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From Davydov solitons to decoherence-free subspaces: Self-consistent propagation
of coherent-product states
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The self-consistent propagation of generaliZzed [coherent-produdtstates and of a class of Gaussian
density-matrix generalizations is examined, at both zero and finite temperature, for arbitrary interactions
between the localized lattidelectronic or vibronig excitations and the phonon modes. It is shown that in all
legitimate cases, the evolution bBf; states reduces to the disentangled evolution of the companestates.

The self-consistency conditions for the latter amount to conditions for decoherence-free propagation, which
complement th®, Davydov soliton equations in such a way as to lift the nonlinearity of the evolution for the
on-site degrees of freedom. Although it cannot support Davydov solitons, the coherent-product ansatz does
provide a wide class of exact density-matrix solutions for the joint evolution of the lattice and phonon bath in
compatible systems. Included are solutions for initial states given as a produ¢tanfiely arbitrary lattice

state and a thermal equilibrium state of the phonons. It is also shown that external pumping can produce
self-consistent Frohlich-like effects. A few sample cases of coherent, albeit not solitonic, propagation are
briefly discussed.
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[. INTRODUCTION of the standard, andD; states, has the unexpected effect
Davydov’'s model of soliton propagation in molecular to place the Davydov ansatz problem in a fresh perspective.
chains is not rigorougl, 2], but its transparency and physical Our starting point is a generic, not necessarily unidimen-
appeal continue to encourage intense work regarding its utilsional, lattice ofN interacting monomers, each coupled in
ity as a practical approximation, at both zero and finite tem+turn to a common phonofbosonid band. Noa priori as-
perature[3]. Alternatively, it is commonly hoped that more sumptions are made as to the nature of the laftitenomef
elaborate Hamiltonians and/or wave functions may rendedegrees of freedorhexcitonic or vibronid, of the phonon
the model exact or improve its accuracy, and various promodes|acoustic/longitudinal, optical/dispersionless, gtor
posed refinements have attempted to do[4jo From the of the site-to-site and lattice-phonons interactions. Not sur-
latter point of view, it is quite intriguing that the conven- prisingly, however, the very nature of the coherent states, as
tional approach to the problem stops short of probing thestates specific to harmonic systems, limits the type of appro-
self-consistency conditions for the wave-function ansatz. Inpriate lattice-phonon interactions to bilinear terms in the
deed, the Davydov model relies on two fundamental assumgshonon degrees of freedom at zero temperature, and to only
tions: (i) A D; [D,] ansatz state is a solution of the Schro linear terms at finite temperature. This notwithstanding, the
edinger equation for the Davydov Hamiltonidi) The time  critical constraints concern the accompanying, entangled lat-
dependence of the ansatz state can be obtained by treatitige states and the lattice contribution to the lattice-phonon
the ansatz parameters as canonical variables in a Hamiltonisteraction. Somewhat contrary to the widely held view that
functional given by the average of the Davydov Hamiltonianthe coherent phonons should drive tfself-trapped lattice
on the ansatz state. The second conjecture finds a selonfiguration, it turns out that phonon coherence is also es-
consistent foundation in the variational principle of least acsentially conditioned by the nature of the entangled lattice
tion [5], while the first is suspended, for practical purposesstates. We find that self consistency requires, both at zero
and the state ansatz is cast as a variational trial ansatz. Bahd at finite temperature, that the dynamicsDqf superpo-
the ansatz state is likely to be a gofatynamica] trial state  sitions be reduced, remarkably, to the disentangled propaga-
in those situations that are “close,” in some suitable, perturtion of theD, components. Therefore, no self-consistBit
bative sense, to a self-consistent model for which this state ismodel can generate soliton equations coupling the separate
an exact solution. Therefore, one can start, conceivably, b, states. Further, the lattice state in ady product must
questioning what particular circumstances allow an ensatisfy constraints leading to [slightly modified
tangled superposition of coherent or thermal-coherentlecoherence-free evolutiof6]. As a result, the self-
[Gaussiahphonon states to preserve its cohesion in time. consistent lattice states propagate unitarily and all potential
The present paper aims to address this problem in a gemonlinearities in their effective equation of motion cancel
eral setting, at both zero and finite temperature. The outidentically. Hence, n®, model based on a linear decompo-
come, which can be viewed, eventually, as a generalizatiosition of the lattice state can generate Davydov-type soliton
of two previous theorems, due to BroWa], on the validity  equations for the associatdtinearly independeitlattice
amplitudes.
A stronger and quite peculiar result concerns systems with
*Email address: hnmg@soa.com lattice-phonon couplings linear in the phonon coordinates.
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First, only such systems can support generalized, Gaussiauch that the initial distortions match the displaced equilib-
D, states at finite temperatures. Second, the correspondiriym positions for the coherent oscillations. In this situation,
self-consistency conditions for lattice states become prethe bath remains in a stationary nonequilibrium state, while
cisely the constraints that typically define decoherence-freéhe system evolves unitarily, according to the unperturbed
subspacefDFS), as recently considered in connection with dynamics[up to time-independent DFS energy shiiftsre-
noiseless quantum computatidi6,7], and the effective SPective of any entanglement with the bath. Leaving aside
Hamiltonian reduces to the unperturbed lattice Hamiltoniarfluéstions of stability, such a state provides an apparent coun-
[up to a phonon-modulated energy shift, which can be tranderexample to _enwronment—lnduced superselection, within
ferred onto the phonon stdteWhen the coupling is time the same physical system. _
independent, the associated phonon displacements perform Along a different line of inquiry, proper external pumping
simple harmonic oscillations around a displaced equilibrium@n be used to promote decoherence-free propagation in sys-
position. One is so led to the conclusion that ﬁnite_tems_that_other\lee may not have the necessary symmetries.
temperature coherent-product propagation is possible if an¥/e find, incidentally, that such a process can be accompa-
only if the lattice-phonon coupling is linear in the phonon nied by a Frohlich-like effect on the bath modes. That is,

coordinates and decoherence-free subspaces exist for the I[REMPINg at a frequency attuned to the lattice subsystem may
tice subsystem. result in a macroscopic displacement of a bath mode of a

From the point of view of the soliton problem, this out- different frequency, while other reservoir modes remain in

come relates to a rather self-evident idea in the context ofermal equilibrium. o
decoherence-free propagation. That is, if an unperturbed lat- The paper is organized as follows. We begin with the
tice can support soliton states that evolve entirely within damiliar pure-state case in Sec. Il. Section IV develops the
DFS, such solitons will propagate unperturded arbitrary density-matrix generalization, vv_hlch includes Davydov’'s
temperaturels regardless of the state of the environment. Ob-thérmal ansatz and allows a straightforward approach to the
viously, coherent-product states lose any special significancénite-temperature problem. To this end, we employ a formal
in such a solution, and the problem falls outside the scope dfamework, outlined in Sec. Ill, based on the “square-root”
the present paper. decomposition of the density matrix and the concepts_of ther-

Nevertheless, the self-consistent coherent-product ansaf@@l vacuum and thermal Fock space introduced in ther-
demonstrates a sufficient number of notable features to rnofield dynamics[TFD] [12]. This formalism can be re-
main attractive by itself. For instance, let us recall that nuligarded in effect as a version of TFD without auxiliary
phonon displacements place the bath in a thermal stat§yStems. Our choice is motivated py the notable technical
hence, initial null displacements reduce any initial GaussiarRdvantage that pure state calculations can be effortlessly
D, state to the ubiquitous product of a lattice state and dranscribed into the density-matrix domain, with a minimum
phonon thermal state. Since the initial lattice state can be aff adjustments. Section V examines and discusses some
arbitrary distribution on a direct sum gérthogona] DFS, ~ Popular versions of Davydov’s model, alongside with sample
we obtain the following corollary, with reference to the Self-consistent examples, including a case with time-
theory of decoherence-free propagation. dependgnt mteracuo(externql pumplng A summary and

Let a system interact with a boson bath through a cou-concluding remarks are provided in Sec. VI.
pling linear in boson coordinates. Any distribution on a di-
rect sum of system DFS develops, when brought in contact Il. SELF-CONSISTENT DYNAMICS OF D; STATES
with the bath in a thermal state, into a [strongly entangled] AT T=0
Gaussian O state

Because the expression of tbg state is exactly known,
the development of the system-bath entanglement in such a H=H. +H% +W 1)
model can be monitored precisely. The result is a remarkable lat =" Tph '
counterexample to the standard picture of relaxation through,
thermal contact. Regardless of any intrinsic characteristics,

Let the lattice-phonon Hamiltonian be

ere

the bath is forced into a coherent, nonequilibrium state, while N-1
the DFS components of the system state evolve in an unper- Hia= E SnCECnJFVlat 2)
turbed manner. This confirms earlier claims that decoherence n=0

may produce in fact coherent staf8$, and therefore caution ) ) . ) . .
should be exerted in assuming that a heat bath remains at &gscribes theé\-site lattice, withV,,; subsuming all hoping
times in thermal equilibriun{9]. It also corroborates the INnteractions,

similar conclusion of a recent stud§0] of decoherence in a

guantum system interacting with[enacroscopi¢ measuring HO = Zwbib 3)
apparatus. When the correlations between distinct DFS van- ph q q

ish in time, the system is driven toward a statistical superpo-

sition of decoherence free, pointer states and we retrieve ia the bare phonon Hamiltonian, atl accounts for any
typical example of environment-induced superseledtidi]. lattice-phonon and/or anharmonic-phonon interactions. Let
But in another interesting limit, which arises under time-us search for self-sustained soliton stg$ in the slightly
independent interactions, the bath modes can be preparggneralized Davydo, ansatz
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emerge from the requirement that higher-order contributions
[W)y=2 |a)|Ba), (4 on the right-hand side vanish identically. As previously
“ hinted, we can expect the interaction to be limited to bilinear
terms in the phonon coordinates. But it will also become
apparent that the form of the effective equation of motion
and the self-consistency conditions for the lattice states
are shaped by this same requirement. So consider first the

contraction of both sides of EQ.(8) with states
|Ba>:eXF{2 (Baabd—Biabg) |10)on- () la’)|--Ngq---) carrying more than one phonon quantum,
d 24ng>1. After conveniently expanding the contribution in

W along displaced phonon bases and rearranging the terms,
we are left with

where the|a)’s are orthogonal, but not normalized, lattice
(vibronic) states, (a'|a)~68,/,, Z{ala)=1, and the
|B,)’s are coherent phonon states,

Here, the|a)’s are allowed to contain local excitations in
different numbers and are not necessarily confined to th
same site. Th¢¥') ansatz above is, thus, general enough to

cover both single-quantum and multiquanta solitons, as well > [(a'|HeJa)+(a’|( B W|B) @) —ifi(a'|a)]
as their eventual superpositions. The set of occupied states a«#a’

{la)}(ajw)y=0 is to be regarded as embedded into an orthogo-

nal basis{|a)} of lattice states; the unoccupiedy)’s, X+ Nyt gre | Ba)+ > (a'[{1q,alWIB)| )
(a|¥)=0, may be assigned by defaylg,)=[0),,. For ata',q
each displaced phonon vacuuf,), let us construct the 1
! ) X("'nq’,a""| q,a>

corresponding orthonormal Fock basis

| > H 1 T % on | > ( ) +E {;} <a,|<”'mq,a"'|W|Ba>|a>

R | P —(b—ﬁa)qﬂa, 6 a g

q

where| - - ‘Ng - ) carriesny , displaced quanta of modg
relative to |,8_D,). In _particular, |1q,a>=(b$—,3§a)|ﬂa>
denotes the first excited state of the displaced mqde nger the reasonable assumption that the form of the inter-
relative to the displaced vacuum|B,). The set action W limits the last sum above to a finite number of
{la)]-+-ng e )azyn, =0 ObViOUsly provides an orthogo- terms, a nontrivial solution will be compatible with the

X<"'nq’,a""|"'mq,a"'>:0' 9

nal basis for the overall lattice-phonon system. infinite  number of constraints(9) if and only if all
Extending the idea originally applied by Brown in Ref. quantities multiplying the nonvanishing overlap factors
[2], the conditions under which the stdt) of Eq. (4) is (.- ‘Ngr.ar |- -Kgq- - -) cancel identically. In particular,

compatible with the dynamics driven by will be derived  the terms under the last sum in ES) imply
from the expansion of the corresponding Sclinger equa-
tion

(- Mg g |W|B)=0, % My.>1. (10
d

i 5| W)=HIW) 7)

Hence,W can only contain terms ib, bg, andbgbq, , and

. L. . o must be of the form
in this displaced phonon basis. Indeed, substitution of the

explicit form of |¥), followed by some straightforward al-
gebraic manipulation, leads to WZ; (biwg+bgw{) + 2 bibg Ugq (13)
a.q

if

where the operatore/, and u,, act on on-site degrees of
a)|Ba) q AN Uqqr At ;

freedom only, agpolynomia) functions ofc,,, c,, and the
. hermiticity of W requiresu;,q= Ugq - Further, from the sec-
+O[§:,1 Baal@)|1q ) ond sum in Eq(9) it can be inferred that

. 1 . .
2 |)lBa)+ 5 2 (Boubia™BaePi)

(@'[(1q,alWIB))=0 ¥V q, a#a’. (12

-2

Hoc W+ S ol 1) 8.
& q i Ba) But since|a’) spans an entire lattice basis, the above con-

straints imply, in fact, that the occupied state$ must sat-
+2q f04Baal @)|1q.a)- (8) isfy eigenvalue equations of the form

_ _ o _ Gaal®)=7qdla), ¥V agq, (13
Since the time derivative df’) on the left-hand side of Eq.
(8) carries only terms in displaced vacuums and their firsfor G, ,=(14 ,/W|8,). In the ansatz11) for W, the opera-
excited states, it is foreseeable that the main constraints witors G, , read
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pated, from a balance of the left-hand side of ER).with
Gq,a:Wq+Z By alqq' - (14 similar, nonvanishing terms on its right-hand side. Indeed, let
4 us first contract Eq(8) with states|a’)|B,:). Taking into

Similarly, from the first sum in Eq(9) it follows that account condition¢15) above, we are led to

(@ [Hed @) +(a'|[(Bol WIBa) | @) —ifi{a’|a) =0, i@l @)= (| (Hoxt (B WIB)) )+ 2 | hog| Bl
V o' #a, (15 ‘
in . :
which shows that the occupieldy)’s, (a|¥)#0, should ~ 5 (BaaBga™ BaaBga) |(ala), (18)

evolve according to an effective Schiinger equation
which, in conjunction with Eqs(16), identifies

ifi] a) =[Hext (BalWIB) + Q][ a), (16)
in . .
with Q, a scalar functional, and Q= hwgl Baal*— 7(Bqa,3§a—ﬁqaﬁ§a)}- (19
q
(BaW|BLY=2 (ﬁgawq+ﬁqaw£)+ > BaaBa’ aUqq Likewise, contracting Eq(8) with states a)|1, ,/) yields
q 9.9’

[iﬁ.ﬁq/a/_ﬁwaﬁq/a/:Ka’|a’,>50’<a/|\p>

=2 (BaaWy+ B5aGad)
a dera de :<a’|<1q’,a’|W|:8a’>|a,>50,<a’\‘l/>

=2 (BiaWqt BacCaa): 17 + 2 {(@'[Hed @)(LqrarlBa)
ata’
It is already evident, from Eqg13) and (16), that the +(a' (1 o |WIBa)| @) —iHi{a' [a)(Lqr ar| Ba)}-

evolution of distinct lattice statgsy) is reciprocally decou-
pled, unless the eigenvalugg, , exhibit a dependence on
somef,, with o’ # a. It vy|ll be_seen shortly that.th|s is not Using again ansatél1) for the interactionV and Eq.(12) in
the case. At the same time, it can be recognized that thg,o form{a’|Gq 4| @)~ 8,:,, We note that

eigenvalue equatiord3) implement an effective decoupling e o

of the lattice-phonon interaction, very much in the manner of

the effective decoupling responsible for decoherence-free > (a'(1qr 0 |WIB)| @)

subspace$6]. The latter process requires that, for a lattice- @#«’
phonons interaction of the general formW{29U{P" | the

lattice state]W,,,) be such thatW{?"| W ,.)= u,| ¥, for

all k, and at all times. A subspace of lattice states complying

with these constraints is termed a decoherence-free subspace "
(DFS). Obviously, states belonging to a lattice DFS are com- X(1qr arl Ba)1= 2 Bqala' Wl a)(1qr ar|Ba)
pletely decoupled from the phonon dynamics and evolve un- ata’d

perturbed. A closer examination of our conditios3)

shows that, in fact, the present process differs from a true = E (a'(BalWIBa) )1y arlBa)- (21
DFS selection simply by the assumption of a coherent ansatz ata

for the state of the phonon modes. When the interaction i
Eqg. (12) is applied to any produdi)|B,), the result reads

bT
2 by

(20

Y [(lgralbliB)(@|Gyala)+ Boula' Wi a)

a#a',q

"t becomes apparent now that the sum on the right-hand side
of Eqg. (20) cancels by virtue of conditionél5), while the
remaining expression complements EtR), and shows that

Wl a)| B)= 18.) the exact form of Eqs(13) is

Wq+ 2 quauqqr) |C¥>
q’

Guol@)=[1Bga—tweBuulley, ¥ aq. (22

Finally, it must be verified that the occupied lattice states
o . N o remain orthogonal at all time a(t)|a’ (t))~ S, o] under
and it is immediate that conditiofil3) is just the proper the propagation described by Eq46). Indeed, it is imme-

condition for the decoupling of the first term on the right- giate that for any two occupied statelsy| W) # 0o’ | W)
hand side. It must be kept in mind, however, that we haver g

arrived at this result without any assumptions on the form of

+ Ba)s

% /3an$|“>

W or on the separability of thB, terms at the outset. iAo o)+ (o' /o W
The details in the equation of motiqi6) and the self- [(ela)+(a’[a)]=(a[{Ba W Ba)l @)
consistency constraint§l3) will follow, as can be antici- —(a'[{Bar|W|Bo)a), (23
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which, in view of Eqs17), (22), and(14), becomes succes- Let us now note that, while Eq$16) are just the usual
sively Davydov equations for th€D,] lattice factor states, Egs.
d (25) do not involve the a)’s themselves, hence, no param-
PRI ool o ok / eters defining these states can appear in the evolution equa-
Ihdt<a @) % [Baule |Wq|a> 'Bqa’<a |Wq|a>] tions for theB,,’s. In other words, a solution for thg,,’s,

when it exists, will not show a functional dependence on the
:z [BoufB ,(a’|u* ) parameters ofa), _and substitut_ion _of the explicit expres-
g derdle aq sions for theg,,’s into the Hamiltonian of Eq(19) cannot
. lead to nonlinear equations fa).
—ﬁqa/ﬂq'a<a'|uqq'|a>] To clarify the relation between this result and Davydov’s
soliton equations, rewrite the equations of motion for the

=2 BroBaaa'|ul la)—(a'lugy|e)] Bqa's as[Eq. (22), (a|a)=1]
q .
i1 Bga—hwgBaa=(|Gq la). (27)

] . A linear parametrization df) in terms of some fixed lattice
The Ia;t line above follows from.t.h.e condition thag,q basis stated,a)=S,a,|k), will induce, apparently, nonlin-
=Uqq in order to secure the hermiticity a¥. ear equations typical of Davydov's theory. In fact, it can be
To sum our results to this point, (@eneralizefiD, state  verified that Eqs(16) and(27) do recover thd®, form of the
|W) [Eq. (4)] describes a self-consistent lattice-phonon dy-soliton equations for the appropriate Hamiltonian and choice
namics if and only if of |«). However, Eqs(16) and (27) cannot describe a self-
(a) the interactiorW is of the form (11): consistent dynamics unless complemented by the require-

(b) the lattice statega) are driven by the effective ment that|a) also be an eigenfunction @&, ,. But, in that

Schralinger equation$16) and each satisfy, simultaneously, fafﬁ’ the averag(;e_ on the rigr}t-handdsi[?]e of () re?ucesf

a (large number of DFS-like constraints imposed by the 0 the corresponding eigénvalue, and the propaga i

eigenvalue equation@?) for the operatorS, ,,; becomes linear. It is interesting that although the exact form
q,a

. of Egs.(22) is known in the literature for certain extensions
© _the phon_on displacement parametgig, obey the of Davydov's mode[see, e.g., Refl14]], their interpretation
evolution equations ! : :
was merely as a particular type of nonlinear equations for the
can _ phonon parameters. Of course, the linear effective evolution
1 Baa—fi04Bga= Yool Bas W),V G, (29 of the lattice stategx) does not preclude, by itself, nontrivial
where v, , denotes an eigenvalue @, (assuming any ph_enomerja ir_1 t_he Iattice dynamics. Pro_vided appropriate so-
exist9 and we have indicated explicitly’ the dependence Or{ut_lons exist, it is conceivable that nonlinear ef_fect_s can yet
the set 0fB,,’'s and on the interaction factors, andug, - arise, and pe modulated by the phonon contribution. Howj
ever, the circumstances leading to such effects are, obvi-
As suggested earlier, self consistency is seen to requireusly, rather restrictive.
that the propagation of individuqk)'s and their associated The constraint thafta) be a(simultaneouseigenfunction
phonon parameter$3,,} be decoupled from similar terms. of the operator$,, can be understood also as a restriction
This rather strong result shows that, under quite general coron the allowed initial statda), as seen by substituting
ditions, a lattice-phonon system can suppoytstates if and | a(t))=U,(t)|a(0)), with U(t) the unitary evolution op-
only if it can support the component orthogoriay states erator corresponding to the effective Hamiltonian of Eq.
|V .y=|a)|B,) individually. In particular, it ensues that a (16). Further, for givena, the set of constraint$22) is

-0. (24)

given system can sustain stand&rg states equivalent to the single initial-state constraint
N
Ale(0))=0, (28)
|q,l>: 2 ‘Pncllﬁn”o)ex (26)
n=1 for

if and only if it can sustain on-site, single-quantum coherent o o o
stateg @) =c|0)e, B,). Even under such circumstances, it AQZJ dt>, [G;a(t)— Ya.(DI[Gq,a(t) = ¥q,o(D],
turns out that théd, states can only yield static lattice dis- 0 a 29
tributions[static “solitons”]. Indeed, according to Eq24), (29
(a|a)=const[consistent with the unitary evolution ¢&)]  \ith
and, correspondingly, the probabilitigs,|? in any self-
consistent, standar®, state[Eq. (26)] are conserved in Eq a(t)ZUL(t)Gq LU (D). (30)
time. The same holds true for higher-ordemultiquanta D, ' '

states based on on-site) states, as well as for their super- In this point of view, the existence of self-consisteDj
positions. As a corollary, mobile lattice distributions can states is conditioned by the existence of an appropriate sub-
arise if and only if the driving Hamiltonian accommodates space of acceptable initial lattice states, determined by Egs.
D, states with delocalized lattice components. (28)—(30). When such a subspace exists, the propagation of
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any D, state[Eq. (4)] with initial lattice states belonging to Obviously, from Eq.(31) one can retrieve the von Neu-
this subspacenaybe described by the generalized Davydovmann equation for the density matrix, which in superoperator
equations(16) and (27), but, as noted above, the apparentform reads 7 dp/dt=(H—H)p. The gauge generatét does
nonlinearity of the underlying lattice dynamics cancels idenmot bear any physical significance, but, as will be seen in the
tically. Equations(27) reduce in fact to Eq425). In Sec. IV next section, may prove instrumental in streamlining the cal-
it will be shown that self-consistent propagation at finite tem-cyjation, although it can suffer restrictions under a given
perature further restricts the allowable forms of lattice-, o, fory. Note that whileH can contain only direct su-

phonon interactions, and sets final bounds on the subspacerg roperators generated by the usual observdblesreation

permitted initial states. and annihilation operatofsK can only contain the corre-
sponding tilde conjugates.
If the space of linear operators is endowed with the Hil-
The approach of the previous section will be extended td?€t space structure induced by the inner product
the finite-temperature domain in a framework that borrows
heavily from the thermofield dynami¢$FD) construct12]
[a somewhat related formalism is detailed[#8]]. Specifi- . ) nn
cally, the total density matrix for the lattice-phonon system is? SPans the sphere of unit norm operatofs| ) =1], and
. N o - the average of an observable becomes
written asp=yy", where the nonhermitian state operajor
is defined up to a unitary gauge transformation of the kind

y—yU(t), UUT=UTU=I. In other words, any two dis-

IIl. DENSITY-MATRIX FORMAL FRAMEWORK

(o|lo)=Tr(c"w), (34)

Tr(Op)=Tr(0yy")=(7|0[7). (35)

tinct state operatorg,y’ corresponding to the same density An orthonormal operator bastsr}, (o|o’)=8,,., deter-
matrix are necessarily related by’=yU(t). From the mines a basis representation §afas
evolved density matrix, written in the form
. i i y=2 (alye, (36)
p(t)=ex —%Ht Y(O)U(H)U ™ (t)y*(0) ex %Ht , v

and similarly for observabldsuperoperatolis Special atten-
one can infer that tion receives the operator equivalent of the Hilbert space
Fock basis, which implements the operator Fock spaca. If

i anda™ are boson annihilation and creation operators for the
Y(t):ex% N %Ht} Y(OU() Hilbert space vacuurf0), the annihilation and creatidisu-
peroperatafcounterparts for the operator vacu{ipnojectoi
satisfies the von Neumann-like equation |0)(0| area,a and, respectivelya®,a". The corresponding

operator Fock basis follows simply as the exterior product of

cdy .. vectors of the Hilbert space Fock basis,
ih—=Hy—vyK, (31
dt
In,f) = ——(a")"@")"o)(0|
with K the [arbitrary] hermitian generator of the unitary ' Jnim!
gauge factotJ(t). In superoperator notation, E1) reads
1
— +\n m_
d) . = (a")"o)(0la™=[n)(m|. (37
g =(H-K)%, (32) ynim!

Applying now the central idea of TFD, note that a boson
where H is the superoperator defined by the Hamiltonianthermal state operator
H, Hy=H7y, andK is given byK y=yK, [H,K]=0. As
in TFD, the tilde notation is used here for the tilde conjugate
of a superoperatoA, linear or not, introduced d4.2]

y1=2Z Yexf — (hwl2kgT)a"a]

is related to the zero-temperature vacuum by the unitary,

[A(&)F _ :&( Bﬁ). (33 tilde-symmetric(supejtransformatior 12]

yr=U(T)[0)(0

R R , 38
If A(a)=Ac«a for some linear operatoA, Eg. (33) yields 38
A(a)=aA", which reduces tA(a)=aA whenA is self U(T)=exd (a*a* —aa) 0],

adjoint. It is immediate that the tilde operation is distributive

against the usual addition and multiplication of linear operawith tanhf=exg —fw/2kgT]. Hence, it is itself vacuum for
tors, but antilinear with respect to the multiplication by sca-the thermal annihilatiofisupejoperators

lars. Also, tilde-symmetric superoperators map self-adjoint 5

operators onto self-adjoint operators. A=U(T)aU*(T)=acoshd—a" sinhg, (399
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A=U(T)aU*(T)=—a" sinhg+acoshd. (39h torU, (a|a’')~3,, , one hasa’a® =5, ,/a)(al and Eq.
(43) acquires the simpler and more transparent form
Just as in the zero-temperature case, the corresponding op-
erator Fock space can be constructed on the “thermal
vacuum” y; by using the thermal creatiofsupejoperators
A" andA*. "
The advantage of using the state operatamd Eq.(2.2) X ex;{ — ﬂbJ‘b extl — Bqabi+ B bl al.
X : ; K~T ~a-d qa~q " Pgatd

over the density-matrix and the von Neuman equation comes B
from the evident analogy between this framework and the (45)
usual Hilbert space formalism. In addition, for the problem at
hand, our Gaussian density-matrix ans@ie belowhas a If the [unnormalized states|«) are set proportional to the

R 1
p= 2 | a)H Z_eXF[,Bqab;_ Béabq]
o q q

simpler, if somewhat abstract, expression for on-site, one-quantum statks,)=c, |0), expressior(45) re-
covers Davydov’s original finite-temperature angdt&]. At
IV. SELF-CONSISTENT DENSITY-MATRIX zero temperature, the phonon contribution reducesyfo
COHERENT-PRODUCT [D,] STATES —|B){0|pn and the ansat#40) yields

The zero-temperatur®; ansatz for pure wave functions
(state vectorsis generalized here to the product ansatz

y=2 @l Ba)(0lpnU-
y=> ay,U (40)  For lattice factorsa=|a)(x|, with a common{x|, (x|x)
“ =1, the state operator becomé&[2a|a>|ﬁa)](x|(0|ph

for the state operator. In direct analogy to the pure stat@nd corresponds to a pudl state of the type4). Even
. - more remarkably, when all displacement parameters vanish,
ansatz(4), the lattice state operatorsare assumed orthogo-

nal, but not normalized, in the sense of the operator scaldfaa=0, all v, reduce _to the .thermal s_tate operat?f
product @|&’):Tr(&+&,)~5a’ai while the phonon state =Il4vq7, and the density matrix43) acquires the familiar

operatorsy,, are given the thermal Gaussifgoheren} form product form

~ ~ ~ ;):;)Iatﬁph,Tv (46)
ya:H yq,a:H eXF[:Bqaba_B;abq]')’q,T: (41)
! ! where  pa=[3,el[3 0] and Pt
with =Hq(Zq)’f exr[—(ﬁwq/kBT)bgbq]. Since the lattice state op-
erator[ 2 ,«] is quite arbitrary, the ansatz0) is seen to
N =iex _ hoyg b'b (42) cover all situations where a product state as in &)
Ya.T \/Z—q 2kgT "979)" evolves into an entangled mixture described by EP).

Note that the ansat0) accounts for a much wider class of
The overall conservation of probability requirésl(gd&) evolutions, becau;e, in general, the dlsplace.ment parameters
—1. Also, as in the pure state case, tis will be consid- Baa N€€d not vanish simultaneously at any time.
q bset of h | latii ; ~vand Let us now introduce, for each phonon maglethe ther-
ered a su sg o.anAor ogonalia |<?e opera .or Hasjsan mal annihilation(supejoperators
the noncontributingy’s, («|y)=0, will be assigned by de-
fault null phonon displacementg,,=0. _ _ By=byq coshaq—Eg sinhé,, (479
The ansat£40) corresponds to the density matrix
. e B,=—b! sinhg,+b, coshd,, (47b)
p=2 (a'a")(yu¥h), (43 T
ane with tanhg,=exd —fwy/2kgT]. Upon substituting the recip-
which can be understood, in general, as a strongly entangladcal transformations int@q'azexq,eqabg— Bgabq]&q;, it

[incoherent superposition of phonon Gaussian states. In4g geen that} =1 ; represents a displaced vacuum for
. . . o q q,a
deed, averaging over the lattice degrees of freedom yields thg = .
q andBy, since

phonon density matrix as

. N 1 hw By V= By COShOy Y4 (489
pon=2 (ala)]] Z—exp[—ﬁ(bg—ﬁ;aqu—ﬂqa) : e e

a q ~ A ) -
(44) qua: _Bqa Slnhgq’)/a i (48b)

When the lattice factora correspond to mutually orthogonal The displaced, orthonormal Fock basis constructed for each
pure states, i.eq=|a)(a|U for some common unitary fac- 7y, will be denoted - - ‘Ng.asMgo- - +) and reads explicitly
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5 which is to be contracted, successively, with each of the
|- Ng Mg o H \/— \/—(BJr B COShA)"M basis operatoral- - -Ng 4 ,Mg.q - )}

The results of the preceding section can be extended

: - traightforwardly, mostly by obvious substitutions.
x (BI+B* sinhg)May,, . 4 s : : . .
(Bq+ Bqu SINN6) v, “9 For instance, the contraction with  operators
As in the pure state framework, the set{a’|~-~nq,a,,r~nq,a,-~-)} carrying more than one excited
{&|--~nq,a,r~nq,a~-~)} provides an orthogonal operator basis “quantum,” i.e., Xy (ng+mg)>1, shows that the

for the total lattice-phonon system, and the analogy can bgteraction-gauge termvif —K) must be such that
carried further, step by step. The self-consistency conditions

for the ansat240) can be derived now from the expansion (-- 'nq,a-ﬁ“q,a' —[W=K]|y,)=0. (54)
of the associated equation of motidi82) in the basis
{a| N, mq .Y Hence, the allowed phonon dependencies are zero order, first

But a word is in order first regarding the gauge generatoprder, or bilinear of the typdB,,, B{By and the tilde
K. One should note that substitution of the reciprocals ofconjugates. However, it can be checked that due to the spe-
transformatlons(47) in the bare phonon HamiltoniaH,,  cific character ofV andK [as functionals of right-acting and
=3 ﬁwqb b, produces nondiagonal products Bfs and left-acting operators the bilinear terms can only arise

B'’s, which may prove cumbersome. But, if it is observed, asaccompanied by _prohibited terms of the form

in TED [12], that (coshéy)(sinh6,)BIB!, + and (costt)(sinh6y)B.B, . For
f e . <t this reason, the allowed expressions Wrand K at finite
bgbg—bgbg=ByBq—ByBq. temperaturefsinh 6,+0] reduce to the very simple fornfi

) ) terms of zero-temperature operators
the gauge generator can be suitably rewritten P peralo

~ - e W= wgb!+w!b 55

K—K=2> fwgblbg, (50) % (Wqbqg + Webg) 59
q

and, respectively,

which brings the free phonon Hamiltonian for E§2) to the P y

invariant form

R=R|at+§q: (Vb§+Viby), (56)

Hop— Hpn= 2>, Awg(bib,—bib,). (51)
P g T e where the zero-order term W is assumed subsumed in
Hiat ande, wg, andv, are lattice operators, functionals

The equation of motion(32) acquires, thus, the particular
d 32) acq P of c, andc only. At zero temperature, bilinear coupling

form
terms can stlll coexist and the outcome parallels the results
dA of Sec. Il. Let us consider here the finite-temperature case.
h T =[Hjq+ W+ (Hpp—Hpp) —K]y. (52 From the same contraction procedure, it also follows that

Subsequent substitution of the product ansd) pro- (a'[(Lg,al W=K| 7o) @) =(a’|(1q W =K][7)]a) =0

duces V q, a#a’ (57
da. . . “n and
ih2 GrYat Eq [BqaBta— PaaBtal Ve
_ i Iﬁ(&' a) = (@' [Hiad @)+ (@'|(vo W=K]v0)| @),
+ih Y, Byacoshbgally ) -
@ V a#a', (a|ly)#0. (59
—ihY, Bi. (sinh8g) a1 ) Using expressionés5) and (56), one obtains from Eqg57)
aq

5 s o (a'|wgla)coshfy— (o' [Vi|a)sinha,=0,
= (H a)7a+ (W_K)a7a NN
< a Vg, a#a’, (a%#0, (59

+ 2, gl Baal 2@ Vet 2 fiwqBea(coshiy)ally o) (a'|wg |a)sinh@— (' [V @) coshd,=0,
a,q a,q
V q, a#a’, (aly)#0, (599

+ > hwyB% sinhb,all, ), 53
a% @4Bga q@1q.0) (53 and similarly,
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(”ya|W—R|”ya>=§ (Bt WqT BaaWy) —Kjar,  (60)

which, inserted in Eq(58), leads to

[ ~,|da -, -~
ih a E =(a |Hex_KIat

+§ (B aWq+ BaaWe)| @),

YV a#a’, (aly)#0. (61)

As before, sincex’ spans a complete lattice basis, E(9)

and (61) indicate that contributingy’s, (a|y)+#0, satisfy
operatorial equations of the form

(cosh@g)Waa —sinhgg)Via= 7 .,

(629

(sinh @)W} — (coshfg)Vga= 1, 4, (62b)

and, respectively,

da - A
'ﬁaz Hlat_KIat""% (ﬁganWLﬂan;)JFQa}a,
(63

PHYSICAL REVIEW E 64 051907

Similarly, multiply Eq.(62a on the left by @* sinhé,), and

the adjoint of Eq.(62b) on the right by &*coshaq), and
add again to get

(costtfy)vq(a’a)—(sint? §y)(a* a)vy=0. (66)

If we recall thata™ a=Uaa*U] for some unitary trans-
formation U,, and introduce the diagonal decompositions

a&T:_EK|XK,C¥>VK,DZ<XK,DZ| and &T&:EK|;K,CK>VK,H<;K,DZ|'
With | X .a) = Ul Xx.a), from Eq.(66) it follows that

[(COSH ) v, o— (SINF 6) vk,a]<?K,a|vq|?Kr,a>=0(,6

hence,
<;K,alvq|;1<’,a>:<;K,a|vg|;1<’,a>:0 (68)
whenevery, ,#0 and/orv,. ,#0. But then
avg=avi=0 (69)

must hold, and Eq962) are so reduced to the simpler form
Woa= (i Bga—hwoBea) @, (709

Wha= (i By —TiwgBaa)* a. (70b)

where g4, 7,0, andQ, are scalars. The explicit expres- Equations(69) show that all gauge couplings, compatible

sions for the latter can be identified from the contractions o

Eq. (53 with the basis operatora’|1y o), a'[Iqr.40),

(Nith the ansatz40) for y give null contribution to the prob-

lem and cannot be employed for an eventual alleviation of

and, correspondingly&’ﬁza, . A straightforward calculation computational complexity. Finally, use of the quasidiagonal

yields

7g.0=(@|(Lq ol W=K|y,)|@) = (i Bgo— h@qBqa)cOSHE,,
(643

Nga=(a|(1qW—K]|¥,)|@)

= (i1 Bga— T 0aBqga)* SiNN 0y, (64b)

da “ “ A - a A
a)—<a|H|at|a>+<a|<ya|W—Klmla)

Qazih(&

if . .
=2 hoglBaul’= 5 2 (BaoBlu BaaBi). (69

After substituting expression®4), Egs. (62) can be rear-
ranged in such a manner as to separate the contributions

wq from those inv,. To this end, multiply Eq(623 on the
right by (Ex*cosheq), and the adjoint of Eq:62b) on the left
by (—a" sinhé,), and add to obtain

(cosl? fg)wy(aa’)—(sint? 6y)(aa)w,

= (i1 Bga—hwoBqa) (aal).

representationa== | x, o)V o{X.o| [cOrresponding to

the diagonal representations for™ andaa given abové
in Egs.(70), leads to

Ve alWol Xe.a) = (17 Bya— T 0aBqa) [ Xi.a)] =0, (718

Ve Wol Xa) = (i By =T 0aBga) * [ X.a)] =0,
(71b

and reveals that the statég, ,) contributing to [Via
# 0] must necessarily satisfy the eigenvalue equations

Wol X o) = (17 Bya = 04Bga) | X.ae) (728

WX ea) = (17 Bga—wgBaa)* Xua)- (72D

Finally, in view of Egs.(70) and(55), the effective evolution
Q. (63) for « reduces to the unperturbed form

da ~ -
i g =[Hiar— Kia— 0,1 73

It is immediate that Eq(73) preserves the orthogonality of
distinct a’'s, i.e., d(a'|a)/dt=0, as required by the ansatz

for .
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While the self-consistency constraints for the pure state When the eigenvaluegs, , are time independent, E(/5)
case assumed the form of modified conditions forshows that the displacemengs, perform simple harmonic
decoherence-free propagation, E(9) and(70) show that oscillations around displaced equilibrium positions,
in the finite-temperature case, self consistency corresponds
exactly to the conditions for decoherence-free decoupling. Bon()=
The reason for this is seen in the effect of the interaction qa

term (W—K) on anyD, product, i.e.,

Mg, a

il Ha.a
fiwg

e—iwqt_ )
hiwg

(77

Bqal0) +

In the peculiar case when the initial displacement brings each
~ an A - - ~ mode over the equilibrium position, the reduced phonon den-
W-K)ay,=a % (Hq,aPqt 1g,oPg) Ve |~ [Kiat@] Ve, sity matrix becomes time independé¢sée Eq(44), and take
(74 into account that |e) =const, according to Eq73)]. But
. _ _ the stationary phonon state is not exactly thermal, unless the
which means that the interaction becomes decoupled, regargverall state is a simplB, product, and the lattice evolution
less of the exact nature of the state for the phonon subjs confined to a single DFS. Furthermore, since all general-
system. Hereyq , denotes the eigenvalue of, correspond-  jzed amplitudes 1,|y,) are constant in time, the lattice
iNg t0 @ [q,o= 7q,q/COShE,]. reduced density-matrig.; ==, o/ (7ol var) @’ a' evolves in

We may conclude now that a finite-temperature state opan unperturbed fashion, up to tfieonstan} energy shifts
erator of the form(40) is an exact solution of the evolution () e,

equation(52) iff

(a) the lattice-phonon interactiow is linear in the pho- ;’Iat(t): 2 (7a|ya,)ex%_ I_(Hlat_Qa,)}
non degrees of freedofiEq. (55)]; aa’ h

(b) the latice operatorsa are state operators on A R i
decoherence-free subspaces of the lattice subsystem, i.e., on X a’(O)a*(O)ex;{%(Hm—Qa) .

[degeneratecommon eigenstates of, and W; [Egs. (70
and(72)], which are, simultaneously, solutions of the evolu-  Ag for pure states, the evolution of self-consistent,

tion eqﬁatiorrll(YS); disol t I density-matrixD, states(40) is disentangled into separable
(0) the phonon displacement parametfig, evolve ac- evolutions of the componei®, statesay, , hence, no self-

cording to consistent model can generate equations of motion coupling
iz _ distinct D, contributions. Again, no nonlinearity survives in
ifBya— N = . 75 2 : ’ .
Baa=0qBga=Ka.a (79 the equation of motion for the lattice states, and standard
In addition Davydov distributions, for whicha=¢nc|0)axal, for

(d) compatible gauge generators act on the lattice statesome orthonormal y,) [(XalXa')=084a], can generate,
only, Ka=K .« for all a, and the lattice energy shi?,, in  when self consistent, only stationary lattice configurations

Eq. (73) amounts tdsee Eq(65)] [(a|a)=|¢,|?=consi. A similar statement applies to mul-
1 tiguanta, on-sitdD; states and their superpositions. Also, in

Qo)== > (taaBr,+ 1k Baa)- (76) ~ complete analogy to the pure state case, the relation to the

24 et datd D, Davydov soliton equations becomes apparent when the

Obviously, this result is strongly reminiscent of the pureequatlons of motion for and fq, are cast in the form

state case examined in Sec. Il, but involves a simpler form of A

W and the additional constrairi72b) on the lattice states, ihd—a:[H| Rt (Yo W]y ) +Q e, (783
which calls for exact decoherence-free propagation in the dt a et e “ o

lattice subsystem. It should be noted, however, that this con- . . A

straint vanishes in the zero-temperature limit, when giph i Baa—hwaBaa=a|Wgla). (78b)

=0, and the pure state case of Sec. ll, for linear phonon

coupling, can be recovered identically if needed. For the parf « is given a linear parametrization, one can recover
ticular situation when the initial phonon displacements areDavydov-like equations, but the self-consistency constraints

null, Bq,=0, and the initial state is a product between a7)) for o reduce the interaction term in E8a) to a scalar
lattice distribution and a phonon thermal statg(0) contribution. Even this scalar cannot have a nonlinear depen-

=Z)|at(0)ﬁpm, one obtains the following interesting theo- dence onw, since the right-hand side of E(Z8b) becomes
rem, referred to in the Introduction: independent ofy.

A system initially in a product state(0) = pj5:(0) ppn,T At last, the self-consistency conditioig2) can be stated
evolves into a Gaussian, generalizZed state given by the alternatively as the initial state constraint
ansatz(40) if and only if the interaction is linear in the pho-
non coordinates and the initial lattice state is a distribution A,a(0)=0, (79
on a direct sum of orthogonal decoherence-free subspaces,
provided any exist. with
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3 : Hence, in all cases that support a smooth extension to finite-
Aa:J At [(W] o(1) = i (D) (Wg o(1) = g, (1)) temperature conditions, the self-consistent lattice states are
o effectively decoupled from the phonon dynamics, up to a
W (1) — 1w (1) —u* ()], 80 phonon modulated phase factor.
[Wa.a(t)~ a1 ](Wq o)~ £,0(1)] (80 In fact, the remarkable phenomenon highlighted by
and decoherence-free propagation is that coupling foanequi-
librium] thermal bath need not necessarily result in decoher-
wq,a(t)=U§(t)wq(t)Ua(t), (81 ence to a mixt, statistical state. In particular, any self-
consistenD, product with a pure lattice factde) displays

whereU (1) is the unitary propagator corresponding to thea finite-temperature density matrix
equation of motion73).

Recall that the above results apply to the finite- i
temperature version of the ansd®0). It is interesting to P(t):exﬁ{_g"‘latt | a(0)) pph({Bgat: T)((0)]
keep in mind that the zero-temperature limit also provides a
density-matrix generalization of the puif@, states, for [
which the acceptable lattice-phonon couplings resume ex- Xexr{gHmt},

pression(11), bilinear in phonon coordinates. This allows,

conceivably, an extended class of nontrivial models and thavith

problem can be approached in the same manner. Neverthe-

less, only models with interactions linear in the phonon co- _ 1 hog
ordinates admit self-consistent, finite-temperature exten- pph({'gqa}’T)_E[ Z—qex  KkgT (b= Baa(V)]
sions, and thus bear realistic physical significance. One may

note that both the original Davydov moddl5] and all its “Th.— ¢
studied version$4] belong to this class. [0g= Bqa(D]]:
V. DISCUSSION AND EXAMPLES It obviously maintains the pure character of the lattice state

) o ) ~ throughout the evolution, provided the time dependence of

For the reasons outlined above, we limit the discussion tehe displacement parameters complies with the self-
models with linear phonon coupling, and extend the selfxonsistency conditions. For a simple concrete example, let
consistency conditions fgpure lattice states to include the the |attice system be coupled to the phonon bath in a site-

constraint homogeneous manner, such that, e.@,=xq=qclcy
L = xaNiat, and let the unperturbed lattice Hamiltonian con-
Wg @)= (i1 Bqa—hwgBga)* | ), (82 KXo be! attiee Hamitone
serve the number of lattice excitations, i.¢wq,Nia]

and place the stater) in a DFS of the lattice. In other =[W$,N|at]=[H|at.N|at]=0. Then any lattice state with a
words,|a) can be a self-consisteB, factor if and only if it ~ well-defined number of excited quanta qualifies d3,afac-

lies in a lattice DFS. The properties of the decoherence-freeor state, and foN,,,|a)= v|a), the associated equations of

subspaces have been studied in detail in connection Withstion for the displacement parameters réa@, — % w3
quantum computation theory, and the interested reader is re= ., ith the trivial solution S (t)q:[ﬁ %0‘)4
q qa qo

ferred to the available literaturés,7]. Suffice it to say that + (vXq/hwg) Jexp(—iwg) —(vxg/hwg). Hence, although the

their existence is determined by the symmetry properties Ofgice interacts with dthermal bath, its state is propagated

both the unperturbed Hamiltonian and the system-bath intet;..qing to the unperturbed dynamics, and if the original
action, and thus, a proper understanding involves a Lie

| ) State is a pure state, its condition is preserved in time. On the
algebraic/group-theoretic framework. However, for an expeqher hand, the bath evolves into a superpositon of Gaussian
dient assessment of various Davydov-like models, the brie, tates, even when initially in a thermal equilibrium state

pedestrian characterization given below proves satisfactoryw (0)=0]. Only if at the outset the bath modes are dis-
qa :

_ Let us start by noting that instead of E@2), it is suffi-  j3ced” directly over the displaced equilibrium positions
cient to require thata), which according to Eqs22) and vxq/fiwg), does the bath remain in a stationary state. The
(14), satisfiesng|a) = (ifi Bga — h wgBqq)| @), must belong to  effect is absolutely robust under variations of the interaction
an eigenspacs of w, that is also left invariant byv. In-  strength, i.e., stronger coupling cannot induce decoherence.
deed, sincav, reduces to the identity o, up to a scalar Returning now to the formal characterization of
factor, if wg leaves this subspace invariant, it also must bedecoherence-free propagation, observe that if the lattice cou-
proportional to the identity, by the complex conjugate factor,plings w, andw; are time-independenfte) must dwell in a
and the adjoint eigenvalue equati@®) is recovered neces- time-invariant subspaceorresponding to time-independent
sarily. Since|a) belongs to a DFS, the equation of motion eigenvaluesu,] and, sinceH ,, alone drives the evolution
for | @) reduces to the unperturbed fofisee Eqs(16), (17), of |a), this subspace must also be an invariant subspace of
and(19)] H,a; [the latter can be time dependénto see this, let us

) assume that the eigenvalye,, corresponding to«a(t))
ifilay=(Ha—Q,) ). (83)  changes parametrically in time, such that the time derivative
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of Wyla)=uq.la) readSWq|a>=.,u,qa|a>+(d,uqa/dt)|a>.

If |a, ) denotes the component faf), which is orthogonal to
all eigenvectors of/vq(wg) for the eigenvalugug, (,ua‘a),

thenwg|a, ) = pqql @) )+ (dug,/dt)| ). But the latter equa-
tion implies that(a|wy|a, )= (duq,/dt)(a|a)=0 [since
(a|wg=pq.{al], and thus @ug,/dt)=0. In fact, the re-
quirement that self-consistent stafe$ must lie in an invari-

PHYSICAL REVIEW B4 051907

such that we obtain the following restricted criterion:

A time-invariant common eigenspace S of gflisra DFS,
i.e., is left invariant by both i, and every VQ if and only if
it is contained in the common kernel of all commutators
[Wyq ,wa] and[H,;,wq]. In that case, S is also in the kernel
of every [Hi Wil [ie., [wq.w] ]la)=[Ha Wqlla)

_ TN — -
ant subspace of the lattice Hamiltonian extends to all cases [Hiat:Wqlla)=0 for every q and everye) in S].

where the couplings/, have time-invariant eigenspaces, but

not necessarily time-independent eigenvalllesy., when

The above can be given a proof independent of E&.
Indeed, assuming th&is time independent, niv; andH 4

Wq:Eann(t)CgCn]- Applying the same reasoning, it follows leave S invariant, for any|«) in Sit is true thathqua’>

that in such situations, the time dependence of the eigenva Man$|a>=Wan|a)

ues corresponding to a self-consistéa} is limited to the

intrinsic time dependence implied by the form of coupling, S, (,8|Wg|a>=0 whenever (B8|a)=0, and (a’|W$|a>
Le., (duge/dt)=(dpqa/dt). In the most restrictive situa- =pug. (a’la) for all |@) and [a’) in S Hence,w

and  similarly,  HjWg|a)
= pqaHiatl @) =W¢H o @). It is also true that, for alla) in

|a)

tion, when|a) is a nondegenerate eigenvector for at Ieast:,uz;am) for any |@) in S But then H,wgla)

onewq(wg), then it can be solution of E¢8J) if and only if
it is also a time-independent eigenstateHyf; .

= 15, Hiadl @)= WiH ot @), becaused | @) is necessarily in
S Conversely, ifwg,wi]|a)=0 for all [a) in S thenw| )

The necessary and sufficient condition that a commorg i g <a’|W;|a>=,u; (a'|a) for all |a’) in S and

eigenspaces of all w, and Wg be a decoherence-free sub-

space, i.e., that it remain a common eigenspace ofwlie

andwg’s under the dynamics driven by the unperturbed lat

tice Hamiltonian, is that everjr) in Smust also satisfy

i p gy
[ el + 0 )= 252 g, (@43
i aw;! du*,
(;—[H.at,w;]+ﬁ—f ()=~ (1)), (84D

for every g, at all times. The proof is trivial. Leta(t))
evolve according to Eq.83) and satisfy w,(t)|a(t))
= pq.q(t)|a(t)) at some instant. If wg(t+At)|a(t+At))

= tqo(t+ At)|a(t+At)) also holds, then one has, to first

order inAt,

. ow,
Wo(D]a(t) + —=[a(t)

Wq(D)|a(t))+ At

g
Tlav)

= fiqa(D] @)+ At] pg (D] a(t))+

which in view of Eq.(83) yields Eq.(84a. Conversely, if
|a(t)) also satisfies Eq843 at the same instartf then a
slight rearrangement of terms gives

d d
gilWaOla(t)]= gluq.uOla®)],

andw,(t+At)|a(t+At)) = puq o(t+At)[a(t+At)) follows
necessarily. A similar reasoning appliedvté verifies con-

W$|a>=,ua‘a|_a). And if [Hya¢,Wgll@)=0 for anyla) in S
thenH 4| @) is an eigenvector ofv, for the eigenvalugey,

"and must be inS It is also immediate thatHa,,wi]|e)

=0 holds too.

Virtually all studied versions of the Davydov model dis-
play time-independent interactions, and therefore fall under
the incidence of this prescription for self consistency. For
example, the general Frohlich Hamiltonian

H=2> Jnichcnt X fiwgblbg
mn q

+ % fiwq(Xanbi+ X&nba)Chcn (85)
employs the couplings
WqZhwq; anCECn, vV q, (86)

which obviously satisfyf w, ,Wj;]:O and have as eigenvec-
tors the unperturbed on-site Fock states, for the discrete ei-
genvaluesuqn=f wgxqn- If all xqn are nondegenerate for at
least someq, as happens in the proper Davydov model,
where xqn= xq€'""%% the lattice Hamiltonians admitting self-
consistentD, states under the interactiof®6) can only be

of the diagonal formH,,,==e,c.c,. This is, of course,
the well-known result that th®, states are exact under the
phonon-lattice interactio86) just in the limit of vanishing
hopping between monomers. Only when phg, collapse to
degenerate values, e.g., in the low-frequency limit, when
ga—0, can nontrivialD, states appear for the Hamiltonian

Wq to S changes in time only by a time-dependent scalaljow-frequency limit, the phonon modes must belong to an

multiplication, wg(t)|s= A (t)w4(0)|s, and

dpga
S (1),

IWq _
— )=

optical band, whereas the Davydov model uses specifically
acoustic modes.

The situation does not improve when hopping terms are
added to expressiof86), to obtain
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Wq=%0q2 [XGHCACh+ X (Che 1CnF CaCni )] H=2 scicn—J2, <cﬁ+1cn+c§cn+1>+§ hwgbibg
:ﬁqu [Xél)CECn +% ﬁwq(anb;+X§an)C;r1Cn1 (89
n
+x{P(chy et clcni) 1€V q, (87)  to which we add an external pumping term of the form

_ T * T *
as done by Taken[d 6], Todorovicet al.[17], Bartnik et al. Woump nzq hog(xanPg™ XanPa) n(t) ot &n (t)Cn).
[18], or Pand 19]. To the contrary, in this case, andwg no (90)
longer commute, and do not share eigenvectors, which comz <, 4 case, the corresponding couplingsare readily
promises self consistency from the outset. For instance, withyotified as
the translation invariant ansatz in the second line above, one

obtains
Wq= ﬁwq

2 Xan(Ch+ CE (O Cat Ln(D)]

, (91)

[wq,w;]=ixgl)§n: (clenri—cliicn) —En: XanlZn(D)]?

satisfy [Wq,W;]=0, and have obvious time-dependent

+i (2) t _ At B . :
“a zn: (Cn-1Cn+17CnraCn-a)  (89) eigenstates. Let us consider the ground state

. |a(t)) =€« exp[—E (En(tea=Eh(te )}on :

with  «P=21m}P(x@)*(1-€9]  and «P= R
—2|x{|?sin(@a). But although w,,w{] is diagonalized by (92
the simple Fourier transformation,=(1//N)Zqcqe'®"® Since|a) must be simultaneously a solution of the unper-
and can have null eigenvalues, none of its kernel states is g{j;ped problem

eigenstate ofv, or Wé. As for the proper Davydov model,

self-consistentD, states can only appear in the low- __ d|a) t + +
frequency limit, provided the phonons belong to optical '* ~q¢ — %;] 8CnCn_Jzn‘z (Crs1CntCrCni1) —Qy|la),
modes. (93)

In view of the above, a search for improved wave func-
tions has no chance of recovering a self-consistent model asis necessarily a product of coherent states for the lattice
long as the structure of the Hamiltonian is not adjusted tacnormal modes, with a phase factor
support decoherence-frde, states. The partially dressed
state, introduced by Brown and Ivi20], which belongs yet
to the standar®, class, can yield a better approximation for
the exact dynamics of an initi#dd, configuration under the
Davydov Hamiltonian, but does not make any progress toHence, the pump-induced displacements must amount to
ward a self-consistent model. The same holds for the cohein(t) == 4{q(0)e'"%%e ™%, and satisfy
ent state used by Wanet al. [21] in their vibron soliton dc
model, and for Pang’'s quasicoherent wave functjdn e
=1IN[1+Z,0nC+ 121 (Znench?]|0) e [19]. In  these gy = ebn™ n-1t o), ©3
cases it suffices, in fact, to note that the interacti@® and
(87) commute with the lattice number operatoN,,;
=Enclcn, hence, any eigenvectors are also eigenvectors

N|at. But a coherent or quasicoherent state is not an eigen-

vector ofN,,,, and cannot generate a self-consis@pistate
even in the low-frequency limit. Yet the underlying idea, that
the lattice statéa) could be a coherent stafter an approxi-
mation thereof, does provide a good starting point for the and apply at both zero and finite temperature. This is a
construction of a nontrivial self-consistent example. simple example showing that external pumping can be in-
For instance, consider the widely used version of thestrumental in maintaining the lattice in a pure coherent state
[time-independent Frohlich Hamiltonian for a one- at arbitrary temperature. Moreover, it also verifies that a
dimensional lattice of bosonic oscillators with nearest-Frohlich-like pumping effect can be produced, albeit on the
neighbor hopping, bath modes, due to the nonlinearity in Eg6). Indeed, let us

0,(t)= %—J;dma(r). (94)

where the lattice frequencies rea€l,=e—2J cos(ja). The
orresponding equations of motion for the phonon displace-
ents are now

dBqa

=g =hoq Boa= 2 Xal (D2, (90
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assume, as in the Davydov model, that the bath phononshere the renormalized energies and coupling constants read
belong to an acoustic branch Mfdistinct modes, such that ¢ =¢—J, g,=¢+J, Xq.1=Xq—Nq @nd, respectivelyyq.
Xan=Xq€ '1"* and wy=w_,. Taking advantage of the de- ' '
generacy of the lattice spectrum, let the external pump act
the lattice frequency Qq, such that {,=({,€'°"
+¢_e 19"t Byt then the driving term for the pho-
non displacements in E§96) amounts to

=Xq+\q- Since[H,clc,]=[H,clc,]=0, the interaction
fLith the bath does not mediate an energy exchange between
the monomers, but affects only their coherent correlations
through a process of dephasing. In its fermion/two-level re-
alization, this model is easily recognized as equivalent to the
exactly solvable Jaynes-Cummings model of quantum optics
Xq2 € L (0O2=Nxgl (|£4]2+|L-1?) 8q0t £+ (¥ 420 [22] and to the Caldeira-Leggett model of quantum dissipa-
n tion [23]. Various versions have also enjoyed attention lately
+ 258 a0] in §tudies o_f deco_herenc_e in quantum regigﬁéisza. Con-

* a.-2Q0 fining the discussion to single-quantum lattice states, so as to
which means that only the fundamental bath mode and theover both the fermionic and the bosonic case, we apply the
modes of frequency,q experience time-independent exter- ansg_tz(40) and construct the self-consistent, statistical super-
nal driving. Therefore, if the phonon bath is initially in ther- POSItion
mal equilibrium, all modes that are not affected by the ex-
ternal pump remain in therm_al equilibrium, while the three 5= o, (1)[c]|0)al b1| 171+ @2(1)[ €1 O atl B2l 172,
modesqg=0,+2Q are each driven in a Gaussian state, even- (100
tually of macroscopic displacemefgee the presence of the
N factor abové In another limit case, when the initial dis- o—
placements of the bath modes coincide with the displaceiﬁ‘”,th ¢i(t) = ¢j(0)exg —i/f(e;t— [odTQ;(7))] scalar am-
equilibrium positions set by the amplitude of the pump, theplitudes,l ¢;) normalized, but not necessarily orthogonal, lat-
bath remains in a stationary, nonequilibrium state, while thdice State vectors, and
lattice oscillates harmonically at the pump frequency. Unless

Q=0 or an accidental degeneracy intervenes, the pumping_ ; 1 wq
frequency for the coherent lattice state is distinct from that of ;=11 eXr[,qu(t)bq—Ba‘j(t)bq]\/—_ex;{ KT bqbq},
the coherently driven modes of the bath, and the process a Zq B (100

obviously qualifies as a type of Frohlich effect. But contrary
to the usual picture, it is the bath that is driven into a non- _
trivial state, while the primary, lattice subsystem experiencesvhere Bq;(t) =[ B4j(0)+ xq,j/fiwgle”'“a' = xq j /fiwq. The
no nonlinearities, and is maintained in a pure state. phonon-driven energy shift; are given by Eq(76) with

For closure, let us illustrate more fundamental features ofhe appropriate substitutions. Then, the total density matrix
the coherent product ansdi&q. (40)] in another simple ex- for the dimer-bath system reads
ample with exactly tractable decoherence-free propagation.
Consider a symmetrical dimer with site-independent Froh-~ _ 2N AN ~F 23y /31~ ~f * —
lich interaction and phonon-assisted tunneling, described b;/)_“pll DU rayi+leal|2)(2lv2va+ @105 (] 42)[1)

X(2| 1 ¥5+ 0% oo ol h1)2) (1] ¥271, (102

H=(clc;+chey) 8+§q: (Xqbd+ X% bq)}

where we have denoted, for simplicity])=c}|0),, and

—(cleptelen)| I+ (N b+ 1t )} |2)=c}|0)a¢, and the reduced density matrix for the dimer
q ara e is obtained accordingly as
T “ “ — _
+ 2 faghgb. O pame=Tronp = @1/ A1) (1] +] 02| 22)(2] + 0105 (b1l 62)
The simple transformation ><(3’2| A71)|T><§|+ @1 02 b2l ¢1>(5’1l A72)|?><T|
(103
1 — e
ci=—=(c1t(—-1))7"cp), =12 (98)
2 ! 2 Since | ¢j(t)|=|¢;(0)|, the occupation probabilities of the

states|1) and |2) are invariant, and only the correlation

(Paimed 12= (Pdimed 57= 2193 (b1l b2) (72l v1) varies in time,
as expected in a typical dephasing process. Of course, the

brings the Hamiltoniar{97) to the evidently solvable form

H=?1?i?1+?2?‘2?z+?1?1§ (Xq1b8+ X% 1bg) same is not true for the original, localized statfl)
=ci|0)ia= (112)(12)~ |1)) and  [2)=c}|0)
e T t =(1/J2)(|]1)+]2)). In terms of the latter, the dimer reduced
+c,5C b+ b,)+ hwogbsby, (99 ) .
2 2; (Xa20q+ Xq20q) % “a%a% ©9 density matrix reads
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.1 — distribution diagonal on the staték) and|2), hence, under-
Pdimer= §+Re(Pdimer)12 11| going total dephasing through an environment-induced su-
perselection proce$d 1]. The noteworthy point in the above

Re(; —i2y2 derivation is that the dimer density matrid07), param-

+ 2 e(pamed 12 12)(2] etrized by three linearly independent, real parameters
L [|d1]2+]|po/?=1], may span the entire set of statistical

+= 2_ 112 +i Mo —) 1W(2 dimer states corresponding to the subspgdg,|2)} [or
2(|¢Z| 409 (Pamedz | |1)(2] {|1), |2)}]. In other words, Eq(102 gives explicitly the

general solution of the Liouville-von Neumann problem for
, (104  the Hamiltonian(97), with an initial condition of the type

P(0)=pia(0)®ppnT. . .
and it becomes apparent that the correlation between the From the point of view of coherent behavior, a special

physical dimers disappears if and onlyl i;|2=| ¢,|?=1/2 mention is reser_ved once more fqr the 'singula}r sitqatiqn
when the bath displacements remain stationary in their dis-

laced equilibrium positions, i.e.84i(t)=—(xqj/fiwg).
hen the bath is left in a steady superposition of thermal

+H.c.

and IM(pgime)12=0. It is also evident that all nontrivial as-
pects of the dynamics are carried by the matrix elemen

(pdimed12, and particularly by the bath factor Gaussian states, and the corresponding bath fét@® be-
comes constant in time. If the latter does not vanish, the
(72|71)=(7T|9XF{—2 [ Baz(t)by, matrix element pgme)1z OSCillates as @4(t) @3 (1)
q =¢1(0)¢3 (0)exgd —(i/A)AQL], at the frequency
— Ba(t)bg] ex;{Z (Baa(t)b} AE+xEN
a q K AQ=Q,-0,=3 Xata " Xata ‘}waq 1, (109
q q

— B (Hbg) [ v7). (105

and the dimer is kept in a coherently oscillatirmg two-level

. _ rotating| state, somewhat reminiscent of a soliton state.
Expression(105) can be evaluated straightforwardly by us-

ing the thermal operator§47), and amounts to %,|y;) VI. CONCLUSION
=exg —i®(t)]exd —T'(t)], where  ®(t)=i Eq(ﬁqlﬁa‘z
— B%1Bq2) and We have analyzed the self-consistency conditions for a

fairly wide class of generalized, states, based on the
Davydov ansatz for soliton propagation in molecular chains.
: (106 Our extended ansatz is given in a density-mafsate op-
eratof] form [Eq. (40)], which covers, in proper limit cases,
Under the traditional assumption of initial thermal equi- both the pure state and the finite-temperature standard Davy-
librium of the bath, with null original displacements, the ini- dov states. In general, it describes strongly entangled, statis-

tial density matrix corresponding to the ansétp?2) factor-  tical superpositions of lattice and bath states, with the prop-
izes in the usual manner, a¢0)=p..(0)® . where erty that t_he bath is maintained in a statistical superposition
#40)=pia(0)® ppnt of Gaussian thermal states. We find that the exact propaga-

fiwg

1
L= % Iﬂql—ﬁqﬂzco‘*(zkg

S (0)= )21+ 0 1212%(2]+ 0+(0) o (0 tion of such states amounts to an effective decoupling of the
pra0) = @1(OFILX] Fle2(0)12)2+ 01(0) 2 (0) lattice subsystem from its boson bath, i.e., to decoherence-
><<¢1|¢2>|T><§|+¢1<(0)¢2(0)<¢2|¢1>|§><T|, free propagation. Given the specific form of the bath state,

the lattice-bath interactions compatible with such a phenom-
(107 enon are limited to linear or bilinear forms in the bath coor-
N _ i dinates, but only interactions linear in the bath degrees of
and ppnv=y7y7 - Since, at IateE'nr?es, the bath displace-freeqom allow self-consistent propagation at finite tempera-
ments readBq;(t) = (xq;/hwg)(e”'“e—1), the relaxation yyres. Unfortunately, in all cases, the equations of motion for
functionT" becomes the ansatz parameters differ from Davydov’s soliton equa-
tions by additional constraints, which apparently abolish the
. (108 characteristic nonlinearities of the latter. Just as Brown’s va-
(hmq)2 lidity theorems[2], the result is independent of any internal
characteristics of the system, including symmetries, range
The physics behind expressi¢h08) has been discussed at and strength of interactions, or type of phonon branches.
length in Ref[25]. Depending on the spectral density of the This does not affect the suitability of the ansatz as a varia-
bath modes, the relaxation exponent may or may not have fonal trial ansatz, and the Davydov model may still be a
finite limit as time passes to infinity. If it does not reach agood approximation in different conditions.
plateau, the correlatiorp(me) 1z €ventually falls to zero and As an interesting byproduct, we are left with a set of
the dimer density matrix is invariably driven toward a steadynontrivial, exact density-matrix solutions for systems sup-

hwy |\ (1—CcoSswgt)
0/+) — 2 q q
o) 2§q INgl cotr(2k8T>
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porting decoherence-free propagation. Although exact resultsffect under decoherence-free conditions facilitated by time-
for such systems have been already repoifisee, e.g., dependent, external pumping, and found that certain non-
[10,25], the present solutions are given in a closed, explicitequilibrium states of the bath can be instrumental in main-
operatorial form, and are not limited to the usual equilibrium,taining bath-entangled, decoherence-free states of the driven
separable, initial conditions. Consequently, it becomes podiattice) subsystem. We believe that this ansatz may prove
sible to probe the dynamics of such systems under nonequiseful in illustrating a variety of nontrivial aspects of relax-
librium, Gaussian states of the bath. We retrieved a Frohlictation and decoherence in quantum systems.
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