 '3y genote the covariant components of the current den-
then reduced to the ensemble averagé 7). On the right ity vector in the embedding spadélere, summation over

of Eq. (9), we integrate twice by parts, taking account of the,u: 1,2,3 is implied. For isotropic turbulence, we have
normalization conditior(2); the result is 3(4- y)n. Conse- Q,,=Q4,,, whereQ is the characteristic interaction am-

quently, plitude, ands,, is the Kroneker symbol. The interaction
q7 functional becomes, consequent(§iy~ Qj xJ*. The inclu-
_<W4—7>¢: 3(4— y)nk. (10) sion of self-interactions leads to the extended fractional ki-
dt” netic equation
From Eq.(10) one finds Yl It = Ay~ ATWAQj ,j*, (15)
(W), = 3(4-) RCX LY (11) which incorporates both the particle stochastic acceleration
Y T(y+1) ' (A,¥) and turbulence generation7¢) terms. The factor

) ) 47w? in front of 7y~ Qj .J* stands for the density of states
Hence the particle average velocity grows, roughly, as i, the isotropic velocity spacew}. The current density com-
ponentsj,, in Eq. (15) are considered as functions of the

(W) ~consite  (t—o), (12) velocity w, i.e.,

{=vl(4—vy). (13

Settingy=1 in Egs.(12) and(13), one recovers the standard

one-thirds law for the random Fermi acceleratigmy),, _ o _ ,
~tY3 deriving from the standard velocity-space diffusion 1€ integration in Eq(16) is performed fromu~V (i.e.,

Eq. (1) [8]. The particle energy grows, on average, as from the _characteristic velocity of the sca_lttere%),_ up to
w>V. This includes all the turbulence self-interaction events
(5}¢~const><t2§ (t—x). (14 until the (initially cold) particle reaches the given velocity
w>V in the stochastic inductive electric fieldsotropic ve-
For persistentsuperdiffusivé FTRW's (1< y=<2), we have locity space{u} is assumedjdu=4u®du.) Sinceu,u*
1/3<{=<1, while antipersistentsubdiffusivé FTRW's (0  =u?, from Egs. (15) and (16) one arrives at the self-
< y<1) imply 0<¢<1/3. Thus the persisterfantipersis- consistent nonlinear kinetic equation in the full integrodiffer-
ten) FTRW’s are manifested in enhancézlippressedpar-  ential form:
ticle acceleration when compared to the standierkov-
ian) Fermi process(1l). The limiting case{=1 (y=2) 10 1 9
corres_ponds_to ballistic acceleration alon_g a regular trajec- < W: F W W
tory without jumps. On the contrary, the limit=0 (y=0)

describes trapped particles localized at the hypersurfaces whereR = 647320/ is a constant, and the fractional time

= const. Physical realizations of the fractal time accelera- erivatived”y/at” on the left hand side is given by expres-

tions might be found, for instance, in the Earth’s magnetotaigion (5)

[19I]t gnd thteh|nt(—:;_rgaltar§:t|tctrr]ned|tl)1ﬁ20]. iderati lies t Equation(17) includes a rich variety of anomalous kinetic
IS worth noting that the above consideration applies 10, ,cegges potentially operating in self-organized turbulent

the test particles and does not include the inverse effect ystems. In what follows, we are mostly interested in the

fche h(t)t ;ilasmatr?n the t_urblulent PaFlt.f)”.‘- SUCT anf effe(t:tt'§tationary solution to Eq17); this solution determines the

Important near thé marginal nonéquilibrium saturation sta pshape of the particle distribution function near the marginal

(NESS where the plasma strongly couples with the Self'NESS The stationarv distributi -
; . i : . . . y distribution functiaf= /(w) obeys
organized magnetic and inductive electric turbulent flelds.[he integrodifferential equation

The process can be considered as self-interaction of the tur-
bulence in the nonlinear saturation regime. The self- 1 g
interaction appears in the generation of magnetic turbulence =
grains by particles accelerated in a fluctuating inductive elec- w? dw
tric field. This limits the particle energy gain from the induc-

tive fields and may have an impact on the energy distributionwhich follows from Eq. (17) for d”¢/dt¥=0. In a self-

in the turbulent system. consistent regime, the fractal time acceleration processes

jM(W)~4weﬂ/NuMu21,//(t,u)du. (16)

2

7% . (1D

2
—Rw
W R

J- ulydu
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2

7% , (18)
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should be associated with a dimensionlgsswer-law par-

ticle distribution function in the superthermal range, i.e.,
p(w)oew™ <, (19

where the slopexr=const (v) for w>V. Substituting distri-
bution (19) in Eqg. (18), one finds
a=14—1y. (20)
The ensuing energy distributiop(£), Exw?, becomes
P(E)=ET, (21)
n=al2=T7—yl2. (22

In particular, persistent FTRW’'s & y=<2) lead to 67
<6.5, while antipersistent FTRW’s @y<1), to 6.5<7%
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extended point symmetry group for the Vlasov-Maxwell
equations. Ma and Summers recognizedunctions in sto-
chastic acceleration processes governed by the whistler-
mode turbulenc25]. The x parametef21-25 is related to

the slope# of the energy distribution21) via k=7n—1.
Hencexk=6— /2. In view of 0<+y=<2 one finds 5 k<6.
This inequality locates the value @&fin a relatively narrow
interval covering the two distinct typdpersistent and anti-
persistent of the particle stochastic fractal time acceleration
in turbulent media. Kappa distribution functions have been
directly observed in the Earth’s magnetof&il], this being a
natural laboratory for turbulence-dominated phenomena
[19]. The theoretical estimatebk <6 for thex parameter is

in close agreement with the magnetotail particle population
survey by Christoret al. [21] (p. 13409, who found that
“for both ions and electrong is typically in the range 4-—8,

<7. Distribution(21),(22) possesses considerable excess enyith a most probable value between 5 and 6.” These widely
ergy at the highefsuperthermalenergy interval when com-  \nown observational results thereby mirror the fundamental
pared to the exponentiaMaxwell) distribution. The excess yinetic processes operating in self-organized turbulent sys-

energy is manifest from the velocity-space transport drivenie s rather than specific characteristics of the magnetotail
by the fluctuating inductive electric fields in the turbulent plasma

medium. The slopep=7—v/2 is determined by the qua-

dratic nonlinearity in kinetic Eq(15) for the turbulent elec- We are grateful to Professor J. Klafter for bringing to our
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