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Random heteropolymer dynamics
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We study the Langevin dynamics of the standard random heteropolymer model by mapping the problem to
a supersymmetric field theory using the Martin-Siggia-Rose formalism. The resulting model is solved nonper-
turbatively employing a Gaussian variational approach. In constructing the solution, we assume that the chain
is very long and impose the translational invariance which is expected to be present in the bulk of the globule
by averaging over the center of mass coordinate. In this way we derive equations of motion for the correlation
and response functior®(t,t") andR(t,t"). The order parameters are extracted from the asymptotic behavior
of these functions. We find a dynamical phase diagram with frégkxsssy and meltedergodig phases. In the
glassy phase the system fails to reach equilibrium and exhibits aging of the type foprshin glasses.
Within the approximations used in this study, the random heteropolymer model can be mapped to the problem
of a manifold in a random potential with power law correlations.
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I. INTRODUCTION however, that even in this eventuality, implying that a single
native state dominates the thermodynamics, RSB in the

Disordered systems can be extremely hard to solve, as thariational approximation is a signal of a complex energy
example of spin glasses shofig. It took enormous effort to landscape, which can lead to slow dynamics, with off-
understand the physics of infinite-dimensional spin glassegquilibrium behavior on long time scales.
while that of finite-dimensional spin glasses is still debated. Models exhibiting 1RSBsuch as the simple random het-
Certainly, the complexity of the spin glass energy landscaperopolymer mentioned above, thespin glass, or a manifold
is the major obstacle one has to deal with, and there are othé@r a random potentialhave been found to have different
systems sharing this feature: standard examples are proteidgnamic and static phase diagrams, with a dynamical energy
[2] and manifolds in random potentidl3]. density higher then the one found at equilibrium. This raises

The study of simplified random heteropolymer modelsthe intriguing possibility that, for a suitable range of tem-
may provide a useful first step toward understanding theperatures and times, a heteropolymer might find itself dy-
physics of proteins. Here, a central question is whether theamically trapped in a local stat@s in the scenario de-
trapping of the protein in a valley of the rough energy land-scribed above while the equilibrium statistical mechanics
scape can hinder, or perhaps even prevent, folding into itmight give no clue that this was happening. Such trapping
native state. Something related to this scenario has actuallyould thus be an intrinsically nonequilibrium effect, and a
been observed in some real proteins: the protein can beynamical theory is required to describe it.
heated and then, upon recooling, misfold and never be able For models with this feature, the solutions exhibit a break-
to find its native stat¢4,5]. down of time-translation invariancé&he correlation func-

Here, we analyze the kind of dynamical trapping that cantions depend on the time since the system was quenched into
occur in the standard model of a random heteropolymethe glassy stajeand a breakdown of the fluctuation-
[6,7]. So far, in addition to numerical simulations, two ana- dissipation relatiorfwhich is a fundamental characteristic of
lytic approaches have been used to solve such models: equibbs equilibrium. Together, these properties of the dy-
librium analysis employing the replica technig(eee, e.g., namical glassy phase go under the name “aging,” and it is
Refs.[7-13]) and dynamical studies using Langevin dynam-one of our goals here to examine the possibility of aging in
ics [14-21. heteropolymers.

In the equilibrium approach, one studies the properties of In this paper we consider the simple random heteropoly-
Gibbs equilibrium. Even the simplest kind of random het-mer model with Langevin dynamic&s in Refs.[16,21]).
eropolymer model can be approached analytically only inThe equations of motion are constructed in such a way that
approximate ways. In Ref§7—13 a model was analyzed the Gibbs distribution is the stationary solution of the dy-
with replica variational approximations, which predict ergod-namics. This type of dynamical approach was used success-
icity breaking at low temperature, giving one-step replicafully in spin glass models.
symmetry breakinglRSB) for d>2 and continuous replica To derive closed equations of motion for correlation and
symmetry breaking ford<2. Thus, in three dimensions response functions we resort to a Gaussian variational ansatz
(3D), below the freezing temperature, the ergodic composimilar to the one used at equilibrium. The same approach
nents lie far apart from each other, and have the same intehas been used to study the problem of a manifold in a ran-
state overlam)y. Given the intrinsic one-dimensional nature dom potential, for both statid23,24] and dynamic$25,26].
of the polymer, it has been argued that RSB could be afn related dynamical work on a random heteropolymer
artifact of the variational approximatiof22]. We believe, model[16] and[21], the slightly different approach of mode
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coupling theory is used. Our approach gives results fuIIyBS‘S, is quenched Gaussian noise with variafe
coherent with the ones obtained there, although the detailed

form of the phase diagram differs, due to the different nature
of the approximation.

The analysis of the variational equations indicates that, as
expected from static treatments, the random heteropolymér(Ax) is a short-range potential, and for simplicity we take
model exhibits spontaneous breaking of ergodicity in ait to have a Gaussian form, as in REL6]:
glassy phase. All these states are equally distant from each
other; they have the same interstate oveflagturally, the
self-overlap is different We also discuss the nature of the V(Ax)=(—
transition from the frozeriglassy to the melted(ergodig 2mo
phase. Furthermore, we find that, within the Gaussian varia-
tional approximation that we employ, the random het-d is the dimensionality of the system, andparametrizes the
eropolymer model can be mapped onto the problem of @ange of the potential. Largésmal) o results in a long-
manifold in a random potential with power law correlations. (shortjyrange potential. In particular, foor—0, V(AX)

The paper is organized as follows. Section Il briefly de-— §(Ax), and we recover the potential used[®i]. Here
scribes the Langevin model. In Sec. Ill a mapping to a suand in the followingAx denotes the bead-to-bead distance:
persymmetric(SUSY) field theory is made. The resulting Ax=x(s,t)—x(s’,t) for a pair of beads,s’.
action can be simplified by assuming a very long chain. This This model admits a stationary solution characterized by a
is discussed in Sec. IV. Dynamical equations in SUSY notaGibbs distribution. The equilibrium partition function for this
tion, given in Sec. VI, are obtained via the variatiodal-  solution is given by
satz discussed in Secs. V and VI. Also, in Sec. VI, the
connection of the random heteropolymer model to the prob- 1{ (N
lem of a manifold in a random potential will be commented Z=J Dx exp— 5( J ds{[ax(s)/9s]?+ ux(s)?}
upon. After disentangling the SUSY notation, one obtains 0
dynamical equations for correlation and response functions B (N
(Sec. VIII). An analyticalAnsatzfor solving these equations — —J dsdsBg o V(X(s) —x(s’))) . (7)
is introduced in Sec. IX, and the solution is obtained in Sec. 2Jo ’

X. Section Xl discusses the ergodic phase, while in Sec. XII

the spin glass phase is analyzed. Technicalities needed fin Eq. (3) ensures that the chain constraint and quadratic

(B2, )g=B? s>s. (5)

di2
e—(Ax)z/za_ (6)

construct the full phase diagram are given in Sec. Xlll.  confinement are temperature independéFhat is, the elas-
ticity is purely entropic in origin. The same convention was
Il. THE MODEL used in Ref[16]. This differs slightly from the work in Ref.

) i ) _ [21], where the elastic term had a fac®iin front of it. Our
~ The model is defined as follows. The Langevin dynamicscnoice ensures that for high temperatures the random het-
is assumed to be governed by the Hamiltortix], eropolymer behaves as a Gaussian random coil. Also, for
very low temperatures, the random part of the interaction
with B in front dominates g—oo; the elastic and confine-
ment terms become negligibleThus, in principle, forB
=, Z in Eq. (7) is dominated by minima of
SdsdsBg ¢ V(X(S) —x(s")). Furthermore, in this limit there
is nothing that would control the spatial spread of those
minima, and(x?(s,t) ) diverges for very low temperatures.
[This happens only whep is held fixed. If it is adjusted
appropriately, one can kedp?(s,t))t fixed instead. In this
paper, however, we will be concerned with finftephase
transitions, not the lowr limit, so we will work with
fixed w.]

ox(s,t)/ot=— gH[x]/ Ix(s,t) + 5(s,1), (1

wherex(s,t) is the position of chain beaslat timet. Beads
are numbered continuously fros=0 to s=N. %(s,t) is
Gaussian noise:

(n(s,)m(s',t"))r=28(s—s")s(t—t")T 2

due to contact with a heat bath at temperafiréhe Hamil-
tonianH[x]=Hg[x]+ H,and X] contains a deterministic part
Ho[x] and a random paHl,,.q[ X]. TheHg[x] is defined as

T (N
— 2 2

Holx]= Zfo ds{[ox(s,0)/s]"+ ux(s.)% ©) Ill. MAPPING TO THE FIELD THEORY

Using the standard Martin-Siggia-Rose formali$gv],

and describes the elastic properties of the chain and a cOthe dynamical average of any observable can be calculated as

finement potential that fixes the density of the protein. The
random parH,,,q describes heterogeneity of the interactions

between the beads, (O[X&DT:J' DXDXDD£DEO(x X)e~Sxéd  (g)

1 (N
H X =—f dsdsBg o/ V(X(s,t)—x(s',t)). 4
rand X1= 5 0 seVIX(SH=X(SLD). - (@) with the following dynamical action:
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S[x,i,gf]:f dtds{—ﬁ(s,t)%&(s,t)

J IH[X] )
X Ex(s,t)+ XS
— J
—j dtdsg(s,t)ﬁg(s,t)
_ F?H[x] )
+j dtdeéf(S,t)mf(S ).
€)

7(,5,? are auxiliary fields that appear in the formalism. To

compactify the notation we introduce the superfi@d

D(s,ty,0:,0;) =X(S,ty) + E(S,11) 01+ 01 £(S,ty)

PHYSICAL REVIEW E64 051910

2

Sl[q>]:—82/4f dsds Jle(d)(s,l)—d)(s’,l))}

(18

The dynamical actiors=Sy+S; closely resembles the ef-
fective Hamiltonian obtained in the static replica approach of
Refs.[7,8]. (This rather general similarity between replica
and SUSY treatments has been discussed in [R8}.) In-
stead of summation over replica indices[in8] we have
Jd1. Our expressions are not identical to thosg7ii8], since

we use a quadratic well potential instead of two- and three-
body interaction terms to confine the polymer. Also, we use
a GaussiaV(Ax) instead of6(AXx).

IV. LONG-CHAIN APPROXIMATION

The S; part of the action can be further simplified. It can
be rewritten in the form

- 2
+6010:X(s,t1), (10 S =-— BT AW A (19)

where 6 and 6 are Grassmanifanticommuting variables.
ForX,X'e{6,6,6',0'}, {X,X'}=0, andfdXX=1, the rest
of the integrals being zero. In the following, for practical
reasons, the more compact notationd(s,1)
E(I)(s,tl,el,?l) will be used. Also, the integral symbol
fd6,d6,dt; will be denoted byfd1.

In supersymmetric notation Eqg&) and(9) translate into

with the notation
A<V>*A<5>=f d1d2dxdy AV (x,y)AL%(x,y), (20)
whereAM) andA(® are given by

AM(x, y)—f dsV(P(s,1) —x)V(D(s,2) —Y), (22)
<O[<D]>T=f DOO[D]e S, (11)

D)= Sy D]+ S, D], 12 Axy)= fds S(@(s',1)—x)8(D(s,2) - y). (22)

respectively, where It is useful to transform exp{S,) as

BZ BZ
so[@]=1/2f dsdlds'd2d(s,1)K:5 ®(s'2), (13 exp[TAW)*A(ﬁ) =exp[E[(A<V)+A<5>)*(A<V>+A<5>)
S,and[d)]:l/ZJ d1dsds B o V(@ (s 1)~ d(s',1)), —(A(V’—A(‘”)*(A(V’—A(‘”)]}
and :f DQlDQzeXF{Z[_(Q’I(h
5 =010sKi, Ki=T[u—(d/95)°]-DP, (19 +Q3Q2)+ Q1 (AV+AM)
2 7 +iQ3 (AM -] (23
DP=2T——+26,—— ——. 16 2 '
! 36,90, Yagiot,  aty (18

Then, the dynamical generating functiofratefined by
As noticed by De Dominici$28] the expression in Eq11)

is already normalized, so the average over the quenched ran-

. : ) -F_ — [ D] +Ix D
dom interactiond s» can be done directly on E¢l1): e f Dde 7 (24)

(<A[®]>T)B:f DOA[P e (Sl +Si(eD), 17 with J*® = fdsdlJ(s,1)®(s,1), can be written as

~F— - (B%/4)(Q7 Q1+Q5 Q) [Q1.Qz. ]
where exptS[P])=(exp(-Sad®]))s. The average over € _f DQ.DQ2e LeT e f Dde-lQ1:C2:
Bs s can be done easily, leading to (25
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with L given by e_F:<e_(3,_suar)>vare_Fvar, (33)
B2 ,
L= [Q1(AV+AP)+iQ (AV—A®)] where
—S[P]+I*D. (26) e*Fvar:J Dde Svar, <>Uar:eFvarf D®()e Svar,

So far everything was exacA() andA(® are both of order (34)

N anddfor very long chams one %"gl‘ calgulate '”tegra's_ OV€Y the usual statics, for problems without disorder, the varia-
Q1 andQ; in Eq. (25) using a saddle point approximation. tjonai approach is related to a maximum principle. The

The saddle point equations read equivalent of Eq(33) leads to the inequality
1 /
i-p':§<A(V)+A(5)>L, , 27 e_er_«s _Svar)>vare_':var_ (35

) In the present dynamical problem, as well as in the static
sp_ AV _ A(9) problem with replicas, unfortunately such a maximum prin-
QzP =5 (AW =AY/, (28 e 7
2 ciple is not known, and the variational free energy cannot be
_ ) claimed to be an upper bound on the true one. Despite that,
whege <>LS’ denotes the average with taking Q1,Qz  the variational approach has been argued to give exact results
—Q1",Q3". This leads to self-consistent equations forin some limiting case$23,24, giving a justification for its

Q7P andQ3"-. use in general.
Thus, Eq.(25 can be approximated as The dynamical variational free energy 4y,=((S'
_Suar)>uar+ Fvar is given by
e*F%J\ D(De*S/[q)]JrJ*(D, 29
29 den: I:Ejly)n—'— I:Ejzy)n_i_ ng;)nv (36)
with S'[®]=S;[P ]+ S,[P] and with
/ B Ay x (A (V)% ¢ AD) y _d
Sil®]= 4 [(A)s™ (A)e = A(A)s ng>n=zj dsdlds' d2KsS GSY (37)
—AL* (AT, (30 q
. FG =—_TrinG, 38
(AMYg, and(AD)g have to be calculated self-consistently dyn 2 (38)
with S':
BZ
I:Eisy)n: o Z<A(V)>:ar<A(5)>var . (39

f D¢A(V,5)e—s/ +Jx O

(A = (31)

Note that in calculatin@fﬁ,)n the average )5 in Eq. (30) is

Dpe =S +Ix® = dyn s o
performed over the trial distributiofand therefore denoted

varl
In the limit N—oo Egs.(29)—(31) provide an exact descrip-
tion of random heteropolymer dynamics. VI. CALCULATING (AM)*(A(9)
V. VARIATIONAL ANSATZ The term(AM)y* (A ., is the only nontrivial term in

Fayn- Before calculating it we simplify each of the factors in
To solve the model we proceed by using a variationakhe product further:

Ansatz assuming that the field® are approximately de-

scribed by a Gaussian action
Y A(l\”z'ﬁ)(x,y)%A(l\”z'ﬁ)(u)E1/vj d9RAMI(u,R), (40)

1
— ! ! -1 ’
S”ar_zj dldsds'®(s,1)G(s,1s",2) " P(s",2). wherev is the volume of the protein and a new coordinate
(32 system has been introduced:

This approach has been widely used in statics. Here we apply R=(x+y)/2, u=(x—y)/2. (41

it to a dynamical calculation. The goal is to calculktgiven

by Eqg. (29). Since the variational parametéx(s,1;s’,2) is R is the center of mass anda relative distance coordinate.
the only quantity we are interested in, there is no need tdhus, translational invariance is introduced by hand via Eq.
keep the sourcd. It is convenient to write Eq(29), with J (40). This approximation is not necessary; the model could
=0, formally as be solved without it. However, as we shall see later on, this
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approximation leads to dynamical equations that are identicaind finally

to those for the random manifold model studied
[25,26,3Q.

Changing integration variables frodf'x d%y to d°R du
(the Jacobian is9 gives

j dledddeY<A(V)(X y >var<A (X,Y))var

2d
%Ff dldzdduf ddR'Ang)(u,R')f dR"AP)(u,R").

(42

The integrals oveR’ andR” can easily be performed and

one gets

2d
?f d1d2d%dsdgd?adBV(a)V(B)

X<6[2u_ a+,3_q)(511)+q)(512)]>uar
X<5[2u_(D(Svl)+q)(s!2)]>var ) (43)

which can be further written as

2d
7f d1d2d%dsdgdiadBV(a)V(B)

d d
f d pd d qdei(p+q)2ueip(ﬁ’fa)efsziZIZefquiéIZ,
(2m)° (2m)
(44)
where averages ové&, ,, have been evaluated as
<eip[q>(s,1)—c1>(s,2)]>var:e—pzsizlz, (45)

with BS , given by
BI o= ([®(s, )~ (52 1)yar
=G(s,1;5,1)+G(s,2;5,2) —2G(s,1;5,2).  (46)
Integrating Eq(44) first overu and then oveq andp finally
gives

1
;(277)*‘“2[ d1d2dsdsdiad?BV(a)V(B)(B3,+ B3, 92

(a—B)?
Xexp————. (47
P 285, B

Equation(47) holds for anyV(Ax). However, technically, it
is of little use unless the integrals over and B8 can be
performed explicitly. For the Gaussian form fd{Ax) [see
Eq. (6)] it is possible to perform the integrals, and one gets

1
(AN Sar( AL o= —(4) ~ 2 J d1d2dsds

X[(B+Bip/2+0]"%% (48

Fg’°‘y>n~ =— f di1d2dsds V[(BS,+BS))/2] (49

with
B2 ~, BZN
V2)=— 5 (z+to) % B=——(4m) %% (50

Equations(36)—(39) and (49) fully determineF g ,.

VII. EQUATIONS OF MOTION IN SUSY NOTATION

GivenFqy,, one can derive the equations of motion from

the stationarity condition

6

o7 ———Fayn=0. (51)

The most complicated term iss(8G35 Fgf,)n.
(49), it is

From Eqg.

d
mf d3d4dudvV'[(Bs,+BY,)/2]

us

SusT Oys
X sy 5 (6130231 814024— 613624— 614023).
(52

Due to translational invariance & B3, is independent o.
After dropping the indess Eq. (52) simplifies to

3) _
F&=ddss

512[ d3V'(513)_V'(512)} (53

ss
2 12

The variations ofF ), andF(}), are trivial. Using Eqgs(51)
and(36) leads to

35— (G~ l+25ss’[512j d3V(Biy — V(B 12)}—0
(54

which can be written as

K3GSY = 81005 +2 f d3V’(B1a) (G —GSY). (55)

Due to translational invariance in the varialli is useful to
define the following Fourier transforms:

» dk
3’4 2790k (58
Then Eq.(55) translates into

[T(n+k?)—DPGk,= 512+2f d3)' (B1a) (G5~ GX,).
(57)
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Equation(57) is identical to the one obtained in Rg26] for B 5
a D-dimensional manifoldp(w) (weRP, ¢eRY in a ran- ((X(s,t)X(s",t2))) =————((X(s,t1))), (62
dom potentiaM(¢(w),w), where the correlations of the po- oh(s’,ty)

tential are described by i.e., R(s,ty;s’,t,) describes the response to an infinitesimal

5 - field applied at time, and beads’. Thus,G‘{2 reduces to
(V(e,0)V(¢',0")=—~d®(0—w") V[(¢—¢")/d]. o
(58) Gi,= Cilty,t2) + (81— 02)[ 01R(t2,t1) — BoRy(ty, 1) ],

63)
These equations of motion were derived using the Gaussian (

variational approximatiofiGVA), which is exact for the ran- and,  accordingly, — with G3j=C(s,t1;s,ty), 55

dom manifold problem il=. We expect the same behav- =C(s,t,;s,t,), and Eqs(60),(61), one gets

ior for the random heteropolymer. However, in this study we o

work at finited, so the equations of motion are approximate.  By,=B(t;,t,) —2(0;— 0,)[ 0,1 (t5,t1) — Oor (t1,t5)]
There have been several studies of random manifolds (64)

where V' describes power law correlations as in E§9),

employing static[23,24,3] and dynamical[30,32,33 ap-

proaches:

with

dk
i B(ty,ty)= f E[Ck(tl 1)+ Ci(ta,15) =2C(ty,t5) ]
V(z)=(z+ o) 72(1—y). (59 (65)

By comparing Eqs(50) and (59) one notices that(z) is  and
identical to}(z) (up to a proportionality factoB?) if one dk
identifiesy=1+d/2. Accordingly, we conclude that, within r(tl,tz):j 2—Rk(tl,t2). (66)
the Gaussian variational approximation used in this study, m
ra;r:gom heftferl?jpolymer gynami(t:s if ilderjttri]cal to thle dyn"J‘mici\fter disentangling the equations of motion in SUSY nota-
of the manifold in a random potential with power law corre- _: - ;
lations.(We cannot say anytrrl)ing rigorous oputside the frame—tlon [see Bq(57)] using Eqs(63-(66) gives
work o)f the Gaussian variational approximation scheme, of T( 4 k2) + g/at]C(t,t")
course

Furthermore, correlations of the random manifold poten-
tial are classified as short range fer-2/(2—D) and long
range fory<2/(2—D) [23,24. This classification of ran-
dom manifolds helps to classify random heteropolymer mod-
els in the same way. Using=1+d/2, the random het-
eropolymer hasD=1, and short-range correlations fadr
>2 and long-range correlations fat<2. (Again, this all (67)
g:)erzlf)es sense only within the Gaussian variational approxima: [T(+K2) + alt]Ry(L,)

:2TRk(t’,t)+thdsv’[B(t,s)]Rk(t’,s)
0

+4fotdsv”[B(t,s)]r(t,s)[Ck(t,t’)—Ck(s,t’)],

t
VIIl. DISENTANGLING SUSY =olt-t )+4f0dsv [B(Ls)Ir(t.s)

15 encodes 16 correlation functions, out of which only X[R(t,t")—Ri(s,t")]. (68)

two, the correlation and response functions, are independent
and nonzero: The equations of motiof67) and(68) are almost identical to
the ones found in Ref.25] (hereD=1, while in[25] D

((X(s,t)X(8',t2)))=C(s,t1;s' 1)) =0).

:f%eik(s—s')ck(tl L), (60 IX. ANSATZ FOR Cy(t,t') AND Ry(t,t')
277' H 1

These equations of motion are coupled integro-differential
~ equations which in principle can be solved; the initial condi-
((X(s,t)X(s",12)))=R(s,t1;8" 1) tions are given byC,(0,0) and we use Ito’s conventidR(t
+e€,t)—1 ase—0. It is well known that asymptotic solu-
dk , : : i
= f —eks=sR(t;,t,). (61)  tions of such equations can be characterized by few param-
2m eters and it is possible to solve those equations analytically
[25,26,30,34-3p
Also, by adding an external field term to the original Hamil-  Fort,t’—~, 7/t'<1, andr=t—t’, time-translational in-
tonianH[x]—H[x]+ fdsdtxs,t)h(s,t) one gets variance(TTIl) holds:
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tlinl C(t,) =0y, (69
[Iin;lo Cy(t+7,H)=Cy(7), (70)
Iinl C(7) =0y, (71
and
lim R(t+7,t)=Ry(7). (72)

t—oo

In addition to the TTI regime, there is another long-time

nontrivial regime, characterized by,t’—, fixing A

=h(t')/h(t) and 0<A<1, where the functiorh(t) is an
increasing function of, which the asymptotic analysis per-
formed here is not able to determine. In this aging regime

one has
lim C(t,h Y xh(t)])=aCi(N), (73)
t—oo
lim q,C(N)=dox, (74
A—0
lim C(N\)=1, (75)
A—1
and
1,

t—oo

PHYSICAL REVIEW E64 051910
[T(ut k?)+ Al dT]Cy( 1)
2 !
—2TR(~ 7+ 2V (D)[C(7)~qi]

r?Ck( T/)
ar’

—Zde 'V (B(r— 7
) darVEGE-7)

1 R R 1 R R
+2 f dpV (B(p))Ru(p) + 4 f dpV" B(p))F (p)
0 0

X[Cy(7) = Ci(p)]. (81)

It is also possible to derive similar equations fBy(7)
which, due to the fluctuation-dissipation theoréRDT)

1dC
Ri(n)= - 14T

(82

are completely equivalent to E¢B81).
In the aging regime one gets the following equation for

aC(\):

1 ~ -~ N
T(u+ |<2)—4f0 dPV”(B(P))r(P)}quk()\)
1 . 2 ..
=2 [ dpy BlpNRp)+ TV BOE- a0
0
A ~ -~ A
—4f0 dpV"(B(p)r(p)dkCk(p/\)

1 ~ ~ ~
—4L dpV"(B(p))r(p)akCx(A/p). (83

Also, for future convenience, it is useful to introduce thegr R, (\) we obtain

following order parameters:

. dk.
g=Ilim{(x(s,)x(s,1)))= f 50k (77)

t—o

dk
g=Ilim lim{((x(s,t+ T)X(S,t)>>:fzqk, (78

77— t—ow

dk
go=Ilim lim{{x(s,t)x(s,\t)))= 5.~ ok (79

A—0 t—o
together with
b=2(q-q), bo=2(d—q). (80)

X. EQUATIONS RELATING ASYMPTOTIC VALUES
OF CORRELATION AND RESPONSE FUNCTIONS

Using theAnsatzdiscussed in Sec. IX one can derive the

following equations foiC(t,t’) in the TTI regime:

l ~ ~ ~
[T(M“‘ kz)—4f0 de"(B(p))r(p)}Rk(k)
4 . n -
=- $V"(B()\))r()\)(Q|<_QK)

1d .
4 J Lyr@e)i(pRMp). (64
P

Again, one can see that both E&3) and Eq.(84) can be
solved by theAnsatz

. x dC)
Rk(?\)—$QKT- (85

Equation(85) is commonly referred to as a generalized FDT
(GFDT). In principle, Eq.(85) could have been written as

xaCM)]  dC(N)
T dTax

R(\)= (86)

051910-7



Z. KONKOLI, J. HERTZ, AND S. FRANZ

PHYSICAL REVIEW BE54 051910

which could be applied to a many-step RSB scheme. HowNote that Eqs(91) and(92) enforceq,=qox Which is just
ever, as previously discussed, the present random heéqualent toC,(\)=1, so one gets only two equations.

eropolymer model can be identified with the random mani-
fold problem with short-range potential correlations. As

Solving them forq, andqy gives

such, it has one-step RSB, and it is sufficient to use the 1

simpler ansatz given in E{85).
Fort=t' andt—o Eq. (67) gives

~ 2 ~
T(r k3 G=T+ 2 (0) (G aw)

1 ~ ~
+2f0 dpV'(B(p))Rk(p)

1 ~ ~ ~
+4f0 dpV"(B(p))r (p)[dk—dkCi(p)]-

Equation(81) for t—« and thenr—c results in
) 2 ~ 1 ~ .
T k)= 2V (0) -0+ 2 | dp’ B(o)R(p)

1 " "
14 fo dpV" B(p))F ()1 Cul(p)].

Also, Eq.(83) for A\—0 gives

1 2 ~
T(u+k?)qox=2V"(bo) fo dpRi(p)+ V" (bo) (G-

Equations(87), (88), and (89) [and, equivalently, Egs.
(81), (83), and (84) contain TTI and aging parts. Thus, in
principle, there are twé\nsadze for solving them, leading to

Q= G=——, 93
Ok~ Ak K2 (93
Q= + 2V’(b) (94)
W 7 Y ke
After integrating ovelk and using
dk 1 1
2w ,u—l—kz 2\/— 2m (,u-l—kz)2 4,(1,3/2'
(95)
8
@7 we obtain
1 !
9= 5 (INw), (96)
~ 1 1
=5 7=t e (1Ww). (97)

(89 For T very small,q andq blow up since the confinement
term ux(s,t)? becomes ineffectivésee Eq.(7)]. For very
large temperature approaches zero but is never exactly
equal to zero.

Xll. SPIN GLASS PHASE
(89) Keeping the aging parts and using the GFDT, E&§3),
(88), and(89) can be transformed into

~ 2 ~
T(p kA q=T+ V" (b)(1=X) (A ai)

two phases: an ergodic ofwithout aging and a glassy one

(with aging.

Xl. ERGODIC PHASE

Technically, assuming that aging is absent amounts to set-
ting R (\)=0 andC,(\)=1 in Egs.(87), (88), and (89).
[Equivalently, one could start from Eq&7) and (68) and
exclude the aging part from the beginning, leading to the

=V (bo)X(Qk— o) (98)

2 ~
T(ut kz)QF?[V'(b)—XV’(bo)](QK—OIk)

2 ~
+ ?V'(bo)X(Qk_%,k)a (99

same equationkThus, in the ergodic phase, Eq87), (88),

and(89) reduce to

- 2 -
T(u+k)ge=T+ TV'(b)(Qk_QK),

2 ~
T(p+ kA=Y (b) (@ aw),

2 -
T(u+ kz)Qo,k:$V/(bo)(Qk_QK)-

2 N
T(p+ K)ok =7V (bo) (1= X) (A=Al

(90 )
+ ?V'(bo)x(ak_ Jok)- (100
(91 . ~ .
Solving Egs(98), (99), and(100) for gy, gy, anddpy gives
q S (101
(92 Ok~ Ak P
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~ 1 1 1-x 1

. S S
= (G dop) + V" (b)——
k= (dk— Yok T2 0 (kD)2

where
2
szﬁ[V’(b)—V’(bo)].

Integration ovelk and using Eq(95) gives

Furthermore, Eq(84) with A\=1 gives

4V"(b)
T2

Re(1)(u+k2+3)=—(q—qy)

r(1),

(102

(103

(104

(105

(108

(107)

(108

and, after using Eq(101), integrating overk, and usingu

+3=b"? [see Eq(105], one gets

0=r(1)[T2+b%V"(b)].

Equation(109 with r(1)#0 implies the marginal stability

condition
_ T2= b3V”(b) .

Also, Egs.(105 and(106) can be rewritten as

YOI -Viby) TPl
bo—b 2 b \b V&)
bo—b=—| ——b
0 X \/; .

Equations(110, (111), and (112 fully solve the model:
(110 givesb as function ofT, (111) determines, as func-

(109

(110

(111

(112

tion of T and w, (112 determinesx(T,u), and Eq.(107)

givesq(T,u). Knowing b(T), by(T, ), andq(T,x) deter-
minesq(T,u) andqy(T, ). Were we to impose the spheri-

cal constrainig=const, Eq.(107) could be used to relate

andT, and all order parameters could be expressed as fun
tions of T only (q being fixed. However, in this study we
work with fixed T and u, allowing q to change.

C_
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tap
12k Ergodic .

x 1.0 7"“"~\\\\
go8fF o TTm=—o_ 1
E o6k Spin Gless ~ TT=—o 3
()Y S— (1) T=T ]
0ab TTT @bty ;

(3) x=1

0.0 L

FIG. 1. Phase diagram of dynamic random heteropolymer model
in u, T plane. Critical lines are denoted k{t) T=T .x; (2 b
=by=pu "2 (x ranges from 1 to 9 (3) x=1, by=u " Y*>b. Be-
low lines 2 and 3 lies the glassy phase and above the ergodic phase.

XIIl. SOLVING THE EQUATIONS (PHASE DIAGRAM )

The procedure of solving equations similar to the ones
given in Egs.(110), (111, and(112 has been discussed in
Ref. [25]. We apply a similar analysis to the random het-
eropolymer problem. In principle, there are three critical
lines in theT, u plane separating different phases shown
in Fig. 2).

Critical line 1. T=T,,ax s the uppermost critical lingde-
noted in Fig. 1 by(1)]; above this line Eq(110 has no
solution. The value ofT,,, can be determined from the
graphical solution of Eq110 depicted in Fig. 2. Onc& has
been chosefhorizontal line labeled /T ,,,) b is found from
the intercept of thel/T,,,, line with the —b3V”(b)/T§1ax
curve. From Fig. 2 it is clear that &t=b,,, the right hand
side of EqQ.(110 reaches a maximum; requiringd/db)
X[b3V"(b)]=0 gives "(b)+bV”(b)=0 and by,
=30/(y—2). Accordingly, Trmax=[— b2 .."" (Bman 12

Also, note that for fixedl Eq. (110 has two solutions for
b (denoted by | and Il in Fig. 2 a first, physical solution
(by—0 for T—0) in the interval[Ob,ax] and a second,
unphysical solution i§;;—«~ for T—0) in the interval
[bmax:). Accordingly, a model withc=0 [i.e., V(AX)
= 5(Ax)] leads to an unphysical phase diagram, since for
o—0 the physical branch0,b,,,] disappearstf,,.,—0).

1.4
1.2

x

o

E1.0F—

) 0.8 /

% 06
M.D
1 0.4

0.2
0.0t ¢!
0

2

4l

FIG. 2. Graphical solution of Eq110. The equation has two
solutions forT<T, denoted by | and Il. Fof =T, there is
only one solutiorb=b,,,4. Solution | is physical and solution Il is
unphysical.
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Clearly, the form ofY(b) for smallb has to be modeled Also, at the critical line 2, the transition to the ergodic phase
carefully and the choic¥(Ax)= §(Ax) simply fails in that is continuous irb andby and discontinuous im.
respect, giving/(0)=. Thus, when formulating the prob- Critical line 3. At this line x=1 and Eq.(112 givesb,
lem, if there is to be a possibility of freezing at low tempera-=1/\/u>b. The equation for this critical line is given by
tures p—0 asT—0), the bead-bead interactidf{Ax) has
to be regular for smalhx. A similar small-distance regular- V’(b)—V’(ll\/ﬁ) T? \/ﬁ 1
ization problem of the bead-bead interaction was encoun- b - ?F(E’L\/;)- (119
tered in Ref[21]. H

Critical line 2. This corresponds td=b,. From Eq.  OnceT is chosenp is determined from Eq(110) and upon
(112) it follows thatb=by=1/\/u. The equation of the criti-  solving Eq.(119 one obtains as a function off. Critical

cal line is obtained by inserting= 1/\/ﬁ into Eq. (110: line 3 is depicted in Fig. 1, where it was obtained by solving
Eqg. (119 numerically. The line starts fromuy, 1y, Tmax and
=2 Y - - hen drops to (O0;*) whereT* is given from Eq.(110) with
T/B)2== 32 12y (r+1), 113 t p ) g q
(T/B) 2M (w 7) (113 b=b* andb* =20¢/(y—2). Thus, ab—b*, by—, as can

) easily be checked by inserting those assumptions in Eqg.
ME[Mmax,*), Where umay solves Eq. (113 with T (119 Also, by—b asu— wmay. Thus, unlike line 2, on line

=Tmax- o _ 3 the transition to the ergodic phase is discontinuousand
The value ofx at the critical line cannot be directly ob- byt continuous irx.

tained from Eq(112). Instead, one has to approach the criti- ~ A|so, for arbitrary u, when T gets close to zer® ap-

cal line and obtain the limiting value of for example, first  proaches 0 antl, grows to infinity. This simply means that
one assumes that the poifft( u.) is at the critical ling Tc  for |ow temperatures the heteropolymer freezes completely:
andu satisfy Eq.(113] and thenT(€), u(e€), b(e), bo(€),  x(s,t+7)=x(s,t) for arbitrary  andt sufficiently large. On

andx(e) approach their values at the critical line foer~0.  tne other hand, for fixed and vanishinge, Eq. (111) gives
Naturally, the dependence erhas to be chosen consistently bo— e, while b stays fixed by Eq(110).

with Egs. (110, (111, and(112. Since one has five vari- . ~ _ (d-2)/a
ables and three equations that relate them, two variables ha\f/e For %mall,u E(:S'/(?G) 3”2?97) g|v3.q/qoc,u d at thThusd, ¢
to be specified as, e.dg(€) =b.+ €, with bo=1/\/u, and 10T #=7 ONE GEILq=7. /IS0, &S TISCUSSEC a the end o
T(e)=T,. The other thfee vari;blds(e), ,U«EGX andcx(e) the preceding paragraph, in the glass phasgfer0 one has
have to be determined from Eq4.10), (111), and(112): bo— andb=const, which giveg//q=1. Thus in contrast
to the ergodic phase, where vanishingleads to paramag-
V(b)) =V’ (bete) T2 u(e) 1 neticlike behavior, in the glass phase the system gets trapped
P ~92 "o, b_+ vu(e) |, (114 in one of many states separated by diverging barriers. Inter-
¢ ¢ estingly enough, adjusting so that the radius of gyratidﬁg
scales according td?g~N and using the relationRy
(115 ~1/Ju (which is exact for the Gaussian cojll6] gives u

«N~*d and q/qxN~(4-2/d Thus, in the thermodynamic

1
Vu(e)

Equation (110 is trivially satisfied and does not enter the limit a/q—0.
analysis. At first order ire Eqs.(115 and(114) give

X(€)

—be|.

XIV. DISCUSSION

x(0)=— ’(0) "(0)=— E V'(be) We have presented a detailed derivation of the equations
skt M) M 312 ' , )
2ug Tev e of motion of a random heteropolymer using SUSY formal-

(116 ism and a Gaussian variationAlnsatz In deriving these
. I 3 . equations, we have used a long-chain approximation, consid-
which, together withl' ;= — u, *V"(b), gives the value for  eraply simplifying the dynamical action. Furthermore, by im-

x at the critical line 2, posing translational invariance, we have shown that, as hap-
" pens in statics, within the Gaussian variatio®alsatzthe
"= 1V"(be) (117 equations of motion become identical to those for a manifold
¢ 3 V"(b,) ' in a random potential with power law correlations.

Clearly, this result is closely related to the particular

Using the explicit form for) gives variational Ansatzemployed here, and its generality beyond
this framework remains an open question. Nevertheless, the

existence of this mapping at the level of the GVA is rather
intriguing. It connects the random heteropolymer model with
many physical systems, such as a manifold pinned by impu-
with b, on the critical line.b,=b,,, givesx,=1 while for rities, interfaces in a random field, the glassy phase of vorti-

b.=0 one getx,=0. ces in highT; superconductors, directed polymers in a ran-
Thus, at the critical line 2, close By,,x, X, iS very close  dom potential, and surface growth on disordered substrates.
to 1 and asT(u) decreasesincreasep X, drops to zero. It would be interesting to understand to what extent the map-

_ytl be
XT3 b.+o

(118
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pings to these problems extends beyond the GVA. One of the motivations for this paper, mentioned at the
By making the standard 1RSB agi#gsatzfor response beginning of the Introduction, was the hope that it might
and correlation functions we found the asymptotic solutionprovide some insight into the dynamics of proteins, including
of the dynamical equation. The validity of thsnsatzhas their folding. However, it is fairly well understood by now
been carefully checked elsewhere: in the context of the rarthat protein dynamics are influenced strongly by the exis-
dom manifold problem it was shown that the one-step replicaence of an energetically favored native state, a feature ab-
symmetry breaking\nsatzcan be used to describe a randomsent from the random heteropolymer model we have studied
manifold with short-range correlations, and we have appliedhere. In work currently in progress, we are extending the
this result to the random heteropolymer. analysis presented here to models in which the two-body
The analytic solutions show that, as expected, the randornimteractionsBy s+ are systematically biased, with a tunable
heteropolymer has characteristic properties of spin glass systrength, to favor particular “native” states. Such models
tems: aging and ergodicity breaking. Furthermore, the dyprovide an opportunity to study the competition between the
namical phase diagram is different from that for statics. Inattraction to a native state and the glassiness produced by the
dynamics starting from a random condition, the polymer getandomness and frustratiofReference$37—-4(Q treat equi-
stuck at energies higher than the ones of the native state. librium aspects of this competition.
In a more realistic approach to heteropolymers, we expect
that finitg—dimensiqnal, and finite_—length chair_1 (_affects will be ACKNOWLEDGMENT
responsible for ultimate restoration of ergodicity. Our study
should be taken as an indication of a time regime where the It is a pleasure to thank S. Solla for useful interactions at
trapping effect and aging could be observed. an early stage of this work.
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