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Spectra and eigenvectors of scale-free networks
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We study the spectra and eigenvectors of the adjacency matrices of scale-free networks when bidirectional
interaction is allowed, so that the adjacency matrix is real and symmetric. The spectral density shows an
exponential decay around the center, followed by power-law long tails at both spectrum edges. The largest
eigenvalue\; depends on system si2¢ as \;~N for large N, and the corresponding eigenfunction is
strongly localized at the hub, the vertex with largest degree. The component of the normalized eigenfunction
at the hub is of order unity. We also find that the mass gap scalbis &
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Complex systems such as social, biological, and eco- While it is known that the BA network follows a power
nomic systems consist of many constituents such as indiaw in its degree distribution, further structural properties are
viduals, substrates, and companies, respectij&ly Each  not so well known. Whemm=1, the BA network forms a
constituent reacts and adapts to the pattern created in tfieee structure without forming any loops, but for-1 loops
system through diverse interactions. Cooperative phenomer®® formed, and network topology becomes more compli-
between constituents in such complex systems may be d ated. So it would be interesting to investigate the spectrum
scribed in terms of random graphs, consisting of vertices an f the BA network, because generally the spectrum of a ran-

. . X om graph and the corresponding eigenvectors are closely
edges, where verticegedges represent constituentSheir o|ae to topological features of the random gréB—15.

interactions. The study of complex systems in terms of ran-|, this paper, we study the spectrum and the corresponding
dom graphs was initiated by Ersl@nd Reyi (ER) [2]. I ejgenvectors of the adjacency matrix of the BA network,
the ER model, the number of vertices is fixed, and edgesomparing spectral properties with structural features. When
connecting one vertex to another occur with probabifity a BA network is composed df vertices, the adjacency ma-
Then there exists a probability threshqgdd, above which  trix A consists oNXN elementga; j} (i,j=1,... N), de-

the system is percolated. Recently Watts and Strogat®)  fined asa; j=1 if verticesi andj are connected via an edge,
introduced the small-world networf3] to consider local anda; ;=0 otherwisek;=X;a; ; is the degree of the vertex
clustering, while the number of vertices is also fixed. Thel- In the BA model, the vertex with the largest degree is
WS model offers the first indication that real networks canSingled out and is called the hub, denotedrblgereafter, in

be more complex than predicted by the ER model. this work. From previous studid4]|, we know thatk;,, the

. . degree of the hub, scales &g~mNY2 The vertices are
Re_cently Barabsl and Albert (BA) [4] _mtro_duced an ordered in their ages; the vertels the one created at time
evolving model where the number of vertices increases lin- gjnce we consider the bidirectional cagsometimes

early with time rather than being fixed, and a newly intro-cajled the undirected casethe adjacency matri is real
duced vertex is connected toalready existing vertices, fol- - and symmetric, so that all eigenvalues are real and the largest
lowing the so-called preferential attachment rule that theeigenvalue is not degenerate. We obtained the spectrum of
vertices with more edges are preferentially selected for théhe BA network via exact diagonalization ft\ up to 5000
connection to the new vertex. The number of edgésci-  and for the first few largest eigenvalues, via the Lanczos
dent upon a vertex is the degree of the vertex. Then th&ethod[12] for N up to 400000. Throughout this paper,
degree distributiorP(k) of vertices, equivalent to the con- Numerical simulations were carried out for=2, the sim-
nectivity distribution, follows a power lawP(k)~k 3 for ~ Plest case including the loop structure. ,

the BA model, while for the ER and WS models it follows a _ Eigervalues We consider the distribution of the eigen-
Poisson distribution. The BA model is interesting in thevalue_s shc:v&n In F'g'tlt') 'I:[he analytic fo_lrmula ft%r Ihtﬁ spec-
sense that a lot of complex interactive networks such as thgﬂm '(Sjgé)s :c(;twgty?h’e ge%?sirzi?afa;ﬂ::t?oen (;ierivg dspbeyc-
Mot Wi eb[sG, ne actor networke) e aton_ Winer 1] approrite 0 the ER random raph. Th den
work [7], the metabolic networkg] and the food wel] in sity of eigenvaluep(\) in the middle part of the spectrum is

: : L . ._likely to fit the formulap(\)~exp(—|\|/a) wherea~1.25
biological systems all exhibit a power law in the degree d'?'(seeythe left inset of F{ZJ(.)J{ Whilg(th|e|dg:nsity further out

tribution, implying that a characteristic degree is absent iryyows the power lawp(\)~|\|* (see the right inset of
such systems. Thus the BA model is called a scale-free Nekig. 1). Since the power-law decay is much slower than the
work. In the BA network, one may assign a direction on eachexponential one, the spectrum shows long tails at both edges
edge pointing from the younger vertex to the older pl@.  (see Fig. 1 Such behavior has also been observed in the
However, when the direction on each edge is ignored, allowfinancial time serie$16].

ing bidirectional interactions such as downloading and up- The size dependence of the largest eigenvalyds of
loading communications on the Internet, the BA networkinterest and we found numerically thef increases as-N/*

may be regarded as a simple model for this topoldl]. for large systemgsee Fig. 2 To consider the relation be-
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FIG. 1. Plot of the density of eigenvalues of the adjacency ma- F|G. 3. Double logarithmic plot og,jﬁh(z)/NO-OS versusj for

trix A versus eigenvalues for system side=5000 averaged over (different systemd\= 1000, 5000, and 10 000. The slope at the tail
40 configurations. Left inset: Semilogarithmic plot of the density js estimated to be-0.43.

versus eigenvalues to show the exponential decay for sifll
Right inset: Double logarithmic plot of the density versus eigenval-ing vertex| after n-step walks. Whem is sufficiently large,

ues to show the power-law decay at the spectrum edge. y;j_i(n) can be represented in terms of the largest eigenvalue
N\, alone as

tween the largest eigenvalug and the structure of the BA

network, we consider the following. Let andy be Nx 1 Yi—i(M=~\v;wj 1. (3

column vectors, related through ) .
In particular, when =j,

— n
Y =A%X. @ Vi (m=Ao?y. @
Letv;, be theith component of the normalized eigenvector ~ Even though the relation E(4) holds for any vertex, we
corresponding to thdth eigenvalue ofA, \;, (A\;>\,  consider it particularly at the hub. Now let us consider the
=...=)\,). Then Eq.(1) may be rewritten as number of ways oh+ 2 steps returning to the starting vertex
h. It can be split into two parts,

— n
y,(n)—El 2 ML @ yhah(n""Z)ZYhHh(n)thh(z)"';h Yh-i(MYj_n(2).
)
When we setxj=1 for somej andx,=0 for r#j, y;(n) _
becomes the number of possible wayseftep walks start- According to Eq.(4),
ing from the vertey and terminating at the vertéxThis will
be denoted ay;_,i(n) hereafter. In particular, when=j, Yo (MYj_n(2)
y;—j(n) is the number of possible ways to return to the start- _, Ynh_.n(N+2) j#h
1~ = Yhen(2)+ :
Yh—n(N) Yh—n(N)
64 - - - (6)
10 . .
~ M = Ay where y,,_.h(2) corresponds to the degree of the hub,
P A ] Yn_n(2)=myN, while y; .,(2) is found numerically to be-
32 r e > T have as~N%%¥j%43 weakly depending omN (see Fig. 3.
0.1 . e E The second term of the right-hand side of Ef) can be
108 10t 10° ) a Writterj using Eqgs.(3) and (4) as Ej.;ﬁh(vj'l/vh,;)yph(Z)..
6L o ] We will show later thav, ;~1/2, whilev; ;~(Nj) ~**for
A o away fromh, leading to the result that the second term be-
1 comesO(N%?Y). Consequently), is contributed predomi-
° ST nantly by the first term in the right-hand side of E®),
8t > |7\'N| ] leading to~mY2NY4,
The resultx ;~N¥* can also be understood through two

2 3 2 5 6 toy models. First, one vertex is located at the center, and all
10 10 10 10 10 . .
N the otherN—1 vertices are linked only to the center vertex
[Fig. 4@)]. This structure, called the radial structure, is an
FIG. 2. Double logarithmic plot of the first two largest eigen- €Xireme case of .“Wlnner takes al!.” The largest agenva}ue
valuesk; (O) and|\y| (O) versus system siZ¥. The dashed line  Of this structure is\;=N—1, while the largest degree is
has slope 0.25, drawn for the eye. Inset: Double logarithmic plot ofN— 1. Second, we consider a two-level Cayley tree structure
the difference\; —|\y| versus system sizN. [Fig. 4(b)]. When the coordination number is chosenkas
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FIG. 4. The radial structuréa) and the two-level Cayley tree 01 ]
structure with coordination numbé&r=4 (b).

=N, the total number of vertices becombis-1 and the ° 1 1'0 100 1000
largest degree/N, as in the case of the BA network. The
largest eigenvalue for this toy model is found to ke
=/2k—1~NY4 So, in both models\ ; ~ \/k—h FIG. 6. Plots ofvjzy1 (O), the normalized degrelg />;k; (O),

The second largest eigenvalue in absolute magnitude @nd the normalized involving numbgy (©) versus vertex indek
located on the negative side of the spectrum. The absolufér N=10°. Inset: The eigenfunction corresponding to the largest
magnitude of this eigenvalug | is also found to scale as eigenyalue for_ the_ ER random network fiie=10%, showing that
I\n|~NY4 (see Fig. 2 The difference between the first two the eigenfunction is extended.
largest eigenvalues in their absolute magnitade- |\y| is ) i . ) .
found to scale as-N~%43(see the inset of Fig.)2Thus, the elgenvalye and the corresponding e|genfunct|0.n are impor-
mass gap, defined as M(|\y|) [17], scales as-N~Z with tant, as in the case of_ E¢B), we focus on _the eigenvector
7~0.68. {vj 1 for the largest eigenvalue. We consider the square of

Next, we consider the size dependence of the moments §ch component of the eigenvectar; } instead of{v; .}
the spectrum. First, since the mat#xis traceless, the first itself because of the normalizatiahv?,=1, and compare it
moment becomes zero, that Ml:2:\‘)\i:0_ Second, for Wwith the normalized degree of each vertéiq 12k }. As
each vertex, the number of ways to return to the starting€en in Fig. 6, the two quantities are correlated in such a way
vertex by a two-step walk is the same as the degree of thadhat up-down behavior occurs in a similar fashion.
vertex, so thatM,=3N\2=2mN. Third, since the path to  The component$v?} (j=1,... N) are strongly local-
return to the starting vertex by a three-step walk forms dz€d at the hub. This is in contrast to the ER case where the
triangle, the total number of triangl€y in the system can be corresponding eigenfunction is extended over all vertices
obtained through the third moments=3SN\3=67,. We  (see the inset of Fig.)6We found that, ; at the hub in-
found numerically thatM ;~N°“° (see Fig. 5 Note that Creases with increasinly for small N, but converges to a
while the first moment vanishes the third moment does notconstant close to 1/2 for large (see Fig. 7. The value 1/2

|mp|y|ng that the Spectrum is not Comp|ete|y Symmetric withcan be.ObtainEd fl’O.m the radial structure analytica”y. SinC.e
respect ton=0. the radial structure is the extreme case where the connectiv-

Eigemector_ Since the adjacency maitriX is real and |ty is mOStly localized at the hub, the value 1/2 can become
symmetric, every component of the eigenvector correspondhe upper bound ob? . The result thav} , approaches a
ing to the largest eigenvalue is positive. Since the largestonstant adl— is interesting, because, ; behaves differ-

ently from the normalized degree at the hub, decreasing as
' ' ~N~12 (see Fig. 7. Since the number of returningstep
104 L _ walks frpm avertey isy;j_, j(n)'xuil from _Eq._(4), szvl can
L be considered as a measure of the contribution from the ver-
tex j to transport processes in a network. The fact tlﬁag

i

1

10% t 1 04 L °

My 001 | TTTea

0.001 ¢

102 . - 10° 10* 10° 10°
10? 10° N

N FIG. 7. Double logarithmic plot oﬁﬁyl and the normalized de-
FIG. 5. Double logarithmic plot of the second and third mo- greek, /> k; at the hub versus system sieThe dotted line at 0.5
mentsM, and M versus system siZ€. The dottedsolid) line has  is the asymptotic line of;ﬁvl. The dashed line for the normalized
slope 1.0(0.40, drawn for the eye. degree has slope 0.5, drawn for the eye.
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FIG. 9. Double logarithmic plot ofi; versus system sizd. The
dashed line has slope 0.35 upN@~5000, and 0.50 beyonN,
drawn for the eye. Inset: Semilogarithmic plot&f versus number
of stepsn.
~0O(1) can be interpreted to mean that the hub plays a much
more dominant role in transport on the BA network, com-
pared with the contribution measured by the normalized de
gree at the hub, which ®(1/y/N). Thus, the presence of the
hub in scale-free networks diversifies pathways, and en
hances the efficiency of transport, while the network system
are vulnerable to attack on the h[i8]. On the other hand,
for other components of the eigenfunctio{vjz']}, (j

FIG. 8. Double logarithmic plot ofvjzvl versusj for N
=400 000. The dashed line has slop®.5, drawn for the eye.

Shortest pathsSince the role of the hub in transport is
much more dominant, compared with the contribution by the
normalized degree, we also study topological features of the
Shortest paths between two verti¢é9]. The transport from
Bne position to another is mainly along the shortest (sath
between them, and is contributed predominantly by the larg-
" . - 5 est eigenvalue of the adjacency matAx We define a set
=1,... N, butj#h), it was found numerically thabj;  composed of the vertices on the shortest atfrom one
~1/(4Nj) (see Fig. 8 position to another. Then, since there BN — 1)/2 pairs of

Each component of eigenvectors can be obtained throughertices, the same number of sets exist in the system. Among
diagonalization of the adjacency matrix. However, the them, we are interested in the number of different sets a
eigenfunction for\; can be obtained using the relation Eq. certain vertey belongs to. This number is called the involv-
(4). Knowledge ofy; ;(n) and\; enables one to obtain ing numberP;, while the normalized involving number is
each component of the eigenfunction throught;  defined asp,=P,;/=,P, for each vertexj. Figure 6 also
wy,-_,j(n)/)\rl‘ for sufficiently largen. However, whem is  showsp; versus;j. It behaves similarly to the up-down be-
not large enoughy;_.;(n) for vertexj is affected by local havior Ofvjz'l andk; . In particular, the involving number at
topology around, so that the value Olﬁjzvl obtained by this the hubP}, is found numerically to scale &~ N?, while
method is different from that by exact diagonalization. Thusthe total involving number summed over all vertices is found
we can define a characteristic number of stepssuch that numerically to scale aEJ-N:1P1~N2 In N (see Fig. 19[20].
for n>n Eq. (4) holds, while forn<n. it breaks down. To So the normalized involving number at the hub;
find n., we introduce the quantity, =P,/Z;P;, behaves ap,~1/In N, decaying much more

slowly compared with the normalized degree which de-
2 (M_ 2 )
. AN Uja

creases as-N~ %5 This weak dependence dis compa-
l 1

5n = ’ (7)

5
which is found to decay exponentially a%~exp(—n/ny) e
(see the inset of Fig.)9We found numerically that, shows 4 e

-

a crossover at a characteristic system s$izesuch that, for
N<N¢, n.~N°35 while for N>N,, n.~N°%%(see Fig. 9.
On the other hand, Eq(7) may be rewritten asé,
=|Z,=1(\/\)". Thus, for sufficiently largen, the pre-
dominant contribution tos, is from the term [\y|/\;)"
alone. Combined withs,,~exp(—n/n.), one obtains thah,

=N./(A1—|\\]), equivalent to the inverse of the mass gap.
Thus,n.~N? However, the numerical value of the exponent

z obtained in this wayz~0.50, deviates from the value
~0.68 obtained by the direct measuremenk gf |\ y|. This
can be attributed to the fact tha}, includes contributions
from other eigenvalues.

no
Ly
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rable to the result that,, ;~O(1) for largeN. Therefore, the ~Which was also checked by studying the involving number of
contribution of the hub to the shortest paths is much largegach vertex. This finding is an important consequence of this
than that of the naive estimate based on the normalized d@aper and should be useful to help the understanding of
gree at the hubQ(1/4/N). transport properties in complex networks.

Very recent work by Farkast al.[21] deals with a simi- In conclusion, we have considered the spectrum and
lar topic to ours. Here we summarize the overlaps and som@igenvectors of the adjacency matrix of the BA network,
discrepancies between the two works. Both analyzed, by nuvhen bidirectional interaction is allowed. The density of the
merical calculations, the spectra of the adjacency matrices ¢figenvalues decays exponentially for small, followed by
scale-free networks and found that the largest eigenvejue Power-law tails at both spectrum edges. This is different
grows as~NY4 Although the tail regions of the spectrum from the Wigner formula appropriate to random graphs. We
were interpreted to decay as a power law in both cases, Fafound that the largest two eigenvaluesand|\ | depend on
kaset al.interpreted its central part as exhibiting a “triangle- System sizeN as~N**for largeN, and the mass gap scales
like” shape, while our interpretation is that it decays expo-as N™%%% The eigenfunction corresponding to the largest
nentially. As for the eigenvalues other than, called the €igenvalue\; is strongly localized at the vertex with the
bulk part of the spectrum, Farkas al. argued that they are largest degree, called the hub. The component of the normal-
distributed symmetrically. But we found that that is not theized eigenfunction fol; at the hub is independent &,
case. For example, the fact theg and|\y| approach each implying that the role of the hub in transport on the scale-
other asN increasesFig. 2) illustrates this. Accordingly, the free network becomes much more important for a larger sys-
odd-power moments are not governed solelyNqybut by ~ tem, and its contribution becomes much more dominant than
the entire spectrum, which leads, for example, Ad,  €Xpected according to the normalized degree at the hub,
~ N4 rather than~N°75 as proposed by Farkaa al. In  Which scales adl™*2 Therefore, it is very efficient in com-
addition to these similarities and differences, we investigatednunication networks to construct central vertices, through
the eigenfunction for the largest eigenvalue. In particular, wevhich most of the information traffic passes.
found that the component of the eigenfunction corresponding
to the largest eigenvalue at the hub is independent of the We would like to thank S. Y. Park for providing us with
system size. This result contains the important physical imthe Lanczos algorithm codes. This work was supported by
plication that the hub plays a much more important role inGrant No. 2000-2-11200-002-3 from the BRP program of the
transport than expected according to the normalized degreKOSEF.
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