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Thermodynamic behavior of a polymer with interacting bonds on a square lattice
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Using the transfer matrix technique, finite-size scaling, phenomenological renormalization group, and con-
formal invariance ideas, the thermodynamic behavior of a polymer with interacting bonds on a square lattice
has been studied. In this model, one monomer that belongs to the polymer has an activityx5ebm, while the
interactions between bonds of the polymer that are located on opposite edges of elementary squares of the
lattice have a statistical weighty5e2be, wheree is the interaction energy. Next, the phase diagram of the
model in the (x,y) plane was found, which shows three phases, two of them being polymerized. Furthermore,
the densities of occupied sites and of bond interactions in each phase were calculated, in order to determine the
nature of the transitions between the phases. The results obtained are consistent with a second-order transition
line between the nonpolymerized and the regular polymerized phase and a first-order transition between the
nonpolymerized and the dense polymerized phase. The boundary between both polymerized phases may be of
first or second order, and thus evidence for a tricritical point is found.
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I. INTRODUCTION

Polymers have been extensively studied through mo
of self-avoiding walks~SAW’s! on regular lattices. If we
restrict ourselves to two-dimensional lattices, the criti
properties of these models have been studied through a
ety of techniques, such as series expansions@1#, finite-size
scaling, and phenomenological renormalization group ide
in linear noninteracting polymers@2#, branched polymers@3#,
polymers with crossing bonds@4#, and interacting polymers
@5#. The problem of interacting polymers, in particular, h
attracted much attention since the competition between
repulsive excluded volume interactions and the attractive
teractions may lead to a collapse of the polymer, usu
associated to theu point. The precise nature of the attractiv
interactions included in the model may vary. Two possib
ties are to associate an interaction energye to each pair of~i!
monomers located on first neighbor sites and not consecu
along the walk and~ii ! bonds on opposite edges of eleme
tary squares of the lattice. In general, it is believed that b
models should lead to rather similar results, and transfer
trix calculations together with finite-size scaling extrapo
tions @5# show the collapse transition as a tricritical point,
expected@6#. However, exact Bethe-ansatz calculations
an n-vector model on a chessboard lattice with four-spin
teractions among spins located on the edges of colo
squares do not fit into this picture. In this particular mod
which in the limitn→0, is equivalent to SAW’s with attrac
tive interactions between bonds onalternating squares, the
point in the phase diagram that corresponds to the colla
transition is in general not a tricritical point, although i
precise nature was not obtained in these calculations@7#. The
relation of this model to the one we are considering here
be discussed in more detail in Sec. IV. Some time ago,
contradiction led to an investigation of the solutions of int
1063-651X/2001/64~5!/051810~7!/$20.00 64 0518
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acting SAW models on Husimi lattices@8#, and, while for
coordination numbersq.4 the usual phase diagram wa
found asq54, a richer phase diagram is obtained with tw
distinct polymerized phases. For interacting monomers
collapse transition is a tricritical point in this solution, but fo
interacting bonds this tricritical point is suppressed and
critical polymerization line ends at a critical endpoint, an
therefore, the phase diagram for this model on the Hus
lattice is consistent with the Bethe-ansatz result for then
→0-vector model with four-spin interactions.

In this paper we present an investigation of the ph
diagram of SAW’s on the square lattice with attractive inte
actions between bonds, using the transfer matrix metho
solve the model exactly on cylinders with different perim
etersL and phenomenological renormalization group ideas
extrapolate the results to the two-dimensional limitL→`.
Our main purpose is to verify if the qualitative featur
found in the phase diagram of the model defined on aq54
Husimi lattice are present in the square lattice solution.

Detailing the method we used, we start building a trans
matrix for the model defined on strips of widthL and with
periodic boundary conditions in the transverse directi
generalizing a method proposed for noninteracting SAW
@2#. The correlation lengthjL may then be obtained from th
eigenvalues of this matrix. This process is repeated for
creasing values ofL and through an extrapolation proce
@9#, we obtain the phase diagram and critical exponentn
andh for theL→` case, that is, the square lattice. The ba
idea is to use the phenomenological renormalization gr
~PRG! equation@10#,

jL~a!

L
5

jL8~a!

L8
, ~1!

and to find the fixed pointa* that solves the equation abov
©2001 The American Physical Society10-1
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wherea is a relevant parameter defined in the model. If
know a* , the critical exponentn can be estimated by

11
1

n
5

lnFdjL~a!

da Y djL8~a!

da GU
a*

lnS L

L8
D , ~2!

and the critical exponenth is given by@11,12#

h>
1

p

L

jL~a *̀ !
, ~3!

wherea *̀ is the fixed point extrapolated for the square latt
(L→` limit !. The correlation length is obtained from th
transfer matrix through@13#

j215 lnS l1

l2
D , ~4!

l1,2 being the largest and the second largest eigenvalu
the transfer matrix, respectively. We define the model in S
II, and Sec. III shows the results and discussions. Con
sions can be found in Sec. IV.

II. THE MODEL OF SAW’S WITH INTERACTING BONDS

In order to study the model of a polymer with interactin
bonds with periodic boundary conditions on the square
tice ~see Fig. 1!, we define an activityx5ebm associated
with the monomers that belong to the polymer, and a Bo
mann factory5e2be for the interaction between bond
wheree is the interaction energy. Thus, an energye is asso-
ciated to each pair of bonds belonging to the polymer that
located on opposite edges of an elementary squ

FIG. 1. A possible configuration for a polymer with interactin
bonds on the square lattice.
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~plaquette! of the lattice. Ife,0 the interaction is attractive
while for e.0 it is repulsive. Whene50 (y51), we have
the noninteracting polymer model, for which there a
known results for the critical exponentsn5 3

4 and h5 5
24

@14#. We consider strips of widthL and infinite length, as
shown in Fig. 2, so that a single polymer is supposed to p
through the whole strip. The grand-canonical partition fun
tion for the model~the number of monomers incorporate
into the polymer fluctuates! @15# is

Y5( xNxyNy, ~5!

where the sum is over all configurations of the polymer
the strip,Nx is the number of monomers incorporated in
the polymer andNy is the number of opposite pairs of edg
in elementary squares that are occupied by bonds of
polymer, so thateNy is the energy associated to the config
ration of the polymer.

A transfer matrix may be defined for each widthL of the
strip and in the thermodynamic limit the adimensional fr
energy per site will be given by

f5 lim
N→`

2 ln Y

N
52

1

L
ln l1 , ~6!

wherel1 is the largest eigenvalue of the transfer matrix. T
transfer matrix is block diagonal, the first (131) block cor-
responding to the empty lattice, or nonpolymerized ph
(l51), and the remaining block for all other configuration
It is this second block of the transfer matrix we consid
below. For a pair of widths,L andL8, we calculate the cor-
relation lengthj @using Eq.~4!# and then the fixed pointsxc
of Eq. ~1!, for a given value ofy. Changingy, we can find the
whole phase diagram for the pairL2L8. We are restricted to
L<7, since the size of the transfer matrix grows ve

TABLE I. Number of statesNS of the transfer matrix as a func
tion of L. NSBD is the size of the matrix after a block
diagonalization process.

L 1 2 3 4 5 6 7
NSBD 1 3 9 31 114 442 1777
NS 1 6 27 124 570 2652 12439

FIG. 2. A strip withL54 with a configuration for a polymer.
0-2
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THERMODYNAMIC BEHAVIOR OF A POLYMER WITH . . . PHYSICAL REVIEW E64 051810
quickly with L ~see Table I!, and we have computationa
limitations. Furthermore, there are parity problems and
are forced to chooseL85L12, so we study the pairs 1–3
2–4, 3–5, 4–6, and 5–7, obtaining the phase diagrams
each pair of widths. The transfer matrix is built starting fro
the definition of the connectivity properties of the walk, a
this is done according to a prescription introduced by Derr
@2#, generalized to take the attractive interactions into
count. As an example, we show in Fig. 3 a graphical repre-
sentation of an element of the transfer matrix. To study
physical properties of the phases in the diagrams, and
the kind of transition between them, we calculate the den
of sites ~or monomers! incorporated into the polymer (rx)
and the density of bond interactions (ry) in the strips. The
densities are obtained through

rx5
^Nx&

N
5

1

L

x

l1

]l1

]x
, ~7!

and

ry5
^Ny&

N
5

1

L

y

l1

]l1

]y
. ~8!

FIG. 3. A possible configuration of the walk between two neig
boring sets of horizontal bonds and the corresponding contribu
to the transfer matrix.

FIG. 4. Phase diagrams obtained for all pair of widths studi
NP is the nonpolymerized phase, UP is the usual polymerized p
and DP is the dense polymerized phase. All are explained in
text.
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We point out that both densities are normalized, being eq
to one for hamiltonian walks, that visit every site of th
lattice. Also, the internal energy per site of the model
given byery .

III. RESULTS AND DISCUSSIONS

All phase diagrams we obtained are shown in Fig. 4, a
there are three phases in the phase diagrams: a nonpoly
ized phase~NP!, which hasrx(x,y)50 andry(x,y)50 in
the whole phase, so there is no polymer on the lattice; a u
polymerized phase~UP!, with 0<rx(x,y)<1 and 0
<ry(x,y)<1; and a second polymerized phase, in whi
rx(x,y)51 andry(x,y)'1 in the whole phase, so we ca
this a dense phase~DP!. In this phase, all sites of the lattic
are visited by the polymer, in a configuration that maximiz
the number of the interactions between bonds. The ph
diagram of the model of polymers with interacting bonds
the Husimi lattice@8# also shows these three phases.

The transition between the NP phase and the DP phas
of first order, since the values of the densities change fro
to 1 abruptly. We can see this behavior in Figs. 5 and
where we show the densities of monomers and of bond
teractions forx50.2 as a function ofy. For this value ofx,
we are in the NP-DP transition region. It should be stres

-
n

.
se
e

FIG. 5. Density of sitesrx for x50.2.

FIG. 6. Density of bond interactionsry for x50.2.
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TABLE II. Results obtained forxc andn in the NP-UP transition.

L L8 xc (yc51) n (yc51) xc (yc51.2) n (yc51.2)

1 3 0.357100282 0.68778987 0.348073927 0.6767365
2 4 0.369539639 0.73077081 0.358084540 0.7118722
3 5 0.375076826 0.74186350 0.363995791 0.7267612
4 6 0.377291276 0.74621498 0.366642726 0.7358150
5 7 0.378185851 0.74825396 0.367805168 0.7413444

`a 0.3790960.00004 0.750760.0008 0.3691960.0003 0.749860.0004

aResults extrapolated for the square lattice.
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that in this diagram of a density as a function of a statisti
weight and in the ones below, we are considering the bl
of the transfer matrix that corresponds to one polymer t
passes through the whole strip in the longitudinal directi
Thus, the lowest value ofrx consistent with the boundar
conditions is equal to 1/L. As expected, the transition is no
sharp for finiteL, but builds up as the width is increased.
the nonpolymerized block of the transfer matrix is include
the usual NP-UP transition on the strips fory51 is of first
order, and the discontinuity inrx at the transition is reduce
as L is increased, vanishing in the two-dimensional limitL
→`, where the transition turns into a continuous one@16#.

The transition NP-UP is of second order, and the poin
this frontier that corresponds to noninteracting polymersy
51) was obtained by several techniques@1,2#. One of the
best values of this point at the moment is (xc
50.379 052 2760.000 000 12,y51) @1#. Our results for this
point are shown in Tables II and III, for all pairsL2L8, and
after extrapolation we found (xc50.379 0960.000 04,y
51). The critical exponentsn and h for this frontier were
also calculated. Fory51, the values of the exponents shou
be n5 3

4 andh5 5
24 50.208 333 . . . @14#, exactly. From uni-

versality, we expected that the critical exponents should
the same in all boundary NP-UP. So, we calculate the va
of these quantities fory51.2 too, and we obtainedn
50.750760.0008 andh50.208260.0004, fory51, andn
50.749860.0004 andh50.20560.003, fory51.2. The ex-
ponents remain constant, within the error bars, and, th
fore, universality is verified. Tables II and III also show the
extrapolated values.

Finally, the transition between the two polymerize
phases is more interesting. For large values ofx, the transi-
tion is of second order, but asx is lowered, there are indica
tions of a discontinuous transition. In theq54 Husimi lattice
solution of the model, a tricritical point was found separati
these two regimes. Although we tried to locate this point
05181
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the boundary between both polymerized phases using m
ods such as the three widths renormalization@3# @see Eq.
~9!#, we were not successful. Nevertheless, this does not
out the possibility of existence of a tricritical point, since w
have big limitations in our analysis due to the rather sm
widths we were able to consider, which are further enhan
by the parity effects present in the problem. The study of
densities of monomers and interactions calculated for st
of increasing width furnishes evidence for the existence
the tricritical point. In order to obtain an estimate of th
location of this point we show some plots of these densit
In Figs. 7 and 8 we show the densities for a small value ox
(50.4),while in Figs. 9 and 10 the densities forx52.4, a
large value, are shown. Both are in the UP-DP transit
region. Forx50.4 we believe the transition to be of firs
order, while forx52.4 the transition should be continuous

We may estimate the location of the tricritical point ca
culating the functions]rx /]y and ]ry /]y. In the second-
order region, these quantities are monotonically decrea
functions of y, while in the first-order region they shoul
diverge in the two-dimensional limit, and thus for finite an
sufficiently largeL a sharp peak should be found in the
quantities. When one behavior changes to another, we h
the tricritical point. Our estimate of this point is (xtcp51.5
60.1,ytcp51.160.1). Figures 11 and 12 show these fun
tions for some values ofx.

The first-order boundary between the two polymeriz
phases reaches the frontier between NP and DP pha
which is also of first order. At this point, the critical lin
between NP-UP phases ends, and thus we have a cr
endpoint there. We use the phenomenological renormal
tion of three widths@3# to estimate the location of this poin
This method uses the equation

jL~x* ,y* !

L
5

jL8~x* ,y* !

L8
5

jL9~x* ,y* !

L9
, ~9!
e
TABLE III. Results obtained for exponenth. We used the values ofxc
` of Table II in Eq.~3! for each width, and then performed th

extrapolation.

L 1 2 3 4 5 6 7 `a

h (yc51) 0.327775991 0.281475961 0.24990429 0.221282919 0.215882203 0.213115816 0.211526338 0.208260.00004
h (yc51.2) 0.317177926 0.270674229 0.239802629 0.223985085 0.215855055 0.211387646 0.208599364 0.20560.003

aResults extrapolated for the square lattice.
0-4
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THERMODYNAMIC BEHAVIOR OF A POLYMER WITH . . . PHYSICAL REVIEW E64 051810
to find higher order critical points (x* ,y* ) ~such tricritical or
critical endpoints!. We found (xcep50.24460.002,ycep
53.8660.03). In Fig. 13 we show a sketch of the pha
diagram of the model of interacting bonds on the squ
lattice.

IV. CONCLUSIONS

Based on the results shown above, we may conclude
the model of interacting bonds on the square lattice ha
phase diagram with three phases: a nonpolymerized ph
with rx5ry50; a usual polymerized phase, in which
<rx(x,y)<1 and 0<ry(x,y)<1; and a dense polymerize
phase, which hasrx(x,y)51 andry(x,y)'1, in the whole
phase. The transition is of first order, in th
nonpolymerized–dense-polymerized frontier, and, for sm
x, in the frontier between the two polymerized phases. It is
second order in the nonpolymerized–usual-polymeri
frontier, and, for large values ofx, in the frontier between the
two polymerized phases. Figures 4–12 support these
sumptions.

The values of critical exponents on the polymerizati
line are shown in Tables II and III, and they agree with t

FIG. 8. Density of bond interactionsry for x50.4.

FIG. 7. Density of sitesrx for x50.4.
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expected values, in particular, regarding the universality
the exponentsn andh. It should be mentioned that recentl
based on field theoretical arguments, it was speculated
such an universality might break down for the exponentg,
related to the number of SAW configurations, for a model
bond-interacting SAW’s where adirection is assigned to the
SAW and the interaction energy between bonds is chose
be different for the parallel and antiparallel cases@17#. Al-
though there are conflicting results in the literature conce
ing evidences for this conjecture@18#, it seems now that it
actually is not true, as may be concluded through meth
similar to the ones we used here@19# and from data furnished
through extensive simulations@20#. We found estimates
(xtcp51.560.1,ytcp51.160.1) for the tricritical point at the
frontier between the two polymerized phases, and (xcep
50.24460.002,ycep53.8660.03) for the critical endpoint,
where the critical polymerization line meets the first-ord
transition line. Figure 13 shows a sketch of the phase d
gram for the model defined on the square lattice, and
diagram is qualitatively similar to the one for the sam
model defined on the Husimi lattice@8#. To our knowledge,
the model studied in more detail which is close to the one
are considering here is then-vector model with four-spin
interactions@7#, which may be mapped on a model of no
intersecting loops covering the edges of the lattice. In t

FIG. 9. Density of sitesrx for x52.4.

FIG. 10. Density of bond interactionsry for x52.4.
0-5
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model, the spins are located on theedgesof the original
square lattice. In the limitn→0, the number of loops van
ishes and, therefore, a model for a polymer is recove
There are two interpretations for the vertex configurations
the model, which are depicted in Figure 14. The first int
pretation corresponds to considering the loops drawn on
original lattice. Forw50 and u5v5x, the model corre-
sponds to the one we considered here wheny51, that is,
without attractive interactions. The configurations w
weight w correspond to the attractive interactions, and th
are locatedat a site of the lattice. The four edges incident
these vertices are occupied, and thus in the loop gas m
configurations are considered forwÞ0, which are absent in
the model we studied here, where four coordinated vert
are not allowed. In the other interpretation of the configu
tions of the loop gas model the graphs are drawn on the
square lattice formed by joining the middle points of t
edges of the original lattice. In this mapping, four coor
nated vertices are absent but forvÞ0 bonds between secon
neighbors are allowed. Furthermore, on half of the elem
tary squares~those with a vertex of the original lattice i
their centers! only the bond configurations with one~weight
u) or two ~weightw) bonds are allowed and thus forv50 in

FIG. 12. Function]ry /]y for some values ofx, for L55.

FIG. 11. Function]rx /]y for some values ofx, for L55.
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this interpretation the loop gas model corresponds to a su
of the configurations allowed in the model we considered
may be seen in Fig. 14 that the configurations of the polym
in the model we considered may also be specified fixing
bond configurations of each colored elementary square
chessboard lattice. The loop gas model allows, whenvÞ0,
for second neighbor bonds in these squares. On the o
hand, configurations with two and three occupied edges
colored elementary squares are not allowed in the loop
model. In conclusion, the model considered here and
loop gas model are not equivalent when attractive inter
tions are present, although they are physically similar, si
in both models the attractive interactions favor more co
pact configurations.

In general, the phase diagram of then→0 loop gas model

FIG. 13. Sketch of the phase diagram of the model of interac
bonds on the square lattice. Solid lines are second-order transit
while dashed lines are the first-order ones.j is the point
(0.379 0960.000 04,1),l represents the critical endpoint (0.24
60.002,3.8660.03), andm is the tricritical point (1.560.1,1.1
60.1).

FIG. 14. Vertex configurations of the interacting loop gas mo
on ~a! the original square lattice and~b! the dual square lattice buil
by joining the middle points of the edges of the original lattice. T
Boltzmann weights of the configurations are indicated.
0-6
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in the (u5v,w) plane is quite similar to the one found he
in the (x,y) plane ~Fig. 13!. As pointed above, the mode
are not equivalent and thus a quantitative comparison of
phase diagrams is not possible. In the loop gas model,
phase we call dense polymerized here is absent forv50, and
in this case the critical polymerization line ends at a tricr
cal point @21#, which may be identified with theu point.
ev
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