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Stability criteria for delayed neural networks
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In this paper, delay-independent global asymptotic and exponential stability for a class of delayed neural
networks(DNN’s) is investigated, and some criteria are established to ensure stability of DNN's by applying
the Lyapunov direct method. These criteria are expressed by imposing constraints on weight matrices of the
networks, and they are easy to verify and so are applicable in the design of DNN’s. Comparisons between our
criteria and some earlier results are also made; it is shown that our results generalize some existing criteria in
the literature.
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[. INTRODUCTION where x(t) = (x4(t), . .. X,(t))" is the state vector of the
neural network,C=diag(cq, ...,c,) is a diagonal matrix

Recently, the stability properties of delayed neural netwith positive diagonal entriesg;>0, A=(aﬂ-)an is the
works (DNN's) have attracted increasing attention. Amongweight matrix, A= (aj)nx, is the delayed weight matrix,

many existing research works, some deal with delayedi=(u, ...,u,)" is the constant input vector;=0 are de-
Hopfield neural networkéDHNN's) with smooth activation lays, and f(x(t))=[f,(X1(t)), ... .f,(X,(t)H]", f(x(t—7))
functions[1-6], while others involve delayed cellular neural =[f{(X(t—71)), ... .fa(Xp(t— 7.))]". For a conventional

networks (DCNN’s) with piecewise linear activation func- DCNN [14], all functionsf;’s are the same and take the form
tions[7—-13). Some works consider stability independent de-of piecewise linear function a§(x) =3 (|x+1|—|x—1]). In
lays [1-4,6—8,10—1B and others delay-dependent stability Hopfield neural networksf;;’s are usually sigmoidal. In this
[5,9]. In this paper, we focus on the delay-independent gloPaper, f;'s are allowed to be different and more general,
bal asymptotic or exponential stability of a class of delayedsatisfying the following conditions. .

neural networks. Our delayed neural network model includes (A1) All f;(x)'s are bounded and monotonic nondecreas-
some well known models such as delayed Hopfield neurdd OnR, the set of real numbers. N
networks and delayed cellular neural netwofkd] as spe-  (A2) All fj(x)’s satisfy the global Lipshitz condition, that
cial cases. In the design of a DNN, stability is a main con-iS, there exist real numbekg>0, j=1,2,...n, such that
cern; in many applications it is desired to design a DNN withl fj(X1) = f;(X2)[<kj|x; —X,| for arbitraryx,, x,.

unique equilibrium that is globally asymptotically stable —Conventional DCNN's and DHNN's obviously satisfy
(GAS) or globally exponentially stabldGES, by GAS these conditions.

(GES we mean that any solution with any initial condition  Throughout this paper, we will use the following nota-
will converge(with an exponential spegdo unique equilib-  tions.

rium. In this paper we will derive some conditions for global (i) 0(z1,2,):RXR—R is defined as

asymptotic or exponential stability of DNN’s by the T _ >
Lyapunov direct method. This is achieved mainly by con- 1 ff z1>00r z=0andz>0
structing Lyapunov functionals. Comparisons with some ear-  0(z;,2z;)=1 0 if zy=2,=0 2
Iigr results are a_Iso madg,_ it is _shown.that our results gener- —1 if z,<0 or z,=0 and z,<0.
alize some existing conditions in the literature.
Consider the DNN model governed by a set of differential =~ def
equations with delays, (i) 7=maxj<{7}
(i) K=diag(y, . .. ky), where the diagonal matrix with
n diagonal entriek; .
ki(t)= —cixi(t)+ 2 aﬂ-fj(xj(t)) (iv) 1, is ther_1><n identity mgtrlx. _
i=1 (V) Nmax{M), is the largest eigenvalue of a symmetric ma-
N trix M.
TE (v r L (vi) [[M|,, is the spectral norm of a matrid, i.e.,||M|,
+J'21 aijf](xj(t TJ))+U| il = 1121 -, (1) :{)\max(MTM)}llz-

(vii) IM|n, is the Euclidean norm of a matriM
=(Mij)nxn i-e'vHM”m:(zi,jmizj)llz-
(viii ) [[M||, is the column norm of a matrikl defined by
_ M= max{=i|myl}.
X(t)=—Cx(t)+Af(x(t)) +ATf(x(t—7))+u, (ix) [M]l.., is the row norm of a matrixV defined by
(X) we(M), is the matrix measure defined hy..(M)
*Email address: htlu@maill.sjtu.edu.cn = max(m; +=;.imy|).

or rewritten as
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(xi) m1(M), is the matrix measure defined hy;(M) dition is obviously equivalent to the previous one that

= max(my; +3; ;my ). diag(a,¢1 /Ky, . . . ,anChlky) +3(eA+ATa) is negative
(xii) wo(M), is the matrix measure defined Qy,(M) definite, but it is applicable to more general networks. These
=Amal (M+MT)/2]. two conditions are extensions of the above mentioned
When the delayed weight matix"=0, model(1) reduces condition (vi), because the condition that the matrix
to the conventional neural networks without delays: 3[(a(—=A+CK™ )T+ a(~A+CK™1)] is positive definite

is equivalent to that the matrix measure
. A _ wo(VaCK ) taA(JaCK D) "H<1; where JaCK™ T
Xi(t)= _Cixi(t)+Zl a;fi(x;()+u;, i=12,...n stands for a diagonal matrix with diagonal entries that are
I~ (3) Square roots of diagonal entries @K~ 1; when takinge;
=1, c;=k;, this condition reduces to conditiowi). Thus
Stability properties of such kinds of networks without de-the above condition§ii ), (iv) and(vi), expressed by matrix
lays have been extensively studied by many researchers; easures, are three basic results. In this paper, among others,
large number of criteria for absolute stabiligneaning for ~we will generalize, to some extent, these three conditions to
any arbitrarily chosen functionf; and external inputs;;, ~ delayed neural network cases. N
the system has a unique equilibrium which is GASve It is not difficult to prove that under conditiori&1) and
been derived, most of them given in terms of matrix norms(A2) there exists at least one equilibrium for DNHEQq. (1)]
or matrix measures of the weight matri For example, and that any solution of Eq1) is bounded o1 0,+«); see,
some representative results are listed befmven assuming for example, Lemmas 1 and 2 of R¢10] for details. Now

all ¢;=1, andk; = 1, and using notations of this paper, and in suppose that* = (x} ,x5 , ... x%)" is an equilibrium of Eq.
some cases with slightly different assumptionsfon (1); by applying the transformatiory;(t)=x;(t) —x{" , i
() [|Al 2= {A maATA}2< 1; see Ref[15]. =1,2,...n, Eq.(1) can be rewritten as
(||) ||A||w=ma>g{2j|a§|}<1; sge Ref[16]. .
(iii) poo(A)=max(a;+=;.la;])<1; see Ref[17]. vi(t) = _Ciyi(tHjZl aiojgj(yl_(t))

(iv) u1(A)=max(a]+3ilai)<1; see Ref[18].

(v) max{al +3%,(|a]] +[ajh}<1; see Ref[19]. n

(Vi) mo(A)=\mad(A+AT)2)<1; see Ref[20]. +> ajg;(yj(t—7)), i=12,...n (4

For any pair of a matrix nornj-|| and a matrix measure =1
w(-) induced by the same vector norm, it always holds that
u(-)<||-|l, thus among the above condition@j) is less
conservative tharii), (vi) is less conservative thaf) and . .
(v), while (iii ), (iv) and(vi) are independent of each other. In y(®)==Cy(t)+Ag(y(t)) + A'g(y(t=1)),

theorem 5 of Ref[21], the author established a sufficient here t) = t )T t
condition under the constraint that thes are differentiable vzv[g (y1(1)) y(g) (y(y(lt()))]’T' e Yl g)])(y'(t— r))=[g(¥3§ H
and with bounded derivatives, which states tfi@nslated to PR Snkdin ' det 1l
our notationy  if there exists a diagonal matrim =), - Gnyn(t—m)]T, and gj(y,-(t))=fj(yj(t)+xj*)

c c 1 g;j possesses the following properties.

dia%ali L n)-f——(aA-i—ATa) W g (ypl=kilyjl.

1 n 2 (2) gj is bounded and monotonic nondecreasing and

is negative definite, then networB) is globally asymptoti- gj((o3))=y?§j(yj)20 g-z(yj)$kjng,-(yj) andngj(yj)ikjy-z
* ) ! J

cally stable. This condition is further extended to a more,

: . for anyy; .
general case in the theorem 4 of Rg#2] where constraint It "
on activation functions is relaxed. This is expressed in our The stability of Eq.(1) aroundx® corresponds to that of

notations as follows: If every,(x) is a locally Lipschitz Eq. (4) around the trivial equilibrium, so we just consider

. . NG . system(4). Generally speaking, an analysis of the dynamics
(c::)onit(lnuous_ Tapplng with;(0)=0, and there exist constants of delayed neural networks is much more difficult than that
<kj<e, j=1,2,...n, such that

of networks without delays, because the introduction of de-
f(x)— F1(X,) lays into a network makes the system of equations become

0< #skj infinite dimensional.

X17 X2 The differential difference equatiord¢) and (4) are cat-

for anyx, . x, € R andx, #x,, and the matrix- A+ CK-L is egorized as retarded functional differential equations,

Lyapunov diagonally stabld DS), then the network is glo- dx(t)/dt=f(t,x,), (5)
bally asymptotically stable- A+ CK™! being LDS means

that there exists a diagonal matrix «  wherex(t) e R", f:RXC—R" is a functional defined oR
=diag(ay,ap, . ..,x,) With «;>0 such thati[(a(—A def

+CK 1)) T+ a(—A+CK™ 1] is positive definite. This con- X C. C=C([ — 7,0],R") stands for the Banach space of con-
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tinuous functions mapping the intervat 7,0] into R" with Il. MAIN RESULTS
the norm|| || =sup <<l #()|, where|¢(6)] is the I,
norm of R", i.e., |#(0)|=21<i<n| #i(6)|. X eC is defined
as x¢(#)=x(t+ 6) for any e[ —7,0]. For the functional
differential equatior(5), its initial condition is an element of
C. Under some conditions dn(see Ref[23]) for any given
¢eC andtyeR, there exists a unique solution of EG) PALATP

with an initial condition €, ¢), which is simply the solution —CPK 4+ ———— +|PA", (8)
through ¢, ®), denoted as(ty,¢). For a precise definition 2 ’

of the GAS of an equilibrium of a functional differential
equation, see Ref23], here we just give a brief definition of
the GES adopted frori23].

Definition [23]: For the retarded functional differential
equation(5), supposex=0 is its unique equilibrium, i.e.,
f(t,00=0; thenx=0 is said to be globally exponentially
stable if there exist two humbeB=1 and«>0 such that,
for any (ty, ), the solutionx(ty, @) through ¢, @) satisfies

Theorem 1. If there exists a diagonal matrixP
=diag(P1,p2, - - -,pn) With positive numbersp;>0, i
=1,...,n such that

is negative definite, then netwo(k) [of course networkl)]
is globally asymptotically stable, whefe||,, stands for ei-
ther the spectral norrh- ||, or the Euclidean norm- |, of a
square matrix.

Proof. For model(4), consider the following functional of

Y1,¥2, - Yn:

[X(to, #)|<B]| ¢~ (10D, 6) i

" yi(t)
V(yl,yz,---,yn)(t>=§l pi|  gi(s)ds

This definition defines the exponential stability based on
thel; norm of R" and its corresponding induced norm@n 1 o
The definition can also be given with respect to other norms. +ZPAT f 2(v(s))ds
For example, Eq(6) can be replaced with 2 ” ”2*”‘;1 t_Tig' (i(s)ds.

X(to, )i <Blglie a0, =20, () ©

where |x|,= (=", |xi|) Y2 |X|..=max<i-{|x[}, and |¢|;  This is obviously a positive definite functional with respect
def to yY1,Y2, . .. .Yn, that takes zero only aty(,y,, ... .yn)'

= SUP_,=¢=0|#(0)|;. The equivalence of the three norms = (0,0, .. .,0y, according to the properties gf’s. Differen-
l,,i=1,2 ensures the equivalence of definitions by thesdiating V with respect to time along the solution of E¢),
different norms. we have

dav " " PA"|om —
E:i; pi|gi(yi(t))(—ciyi(t)+§1 c'sli‘}g,-(y;(t))+j2l aj;g;(y;(t—y)) +” 2”2‘ ;l [g2(yi(1)—g2(yi(t—7))]

n n n

== 2, GPYD0O)I+ 2 2 PoGi(1)ale )+ 2 2 Pigiki()a]g;(y(t= 7))
PA5m <
+ % 2, [97(i(1)~gf(i(t=7))]

n n n PA,, n
= _;1 Ci PiYi(t)gi(Yi(t))+§1 121 Pigi(yi(t)afg;(y; (1) +g(y(t) TPAg(y(t— 7))+ H 2”2' 21 [9?(yi(1))
—gfyi(t=7))]

g_z Ci piyi(t)gi(Yi(t))+i:El 121 pigi(yi(t))a?j 9;(y; (D)) +gly(t) T2 [PA o [y (t= 7)),

i=1

PA5m <
+ % 2, [97(i(0) = gf(yi(t=7))]
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n n n ||

=2 GPYOGOIO)+ 2 2 pigi i)+

||2m

{[1g(y(t) 712+ [|g(y(t—1)|1%

PA">m
+ 1PA 2 ”2 E[gz(y.m) g2(yi(t— )]

n

== 2, CPYOGOI)+ 2 2 poi3i(1)aje0,(0) +IPATzallg(D)]]?

n

== 3 SO+ 2, PO 0i(0)a] g0 () +IPATzn( g (D)])?

=—g(y(t))"TCPK 1g(y(t))+g(y(t))TPAg(Y (1)) + [ PAT ,ma(y (1) Ta(y(t))
=g(y(t))"(—=CPK '+ PA+|PAT o) g(y(t)

. ., PA+ATP
=9(y(t)'| —~CPK™ 4 ————+[PAT[nl [g(y(1)). (10

The first inequality in Eq(10) is based on the Cauchy- Theorem 2.Suppose there exists a diagonal matkx

Schwarz inequality and the compatibility of matrix norms =diag(p;,p, ....p,) With positive numbersp;>0, i
[, and |||, with the Euclidean vector normx|, =1,...n, such that

def T

=(="_,x?)Y2 The second inequality is a result of the in- —CPK l+ M.,.A* (12)

equality ab<%(a?+b?), and the third one is due to the 2

propertyg](yJ)<k]ng](yJ) If —CPK +(PA+ATP)/2
+[|PA”|,,, is negative definite, therdV/dt<0 at any
(Y1,Y2, - . ¥ T#(0,0, ... ,0Y. This implies thatV is a
Lyapunov functional for Eq(4) and that(y,,y,, .. ., v n
=(0,0, ...,0f is the only globally asymptotically stable A*d_efd. 1 E 4o lar 1
equilibrium. This completes the proof. —da 2 < (palay;|+pjlaja)),
Remark 1.WhenP=1 and C=K, condition(8) turns to

(IA7,m— 1)1 + (A+AT)/2, which is negative definite, and . , ] 1
this is identical to X2 (Pafag|+pilail). - 5

is negative definite. Then netwo(k) is globally asymptoti-
cally stable, where

A [(IIATII 1>|+A+AT] :
2m— T T
e " 2 ngl (pn|anj|+pj|ajn|))

T A+AT
=[ATl2m= 1+ \ma 2 <0, is a diagonal matrix.
Proof. For model(4), consider the following functional of
that is, Y1:¥2, -+ ¥n!
pa(A) + AT m<1. (11)

" yi()
VY1 Y2, - Y (D=2 P JO gi(s) ds
Condition (11) coincides with Theorem 4 of Ref6]. Arik -

and Tavsanogli13] [Theorem 1 give a condition which 1" t

says that if(i) —(A+AT) is positive definitefii) |A7,<1, 5 E aljlf gjz(yj(s))ds].
then the DNN[Eg. (1)] is globally asymptotically stable. = t=7j

Since condition(i) — (A+AT) is positive definite is equiva- (13

lent to that\ ,(A+AT)<0, and this isu,(A)<0, so condi-
tions (i) and (ii) together imply thafu,(A)+|A7|,<1; this  This is obviously a positive definite functional with respect
is a part of conditio(11), but when conditior(11) is satis- 10 y;,Ys, ... Yn, that takes zero only aty(,ys, ... .Yn) "

fied, conditions(i) and (ii) are not necessarily satisfied, and = (0,0, . . . ,0Y, according to the properties gf’s. Differen-
this means that our conditiori8) and(11) are more general tiating V with respect to time along the solution of Ed),
than conditiondi) and (ii) of Ref.[13]. we have
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E [g(y t))( cy(t)+2 a,,gj(y,(t))+2 ajg;(y;(t— ) | +

n

1 n
52 | ILg(y;(t) —gfly;(t— T,-))]}

n

<

=

1 n
ts 2 aj|lg?(y; (1)) —gl(y;(t— Tj))]]

n n

=2 cipyi(Hgii()+gy(t) PAgy(D)+ 2,

n
cip,
<=3 9

=1

=g(y(1)){—CPK 1+ PA+A*}g(y(t))

T

. . PA+ATP
=g(y(t))'{ —CPK +T+A* g(y(t)).

If the symmetric matrix— CPK™ 1+ (PA+ATP)/2+A* is
negative definite, thedV/dt<O for any (1,y,, .. ., v "
#(0,0, ...,0Y. This implies thaV is a Lyapunov functional
of Eq. (4), and that (0,0. .. ,0)" is the only globally asymp-
totically stable equilibrium. This completes the proof.
The condition that the symmetric matrix CPK™ !
+(PA+ATP)/2+ A* is negative definite is equivalent to

Cepk-ls (PA+ATP)

max 2

+A*}1<0. (15

By using the fact that every eigenvalue of a symmetric ma-_ 1

trix M is not greater than any measurehf

Amad M) <=1 (M) = (M),

we obtain a more tractalithough more restrictiestability
condition.

Corollary 1. If u;(—CPK '+ (PA+ATP)/2+A*)<0,
ie.,

- 231 cipYi(Dgi(yi(£)+g(y())TPAg(y (1) + .21

L[
Vi) + g ()PAY (1) + 2 [5

PHYSICAL REVIEW E 64 051901

n

Z lafI[g?(y;(D)— g?(y;(t

—79))]

1
2

2, GPYIOGGID)F 2 2 Poii(1)aje () + 2, pi[gl 9i(yi(1)ag; (v (t= 7))

1D
pl[i Z |alj|[g| (yi(t )+gJ (yj(t_Tj))]

{2 2, (pilaj|+pjlaji) Z(y.(t»}

2 <pilaﬁl+pjlafil)g?(yi(t))]

—g(y(t))TCPK tg(y(t))+g(y(t)) TPAg(y(t))+g(y(t)) "A*g(y(t))

(14)

cip;
: '+p.a.|+ E Ipia) +p;al|

1 n

+5 2 (pilajl+pjlaj)<0, i=12,...n, (16

then network(4) is globally asymptotically stable.
Remark 2 Condition(15) is equivalent to

wo(—CPK 1+ PA+A*)<0. (17)
WhenP=I| andC=K, this condition turns to
uo(AFA*) <1,
Ho(A+A*)<po(A)+ ua(A*)  and  up(A*)
7 max<i<n{2L([af|+[af[}, a slightly stronger criterion
can be derived as

Since

1<i=n

1 n
oA+ max[ 3 <|a|,|+|a,.|>]<1 (18

In addition, the inequality

n n n
max 2 |ajj| +|aj )< max 2 |ajj|+ max E |aji|
l<i=n = 1<i=n =1 1<i<n =1

= || A"+ (A7,
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leads to a further stronger sufficient condition for globalthen the trivial solution of network4) is globally exponen-

asymptotic stability:

1
o)+ 5 (AT + AT <1, a9

Conditions(11), (17), and(19) show that Theorems 1 and 2

are generalization of conditiafvi) for neural networks with-
out delays to the case of DNN's. From conditiorid) and

(19, some useful criteria for global asymptotic stability

could be derived.

(Criterion 1) If the matrix A is skew symmetric, i.e. A
=—AT, and||A”| ;<1 or AT+ [A7;<2.

(Criterion 2 If the matrix — (A+AT) is positive definite,
A7+ [|A7] < 2.

Remark 3WhenP=I| andC=K, condition(16) reduces
to

n

1 1
0 T T

i=1,2,...n

This condition is more general than Cao’s conditi@n in
Ref.[10].

Theorem 3. If there exist n positive numbers
p1,P2, .. .,pn and two positive numbers,e[0,1], r
€[0,1] such that

def 1 2rq 2(1-ry)
—_Cipi+§§i( |k +pjlaf |k )
1 n
z Z |k2f2+p]|a |k2(l rz))
<0, i=12,...n (20
and for all positivea’ >0, ie{1,2,...n},
@
ﬁ<—at, (21)
17N

Il
M -
-

———

yi(H| — M(t)"‘z aiojgj(yj(t))+2 ajjg;(y;(t—my))
<1 =1

tially stable.
Proof. From conditiong20) and(21), there exists a small
real numbers >0 such that

def
Ofi, = — Ci +

1 n
+3 3, (plajli = pylap i e

€ 1 2 2(1-
E pi"’i;ﬁi (pi|aﬁ|kjr1+pj|aﬁ|ki( rl))

<0, i=1,2,...n (22
and for all positivea’ >0, ie{1,2,...n},
il (23
al<-— Sk
Piki
Consider the Lyapunov functional
n 1 1 n
V1Y, - Y (D=2 pii sy2e+5 X [af]
=12 2=
2(1-rp) 2 £ T
N iji(s)e (st J)ds],
(24)
or rewritten as
n
v(t.9)=3, p f & (0)e8‘+ E kP
t
X ¢j2(s—t)e"(5+ 7) ds] . (25)
t—Tj

This is obviously a positive definite functional with re-
spect to yq,Yo,....¥n, that takes zero only at
(Y1,Y2, ... .¥n)'=(0,0, ... ,0Y, according to the properties
of g;’'s. DifferentiatingV with respect to time along the so-
lution of Eg. (4), we have

1
ety Eyf(t)sesI

aiG | ka(l—fz)(ij(t)es(t+ ) y,z(t _ Tj)est)}

—wﬁmm-mm@+2ym%mm wwaum@maTm&

|aj ke P (e et -yt r,-)est)]
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o[-

X e+ = Z |aj] |k2(1 "D(y?(t)e et - yA(t—))e)

s yEOe +aily (g 0t + 2 Iyi(llaglkilyyhle+ 2 Iyi(laflkly; (=)l

n
=3
i=1

n
e 1
=2 pi[(— +3)yimetraly(Ogiite+ 5 2 fajle (G i+ )
1 & 1
+5 JZ |aj[et (k" 2yP(t) + Kyt T+ 5 E | kPO (y2()es et~ y 21— 7)et)

1 1o
#2lpt 5 S I a4 5 S (paglk

:i=21 [aﬂpiyi(t)gi(yi(t))eg“r

+ pJ|a |k2(1 rz)esrl)

yi (t)e‘“]

n

=21 {(@2piyi (D@ (yi () + o y2(1)}et. (26)

From Eq.(22), a{ <0; thus, according to the properties of the functigns

/

ayA= - K ~Yi(Dgi(yi(D).

Therefore, it follows from Eq(26) that

!

+ a'll Pi ) i(t)gi(yi(t))eat.

V n
=2 %

It again follows from condition$22) and(23) that { /k; Jra?i p;<0 foralli=1,2, ... n, together with the properties gf, we
have

V . 1 II 1
dat 2 (a_ p) gl (yi(t))e's— ,812 g7 (yi(t))e,

where 8;=min,_i_{— &/ IK*—alp, /k}>0. From this, we have

V(t)<V(0), for all t>0. (27)

The construction of the Lyapunov functional implies that

1
5 mm{p}e“E y&( t><2 SPyihet=V(b), (28)

2 1<i=n

and from Eq.(25), we have

n n
1 1 N 0
V(0)=2, p, 5¢?(o>+§j21 EWlas ’2’f ¢j2(s)e8(5+71)ds]
= = o

1 n n
m.aX{pi}El ¢|2(0)+ E 2 2 |alj|k2(1 ry) sT]f ¢J(S
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1
<5 max {p}||¢||2+2 [ E pilaj |k )e}f i (s)ds
1 1
=<5 max{p;}]5+ max {52 ke ”]2 f ¢7(s)ds
1<i=n 1<j=n =
1 1 n n
=5 max{p}| 4|3+ max [52 pila|k? e ]f > $i(s)ds
1<i=<n 1sj=n( < i=1 =1
1 12
$<§ max{pj} + maX[zE pilaﬁlkf‘l"”e”ir])||¢>||§. (29
1<isn 1sjsn( ¢ i=1

Combining inequalitie$27), (28), and(29), we have

n 1/2
||y(t>||z=(i21 y?(t)) <B| gle” ",

where

B= maxl

1<i<n 1<i<n 1<j=n(!

n 1/2
1 ( min{pi}rl( max {p;} + max|2 pilajj Kk Pee m ]

This finishes the proof of the theorem.
Remark 4.The sufficient condition in theorem 3 is equivalent to

+E

|a”|k2r1+ pj |a |k2(1 ry)

[2<a..> k+2

When taking allp;=1, this condition turns to

|y "2+ IDJ| aj |kt rz))] <2, i=12,...n. (30)

1
[Z(a”) k+§} (E e ’1))+2 (| K22+ |af | k2 r2))}<2 i=1,2,...n. (31)

Condition (31) corresponds to the result of Theorem 1 in Héfl], but is less conservative than that sineé,?)(*s|aﬂ|.
Here global exponential stability is ensured.
Theorem 4If there existn positive real numberp;>0, i=1,2, ... n such that

n
ci - '
max{ — —+aj+ >, ﬂlaﬂ|+2 &|aj7i| <0, (32
ki i#i Pi =1 Pi

1<is<n

then the delayed neural netwoi) is globally exponentially stable.

Proof. If condition (32) holds, there exists a positive numher 0 such that<c;, i=1,2,...n and
n
&G o Pi o Pi| 7 |aem
max a; —|aj|+ —|aj;|e® i <O. 33
lSiSn[ ki ii = pi | jl| ]2::1 pi | ]|| J ( )
For any initial conditiong e C, suppose the solution throughis y(t) = (y,(t), . . . .ys(t))", define a Lyapunov functional as
n n t
VYL Yz, - Y (D=2 pi[ |yi<t>le€‘+j21 |a] ft |9j(yj(5))|es(s+71)dS]: (34)
< = 1
or rewrite in terms ofp as
n n t
V(t,¢)=izl pi| |¢i(0)|e8t+j2]_ |<'3‘iTj|ft |gj(¢j(3—t))|es(s+rj)d3]- (35
= = 1

051901-8
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Obviously, V(y1,Y2,...¥Y)()>0 for (y1,¥2, ... ¥)#(0,0,...,0) and V(y1,¥2,....¥n)(1)=0 only at

Y1,Y2, s yn)=(0,0,..., 0). Wecalculate the upper right Dini derivative dfalong the solution of Eq4) and estimating
its right hand side we have

Dfv=2, pi[s|yi(t>|e“+a(yi ,dyi/dt>( eyt + 2, alg () + 2 ajg;(t-7)) e

+E |af|[]g;(y;(t)|et* ) Ig,(y,(t—r,))le“]}

n

=2 pi[aﬁgi(ymt))o(yi Ay fdes+ 2, ajoly;.dy /dt)gj(yja))eswjzl oy, dyi/d0g;(yj(t=17)))

n n
X68t+8|Yi(t)|est_Ci|yi(t)|ed+;1 |ai7}||gj(yj(t))|e£(t+Tj)_j§=:l lajillg;(y;(t—7))|e”

n —CI n
gzl pi{ST|9i(yi(t))|e£t+aﬂ|9i(yi(t))|e£t+;i |<31in||9](yj(t))|e£t+j21 laf[lgj(y;(t—))|e*

n n
+J§=:1 |ai7}||gj(yj(t))|e8(t+fj)_jzl |aillg; (y;(t— Tj))|est]

n
=2 p.{(—+a.. i i(tler+ 2 |a.,||g,<yj<t>)|e£‘+2 2 llgj(y;(t)]e
L fe-g p; i
=2 pi[Ti'+aﬁ+; o 3l + 2 | Dhlaj |e87')]|gi(Yi(t))|68t
n
== 822, loii(v)le, (36)
where, by inequality33),
def n
B2= min p, . Iaﬂlpj—E |aji|pje°™i | >0.
1<i<n I J?ﬁl j=1

In the estimation of Eq(36), the facts thatr(y; ,dy; /dt)y,=|y;| anda(y;,dy;/dt)g;(y;) =|di(y;)| have been used. The
first inequality is due to the fact that<c; and|g;(y;(t))|<ki|y;(t)|.
It follows from Eq. (36) that

V(t)<V(0), for t>0, (37
and from Eq.(34) that

min {p}es‘E lyi(t) |<E pilyi(t)]e*=V(t). (38)

1<i=n
According to Eq.(35),

n n 0
vV(0)=2, pi| @0+ 2, Iaﬂ-IJf _lgj(¢,-<s))|e€<s+ﬂ’ds]

0
< max{pl}Z |¢(O)|+E 2 p||a|]|JiT_kj|¢j(s)|e£Tde

1<i=n

051901-9
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max{p}||¢||+2

1<i=n

< max{p;}| [+ maX[

1<i<n 1<j=<n

n

s( max{p;}+ max[Z pilaf| 7k e“JJ)|¢||.
1<i=n

1<j=<n

Combining Eqs(37), (38) and(39), we obtain
n

2, Iyt =Bl gle ", (40)
where
B=max[( min {p;}) | max{p;}
1<i<=n 1<i=n
ma [Z J-|1-kje”1}),l]
=1, (41)

This has proven the theorem.

Remark 5. Condition (32) can be rewritten as
wi(PAPIC K)+|PA'P IC K|,<1, where P
=diag(p1,p2, - - - ,pPn) IS a diagonal matrix with diagonal
entries agp4,ps, - . - ,Pn. If all ¢;=k; in network (1), i.e.,
C=K, Eq. (32 is equivalent tou,;(PAP 1) +|PAP Y,
<1.WhenP=1, the identity matrix of sizen, this condition
further reduces tau,(A) +||A7|<1. This implies that condi-
tion (32) is an extension of above conditidiv) for neural
networks without delay to the delayed case.

n

>

PHYSICAL REVIEW E 64 051901

0
[E pla.Jlke”J“ |$j(s)|ds
7j

0 n
i|ai7j|kje”l'} JL jgl |¢j(s)|ds

(39

asymptotic stability that could be rewritten in our notations
as|A"C K| ;<1; this condition coincides with ours when
A=0 andP=1.

Theorem 5Suppose the condition

n
(aﬂ)*kﬁgi |aﬂ|kj+j2l lajlkj<ci, i=12,...n
(42)

holds. Then the delayed neural netw¢Eq. (4)] is globally
exponentially stable.

Proof. If condition (42) holds, there must exist a positive
real numbere such that

n
_Ci+8+(a?i)+ki+j§i |aﬂ|kj+;1 |a]j|kje® <0,

i=12,...n (43
Supposey(t) = (y;1(t),y2(t), . .. ya(t))TeR" is a solution
of Eqg. (4) with an initial function¢ e C. For anyt>0, we
definely;) (t)|=max<i<nlyi ., I=i(t)<nis the index
of the component of the solution vectg(t) at which the
maximum value of|y;(t)| is achieved. We construct a

Remark 6.Zhang Yi[2] considered a special case of a Lyapunov functional for network4) as

network mode[Eq. (1)] when ignoring the intraneural signal

transmission delays, which is a special case of our mddel

whenaIl 0, for anyi#j, a;=0 for anyi andC=K=1.

Sufficient conditions ensuring global exponential stability

were established by the author @s our notationg aﬂ<0,
i=1,2,...n and u,;(P(A+ AP 1)<0. These conditions
are equivalent t@’ <0 and

at+3 '°‘|a |<o0.

Applying Eq.(32), our criterion can be expressed as

max[ ”+E pJ |a“|}<1
I

1<i=n

It is obvious that our condition is weaker than Zhang Yi's. Obviously, V is bounded and for anyyg,y,, ...

The authors of Ref.3] investigated a special case of Ei)
when A=0. Without assuming thatr;=0, for i
=1,2,...n, they proposed a condition for

n

V(y1.y2, - -- ayn)(t):|Yi(t)(t)|eSt+j§=:1 |ay;l

t
XJ lg;(y;(s))|e**7)ds,
t*Tj
(44

or rewrite with respect teb as
n
Vit )=l (0le+ 2 faly,
t
th |9j(#(s—t)]eCds.  (45)
-1

Yn)
#(0,0, ...,0),V(y1,Y2, . ..,¥n) (1)>0. Calculating the up-
per right Dini derivative of Eq(44) along the solutiory(t)

global of Eq. (4), we have

051901-10
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n

n
DV=0(Yiq dYiq /dt) _Ci(t)Yi(t)(t)JFjZl ai()(t)jgj(yj(t))+j2 al(y;9;(yj(t— 7)) | e +ely; ()]

=1

n

+j21 |aiT(t)j|(|gj(yj'(t))|e€(t+71)_|gj(y1'(t— 7)))e®)

= —Ci|Yi (D€ +aiyin i Vim0 (Vig . dYiw /dt e + ]y () e
n

+j;t) a?(t)jff()’i(t) Vi) /dt)gj(yj(t))e8t+j21 al(y;o(Yigy .dYi /dt) gj(y;(t—7)))e”

n
+j§=:1 |aiT(t)j|[|gj(yj(t))|e£(t+7’j)_|gj(yj(t_ 7))e®']

n

$(—Ci(t)+8)|Yi(t)(t)|e€t+aio(t)i(t)|gi(t)(Yi(t)(t))|95t+j;i(t) |ai0(t)j||gj(yj(t))|e8t+j21 lajy;llg;(y;(t—7)))le”t
n n
+j21 |aiT(t)j||gj(yj(t))|e£(t+7j)_;1 |l [9;(y;(t—7)))le!

n
(—Cigyt&)|YigD]+ aio(t)i(t)|gi(t)(yi(t)(t))| +J_¢Zi(t) |ai0(t)j||gj(yj(t))| + 121 |ai(y; ||9j(Yj(t))|ESTj] e’

n

n
s[(—Ci(t)+8)|yi(t)(t)|+(aio(t)i(t))Jr|<i(t)|)/i(t)(t)|ijg(t) |a?(t)j|kj|yj(t)|+j§1 |ai7-(t)j|kj|yj(t)|e£7-j]e£t

0 0 .
g[ _Ci(t)+8+(ai(t)i(t))+ki(t)+j;i(t) |ai(t)j|kj+l_§=:1 | k€I iy (t)|e”

<—Balyim(b)e”,

where

def
—mi 0 0
BS_mlnlsisn[ Ci_<‘3_(<5‘ii)+ki_]_¢i |aij i

n
_;1 |aiTj|kjeETj].

According to condition43), 83>0. It follows from Eq.(46)
that

(46)

|
and Eq.(44) implies that

i (D]e'=V(t). (49)
Combining Egs(47), (48), and(49), we obtain

y(t)|.= max|y;(t)]=y;g (1)

1<i=n

n

=<|1+2 laloilker[I¢le™. (50

This implies that the solutiog(t) converges, with respect to
the norm|-|., of R", to the only equilibriumy=0 at an
exponential rate. The proof of the theorem is thus completed.

Corollary 2. When the activation functions of all neurons
are identical, i.e.g;=g in Eq. (4), and furtherg is odd sym-
metry, i.e.,g(—Xx) = —g(x), then a global exponential stabil-
ity criterion is

V(t)<V(0) for t>0. (47
From Eq.(45), we have
n 0
V(0)=[¢i0)( 0]+ 2 [a| f |9)(¢i(sD]e”" Vs
- -
n 0 n c
s||‘/’||o°+j21|"“i<0>j|'<je”J’_T|<151(5)|0|S al+> [ad|+ > |a(j|<k—', i=1,2,...n. (51
j#i =1 i

n

< 1+j21 a0y, egTT) 14).. (48) Proof.If Eq. (51) holds, there must exist a small positive real

numbere >0 such that <c; foralli=1,2,...n, and
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(—cit+e) . n Note that if g is odd symmetry, then foi(t) defined by
T+an+2 |aij|+2 |ajj|e°T<0, |yi(t)(t)|:maxlsi_sr_1|yi(t)|r |g(yi(t)(t))|:maxlsisn|g_(yi(t))| _
! 171 =1 also holds. Defining the same Lyapunov functional as in
Theorem 5 and following a similar estimation procedure, we
i=12,...n. (52)  obtain

n
$|( Cicy+)lYicy (D] + a9 Vi) )|+ 2 |a|(t)1||9(y1(t))|+2 |a|(t)1||<§J(y1(t))|€‘”1]eet

I

Ci n
[ o 19010001 ol 90i0 0D+ |ai°<t>j||9(yj(t))|+j21|a&t)jllg(y;(t))legﬂ]es{

J#I(t)

I

n
|<t>+8 _
| |(t)i(t)+j;(t) |ai0(t)j | +1_21 |ai7(t)j|e€TJ] l9(Yi@(t)]e

—ﬂ4|9(Yi(t)(t))|e€t, (53
|
where, by inequality52), dz(t) n 1
——=—ciz()+ 2, aioj —g;(p;z;(1))
def dt j=1 Pi
Ci
Ba= min [T—a |ag |~ E |a,J|e”1]>0 n 1
i1=i=nl 17 +> a{jagj(pjzj(t—rj)), i=12,...n
=1 i
The remainder of the proof is identical to that of theorem 5. (56)

Remark 7.Condition (51) can be represented in matrix
measures and norms ag...(C 'KA)+|C IKAT|w<1. _
When C=K, the condition becomegc..(A)+|A7..<1. If one letsh;(z) = (1/p;)g;(p;2), then Eq.(56) can be rewrit-
This indicates that conditiof61) is a generalized version of €N as
condition (iii) [17] for neural networks without delays. A
more general version of Theorem 5 and Corollary 2 are dz|(t) )
stated in the Corollary 3. —cizi(t)+ Z aj 'hj(zj(t))
Corollary 3. If there exist n positive real numbers dt Pi
P1:P2, - - - ,Pn SUch that

) +2 aj o h(z —-7)), i=12,...n.
0 0 T
_Cipi+(aii)+kipi+§i |aij|kjpj+j21 |aj|kjp; <0, (57)
i=12,...n, (54)  Since dh /dz|Z=dgj/dy|ij, functions h; have the same

properties ag; . Hence applying Theorem 5 and Corollary 2
or further when all activation functions are identical and oddt® EQ.(57), respectively, we can obtain conditio&4) and

symmetry, and (59) for system(57). Moreover, system#4) and (57) have
same stability properties. This finishes the proof of the cor-
n ollary.
—cipi+adkipi+ > Iaﬂlk-pj+2 |afi | kip;<O Remark 8.Condition (55) can be expressed in another
way as
-1~-1 -1l AT
i=12,...n, (55) pe(PICTIKAP) +|[PTICTIKAP[. <1.

then neural network4) [and thus network1)] is globally  Condition(51) serves as its special case when takingl. It
exponentially stable. is easy to observe that the criterion in REf] is identical
Proof. Transforming Eq(4) with y;=p,z, this turns to with our condition(54) whenA=0.
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Ill. CONCLUDING REMARKS 05 0. 05 0.
. . . . A= T=
In this paper, we have established some sufficient criteria (0.1 0.:)’ 1.0 0.;)’
for delay-independent global asymptotic or exponential sta- 0.4 0.74
bility of delayed neural networks. Our results generalize :( ' ) :( ' )
some existing results in the literature, as stated in the above 0.25 0.55

remarks. Our main results are formulated in Theorems 1-5 _ N
and their corollaries. Among these results, conditi¢Bls ~ Only satisfy condition30) for the case of ;=r,=1/2.
(12), (30), (32), and (54) are five basic ones that are inde-  (4) If we select weight matrices as

pendent of one another. To illustrate their independence, in —-0.5 0.05 1.0 0.9
the following we will give some simple examples, where A= 01 —o041)’ AT= 02 0.05°
only one condition is satisfied and the other four fail. For ' ' ' '
simplicity, in what follows, we consider a DNN with only 4, only condition(32) is satisfied.
two neurons, and further assume thatg1, i.e.,P=1 and (5) If we select weight matrices as
C=K=I, unless otherwise stated.
(1) A two-neuron DNN with weight matrices :( 0.1 0'27 AT— ( 0.2 0'2)
<0.55 0.1) (0.33 0.16 0.15 0.4/ 01 03’
A: 1 T: 1
02 -02 01 -015 then only condition(54) is satisfied.

only satisfies conditior{8) for both Euclidean and spectral
norms, the other four conditions are not satisfied. ACKNOWLEDGMENTS
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