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Spectra and eigenvectors of scale-free networks
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We study the spectra and eigenvectors of the adjacency matrices of scale-free networks when bidirectional
interaction is allowed, so that the adjacency matrix is real and symmetric. The spectral density shows an
exponential decay around the center, followed by power-law long tails at both spectrum edges. The largest
eigenvaluel1 depends on system sizeN as l1;N1/4 for large N, and the corresponding eigenfunction is
strongly localized at the hub, the vertex with largest degree. The component of the normalized eigenfunction
at the hub is of order unity. We also find that the mass gap scales asN20.68.
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Complex systems such as social, biological, and e
nomic systems consist of many constituents such as i
viduals, substrates, and companies, respectively@1#. Each
constituent reacts and adapts to the pattern created in
system through diverse interactions. Cooperative phenom
between constituents in such complex systems may be
scribed in terms of random graphs, consisting of vertices
edges, where vertices~edges! represent constituents~their
interactions!. The study of complex systems in terms of ra
dom graphs was initiated by Erdo¨s and Re´nyi ~ER! @2#. In
the ER model, the number of vertices is fixed, and ed
connecting one vertex to another occur with probabilityp.
Then there exists a probability thresholdpc , above which
the system is percolated. Recently Watts and Strogatz~WS!
introduced the small-world network@3# to consider local
clustering, while the number of vertices is also fixed. T
WS model offers the first indication that real networks c
be more complex than predicted by the ER model.

Recently Baraba´si and Albert ~BA! @4# introduced an
evolving model where the number of vertices increases
early with time rather than being fixed, and a newly intr
duced vertex is connected tom already existing vertices, fol
lowing the so-called preferential attachment rule that
vertices with more edges are preferentially selected for
connection to the new vertex. The number of edgesk inci-
dent upon a vertex is the degree of the vertex. Then
degree distributionP(k) of vertices, equivalent to the con
nectivity distribution, follows a power lawP(k);k23 for
the BA model, while for the ER and WS models it follows
Poisson distribution. The BA model is interesting in t
sense that a lot of complex interactive networks such as
World Wide Web@5,6#, the actor network@4#, the citation
network of scientific papers and the author collaboration n
work @7#, the metabolic network@8# and the food web@9# in
biological systems all exhibit a power law in the degree d
tribution, implying that a characteristic degree is absen
such systems. Thus the BA model is called a scale-free
work. In the BA network, one may assign a direction on ea
edge pointing from the younger vertex to the older one@10#.
However, when the direction on each edge is ignored, all
ing bidirectional interactions such as downloading and
loading communications on the Internet, the BA netwo
may be regarded as a simple model for this topology@11#.
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While it is known that the BA network follows a powe
law in its degree distribution, further structural properties a
not so well known. Whenm51, the BA network forms a
tree structure without forming any loops, but form.1 loops
are formed, and network topology becomes more com
cated. So it would be interesting to investigate the spectr
of the BA network, because generally the spectrum of a r
dom graph and the corresponding eigenvectors are clo
related to topological features of the random graph@13–15#.
In this paper, we study the spectrum and the correspond
eigenvectors of the adjacency matrix of the BA netwo
comparing spectral properties with structural features. W
a BA network is composed ofN vertices, the adjacency ma
trix A consists ofN3N elements$ai , j% ( i , j 51, . . . ,N), de-
fined asai , j51 if verticesi and j are connected via an edge
andai , j50 otherwise.ki5( jai , j is the degree of the verte
i. In the BA model, the vertex with the largest degree
singled out and is called the hub, denoted byh hereafter, in
this work. From previous studies@4#, we know thatkh , the
degree of the hub, scales askh;mN1/2. The vertices are
ordered in their ages; the vertexi is the one created at timei.

Since we consider the bidirectional case~sometimes
called the undirected case!, the adjacency matrixA is real
and symmetric, so that all eigenvalues are real and the lar
eigenvalue is not degenerate. We obtained the spectrum
the BA network via exact diagonalization forN up to 5000
and for the first few largest eigenvalues, via the Lancz
method @12# for N up to 400 000. Throughout this pape
numerical simulations were carried out form52, the sim-
plest case including the loop structure.

Eigenvalues. We consider the distribution of the eigen
values shown in Fig. 1. The analytic formula for the spe
trum is not known yet, but one can easily see that the sp
trum does not fit the semicircular equation derived
Wigner @13# appropriate to the ER random graph. The de
sity of eigenvaluesr(l) in the middle part of the spectrum i
likely to fit the formula r(l);exp(2ulu/a) where a'1.25
~see the left inset of Fig. 1!, while the density further out
follows the power lawr(l);ulu24 ~see the right inset of
Fig. 1!. Since the power-law decay is much slower than
exponential one, the spectrum shows long tails at both ed
~see Fig. 1!. Such behavior has also been observed in
financial time series@16#.

The size dependence of the largest eigenvaluel1 is of
interest and we found numerically thatl1 increases as;N1/4

for large systems~see Fig. 2!. To consider the relation be
©2001 The American Physical Society03-1
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tween the largest eigenvaluel1 and the structure of the BA
network, we consider the following. Letx and y be N31
column vectors, related through

y~n!5Anx. ~1!

Let v i ,l be thei th component of the normalized eigenvect
corresponding to thel th eigenvalue ofA, l l , (l1.l2
>•••>lN). Then Eq.~1! may be rewritten as

yi~n!5(
l

(
j

l l
nv i ,lv j ,lxj . ~2!

When we setxj51 for somej and xr50 for rÞ j , yi(n)
becomes the number of possible ways ofn-step walks start-
ing from the vertexj and terminating at the vertexi. This will
be denoted asyj→ i(n) hereafter. In particular, wheni 5 j ,
yj→ j (n) is the number of possible ways to return to the sta

FIG. 1. Plot of the density of eigenvalues of the adjacency m
trix A versus eigenvalues for system sizeN55000 averaged ove
40 configurations. Left inset: Semilogarithmic plot of the dens
versus eigenvalues to show the exponential decay for smallulu.
Right inset: Double logarithmic plot of the density versus eigenv
ues to show the power-law decay at the spectrum edge.

FIG. 2. Double logarithmic plot of the first two largest eige
valuesl1 (s) andulNu (h) versus system sizeN. The dashed line
has slope 0.25, drawn for the eye. Inset: Double logarithmic plo
the differencel12ulNu versus system sizeN.
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ing vertexj after n-step walks. Whenn is sufficiently large,
yj→ i(n) can be represented in terms of the largest eigenva
l1 alone as

yj→ i~n!'l1
nv i ,1v j ,1 . ~3!

In particular, wheni 5 j ,

yj→ j~n!'l1
nv j ,1

2 . ~4!

Even though the relation Eq.~4! holds for any vertexj, we
consider it particularly at the hub. Now let us consider t
number of ways ofn12 steps returning to the starting verte
h. It can be split into two parts,

yh→h~n12!5yh→h~n!yh→h~2!1(
j Þh

yh→ j~n!yj→h~2!.

~5!

According to Eq.~4!,

l1
2'

yh→h~n12!

yh→h~n!
5yh→h~2!1

(
j Þh

yh→ j~n!yj→h~2!

yh→h~n!
,

~6!

where yh→h(2) corresponds to the degree of the hu
yh→h(2)5mAN, while yj→h(2) is found numerically to be-
have as;N0.05/ j 0.43, weakly depending onN ~see Fig. 3!.
The second term of the right-hand side of Eq.~6! can be
written using Eqs.~3! and ~4! as ( j Þh(v j ,1 /vh,1)yj→h(2).
We will show later thatvh,1'1/2, whilev j ,1;(N j)21/4 for j
away fromh, leading to the result that the second term b
comesO(N0.1). Consequently,l1 is contributed predomi-
nantly by the first term in the right-hand side of Eq.~6!,
leading to;m1/2N1/4.

The resultl1;N1/4 can also be understood through tw
toy models. First, one vertex is located at the center, and
the otherN21 vertices are linked only to the center verte
@Fig. 4~a!#. This structure, called the radial structure, is
extreme case of ‘‘winner takes all.’’ The largest eigenval
of this structure isl15AN21, while the largest degree i
N21. Second, we consider a two-level Cayley tree struct
@Fig. 4~b!#. When the coordination number is chosen ask

-

l-

f

FIG. 3. Double logarithmic plot ofyj→h(2)/N0.05 versusj for
different systemsN51000, 5000, and 10 000. The slope at the t
is estimated to be20.43.
3-2
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5AN, the total number of vertices becomesN11 and the
largest degreeAN, as in the case of the BA network. Th
largest eigenvalue for this toy model is found to bel1

5A2k21;N1/4. So, in both models,l1;Akh.
The second largest eigenvalue in absolute magnitud

located on the negative side of the spectrum. The abso
magnitude of this eigenvalueulNu is also found to scale a
ulNu;N1/4 ~see Fig. 2!. The difference between the first tw
largest eigenvalues in their absolute magnitudel12ulNu is
found to scale as;N20.43 ~see the inset of Fig. 2!. Thus, the
mass gap, defined as ln(l1 /ulNu) @17#, scales as;N2z with
z'0.68.

Next, we consider the size dependence of the momen
the spectrum. First, since the matrixA is traceless, the firs
moment becomes zero, that is,M15( i

Nl i50. Second, for
each vertex, the number of ways to return to the start
vertex by a two-step walk is the same as the degree of
vertex, so thatM25( i

Nl i
252mN. Third, since the path to

return to the starting vertex by a three-step walk form
triangle, the total number of trianglesTN in the system can be
obtained through the third momentM35( i

Nl i
356TN . We

found numerically thatM 3;N0.40 ~see Fig. 5!. Note that
while the first moment vanishes the third moment does n
implying that the spectrum is not completely symmetric w
respect tol50.

Eigenvector. Since the adjacency matrixA is real and
symmetric, every component of the eigenvector correspo
ing to the largest eigenvalue is positive. Since the larg

FIG. 4. The radial structure~a! and the two-level Cayley tree
structure with coordination numberk54 ~b!.

FIG. 5. Double logarithmic plot of the second and third m
mentsM2 andM3 versus system sizeN. The dotted~solid! line has
slope 1.0~0.40!, drawn for the eye.
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eigenvalue and the corresponding eigenfunction are imp
tant, as in the case of Eq.~3!, we focus on the eigenvecto
$v j ,1% for the largest eigenvalue. We consider the square
each component of the eigenvector$v j ,1

2 % instead of$v j ,1%
itself because of the normalization( jv j ,1

2 51, and compare it
with the normalized degree of each vertex$kj /( lkl%. As
seen in Fig. 6, the two quantities are correlated in such a
that up-down behavior occurs in a similar fashion.

The components$v j ,1
2 % ( j 51, . . . ,N) are strongly local-

ized at the hub. This is in contrast to the ER case where
corresponding eigenfunction is extended over all verti
~see the inset of Fig. 6!. We found thatvh,1

2 at the hub in-
creases with increasingN for small N, but converges to a
constant close to 1/2 for largeN ~see Fig. 7!. The value 1/2
can be obtained from the radial structure analytically. Sin
the radial structure is the extreme case where the conne
ity is mostly localized at the hub, the value 1/2 can beco
the upper bound ofvh,1

2 . The result thatvh,1
2 approaches a

constant asN→` is interesting, becausevh,1
2 behaves differ-

ently from the normalized degree at the hub, decreasing
;N21/2 ~see Fig. 7!. Since the number of returningn-step
walks from a vertexj is yj→ j (n)}v j ,1

2 from Eq. ~4!, v j ,1
2 can

be considered as a measure of the contribution from the
tex j to transport processes in a network. The fact thatvh,1

2

FIG. 6. Plots ofv j ,1
2 (s), the normalized degreekj /( iki (h),

and the normalized involving numberpj (L) versus vertex indexj
for N5103. Inset: The eigenfunction corresponding to the larg
eigenvalue for the ER random network forN5103, showing that
the eigenfunction is extended.

FIG. 7. Double logarithmic plot ofvh,1
2 and the normalized de

greekh /( j kj at the hub versus system sizeN. The dotted line at 0.5
is the asymptotic line ofvh,1

2 . The dashed line for the normalize
degree has slope20.5, drawn for the eye.
3-3
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;O(1) can be interpreted to mean that the hub plays a m
more dominant role in transport on the BA network, co
pared with the contribution measured by the normalized
gree at the hub, which isO(1/AN). Thus, the presence of th
hub in scale-free networks diversifies pathways, and
hances the efficiency of transport, while the network syste
are vulnerable to attack on the hub@18#. On the other hand
for other components of the eigenfunction$v j ,1

2 %, ( j
51, . . . ,N, but j Þh), it was found numerically thatv j ,1

2

;1/(4AN j) ~see Fig. 8!.
Each component of eigenvectors can be obtained thro

diagonalization of the adjacency matrixA. However, the
eigenfunction forl1 can be obtained using the relation E
~4!. Knowledge ofyj→ j (n) and l1 enables one to obtain
each component of the eigenfunction throughv j ,1

2

'yj→ j (n)/l1
n for sufficiently largen. However, whenn is

not large enough,yj→ j (n) for vertex j is affected by local
topology aroundj, so that the value ofv j ,1

2 obtained by this
method is different from that by exact diagonalization. Th
we can define a characteristic number of stepsnc , such that
for n.nc Eq. ~4! holds, while forn,nc it breaks down. To
find nc , we introduce the quantity,

dn[U(
j

S yj→ j~n!

l1
n

2v j ,1
2 D U , ~7!

which is found to decay exponentially asdn;exp(2n/nc)
~see the inset of Fig. 9!. We found numerically thatnc shows
a crossover at a characteristic system sizeNc such that, for
N,Nc , nc;N0.35, while for N.Nc , nc;N0.50 ~see Fig. 9!.
On the other hand, Eq.~7! may be rewritten asdn
5u( l .1(l l /l1)nu. Thus, for sufficiently largen, the pre-
dominant contribution todn is from the term (ulNu/l1)n

alone. Combined withdn;exp(2n/nc), one obtains thatnc
5l1 /(l12ulNu), equivalent to the inverse of the mass ga
Thus,nc;Nz. However, the numerical value of the expone
z obtained in this way,z'0.50, deviates from the valuez
'0.68 obtained by the direct measurement ofl12ulNu. This
can be attributed to the fact thatdn includes contributions
from other eigenvalues.

FIG. 8. Double logarithmic plot ofv j ,1
2 versus j for N

5400 000. The dashed line has slope20.5, drawn for the eye.
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Shortest paths. Since the role of the hub in transport
much more dominant, compared with the contribution by
normalized degree, we also study topological features of
shortest paths between two vertices@19#. The transport from
one position to another is mainly along the shortest path~s!
between them, and is contributed predominantly by the la
est eigenvalue of the adjacency matrixA. We define a set
composed of the vertices on the shortest path~s! from one
position to another. Then, since there areN(N21)/2 pairs of
vertices, the same number of sets exist in the system. Am
them, we are interested in the number of different set
certain vertexj belongs to. This number is called the involv
ing numberPj , while the normalized involving number i
defined aspj[Pj /( l Pl for each vertexj. Figure 6 also
showspj versusj. It behaves similarly to the up-down be
havior of v j ,1

2 andkj . In particular, the involving number a
the hubPh is found numerically to scale asPh;N2, while
the total involving number summed over all vertices is fou
numerically to scale as( j 51

N Pj;N2 ln N ~see Fig. 10! @20#.
So the normalized involving number at the hub,ph
[Ph /( j Pj , behaves asph;1/ ln N, decaying much more
slowly compared with the normalized degree which d
creases as;N20.5. This weak dependence onN is compa-

FIG. 9. Double logarithmic plot ofnc versus system sizeN. The
dashed line has slope 0.35 up toNc'5000, and 0.50 beyondNc ,
drawn for the eye. Inset: Semilogarithmic plot ofdn versus number
of stepsn.

FIG. 10. Semilogarithmic plot ofPh /N2 and( j Pj /N2.
3-4
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SPECTRA AND EIGENVECTORS OF SCALE-FREE NETWORKS PHYSICAL REVIEW E64 051903
rable to the result thatvh,1;O(1) for largeN. Therefore, the
contribution of the hub to the shortest paths is much lar
than that of the naive estimate based on the normalized
gree at the hub,O(1/AN).

Very recent work by Farkaset al. @21# deals with a simi-
lar topic to ours. Here we summarize the overlaps and so
discrepancies between the two works. Both analyzed, by
merical calculations, the spectra of the adjacency matrice
scale-free networks and found that the largest eigenvalul1
grows as;N1/4. Although the tail regions of the spectrum
were interpreted to decay as a power law in both cases,
kaset al. interpreted its central part as exhibiting a ‘‘triangl
like’’ shape, while our interpretation is that it decays exp
nentially. As for the eigenvalues other thanl1, called the
bulk part of the spectrum, Farkaset al. argued that they are
distributed symmetrically. But we found that that is not t
case. For example, the fact thatl1 and ulNu approach each
other asN increases~Fig. 2! illustrates this. Accordingly, the
odd-power moments are not governed solely byl1 but by
the entire spectrum, which leads, for example, toM 3
;N0.40 rather than;N0.75 as proposed by Farkaset al. In
addition to these similarities and differences, we investiga
the eigenfunction for the largest eigenvalue. In particular,
found that the component of the eigenfunction correspond
to the largest eigenvalue at the hub is independent of
system size. This result contains the important physical
plication that the hub plays a much more important role
transport than expected according to the normalized deg
r.

ts

a-

et
N.

M
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which was also checked by studying the involving number
each vertex. This finding is an important consequence of
paper and should be useful to help the understanding
transport properties in complex networks.

In conclusion, we have considered the spectrum a
eigenvectors of the adjacency matrix of the BA netwo
when bidirectional interaction is allowed. The density of t
eigenvalues decays exponentially for smallulu, followed by
power-law tails at both spectrum edges. This is differe
from the Wigner formula appropriate to random graphs. W
found that the largest two eigenvaluesl1 andulNu depend on
system sizeN as;N1/4 for largeN, and the mass gap scale
as N20.68. The eigenfunction corresponding to the large
eigenvaluel1 is strongly localized at the vertex with th
largest degree, called the hub. The component of the norm
ized eigenfunction forl1 at the hub is independent ofN,
implying that the role of the hub in transport on the sca
free network becomes much more important for a larger s
tem, and its contribution becomes much more dominant t
expected according to the normalized degree at the h
which scales asN21/2. Therefore, it is very efficient in com
munication networks to construct central vertices, throu
which most of the information traffic passes.
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