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Thermodynamic behavior of a polymer with interacting bonds on a square lattice
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Using the transfer matrix technique, finite-size scaling, phenomenological renormalization group, and con-
formal invariance ideas, the thermodynamic behavior of a polymer with interacting bonds on a square lattice
has been studied. In this model, one monomer that belongs to the polymer has an metigfty, while the
interactions between bonds of the polymer that are located on opposite edges of elementary squares of the
lattice have a statistical weiglyt=e™#¢, wheree is the interaction energy. Next, the phase diagram of the
model in the &,y) plane was found, which shows three phases, two of them being polymerized. Furthermore,
the densities of occupied sites and of bond interactions in each phase were calculated, in order to determine the
nature of the transitions between the phases. The results obtained are consistent with a second-order transition
line between the nonpolymerized and the regular polymerized phase and a first-order transition between the
nonpolymerized and the dense polymerized phase. The boundary between both polymerized phases may be of
first or second order, and thus evidence for a tricritical point is found.

DOI: 10.1103/PhysReVvE.64.051810 PACS nunier61.41+e, 05.50+q

I. INTRODUCTION acting SAW models on Husimi latticd8], and, while for
coordination numberg>4 the usual phase diagram was
Polymers have been extensively studied through model®und asq=4, a richer phase diagram is obtained with two
of self-avoiding walks(SAW’s) on regular lattices. If we distinct polymerized phases. For interacting monomers the
restrict ourselves to two-dimensional lattices. the criticalcollapse transition is a tricritical point in this solution, but for
properties of these models have been studied through a vaffiteracting bonds t_h|s trlcr|t|cal point is _s_uppresseq and the
ety of techniques, such as series expans[disfinite-size critical polymerization line ends at a critical endpoint, and,
Y ques, ) pansids : therefore, the phase diagram for this model on the Husimi
scaling, and phenomenological renormalization group Idea?attice is consistent with the Bethe-ansatz result for ithe
in linear noninteracting polymef&], branched polymeis], —0-vector model with four-spin interactions
polymers with crossing bondgl], and interacting polymers '

51 Th bl fi X | X cular h In this paper we present an investigation of the phase
[5]. The problem of interacting polymers, in particular, hasgiagram of SAW's on the square lattice with attractive inter-

attracted much attention since the competition between thg.iions between bonds, using the transfer matrix method to
repulsive excluded volume interactions and the attractive inggjye the model exactly on cylinders with different perim-
teractions may lead to a collapse of the polymer, usualljaters| and phenomenological renormalization group ideas to
associated to thé point. The precise nature of the attractive extrapolate the results to the two-dimensional linit>o.
interactions included in the model may vary. Two possibili- oy main purpose is to verify if the qualitative features
ties are to associate an interaction enesgy each pair ofi)  found in the phase diagram of the model defined an—at
monomers located on first neighbor sites and not consecutiigysimi lattice are present in the square lattice solution.
along the walk andii) bonds on opposite edges of elemen-  petajling the method we used, we start building a transfer
tary squares of the lattice. In general, it is believed that bothnatrix for the model defined on strips of widthand with
models should lead to rather similar results, and transfer M&seriodic boundary conditions in the transverse direction,
trix calculations together with finite-size scaling eXtrapc"a'generalizing a method proposed for noninteracting SAW’s
tions[5] show the collapse transition as a tricritical point, as[2]. The correlation lengtl§, may then be obtained from the
expected 6]. However, exact Bethe-ansatz calculations forgigenvalues of this matrix. This process is repeated for in-
an n-vector model on a chessboard lattice with four-spin i”'creasing values of and through an extrapolation process
teractions among spins located on the edges of colorefb]' we obtain the phase diagram and critical exponents
squares do not fit into this picture. In this particular mOdeLandr; for theL — o case, that is, the square lattice. The basic

which in the limitn—0, is equivalent to SAW’s with attrac- jgea is to use the phenomenological renormalization group
tive interactions between bonds aiternating squares, the (PRG equation[10]

point in the phase diagram that corresponds to the collapse

transition is in general not a tricritical point, although its

precise nature was not obtained in these calculafithg he () €&u(a)

relation of this model to the one we are considering here will L L @

be discussed in more detail in Sec. IV. Some time ago, this

contradiction led to an investigation of the solutions of inter-and to find the fixed point* that solves the equation above,
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FIG. 2. A strip withL=4 with a configuration for a polymer.

(plaguette of the lattice. Ife<O0 the interaction is attractive,
while for e>0 it is repulsive. Where=0 (y=1), we have

the noninteracting polymer model, for which there are
known results for the critical exponenis=2 and =3

[14]. We consider strips of width. and infinite length, as
shown in Fig. 2, so that a single polymer is supposed to pass
through the whole strip. The grand-canonical partition func-
tion for the model(the number of monomers incorporated
into the polymer fluctuateg15] is

FIG. 1. A possible configuration for a polymer with interacting
bonds on the square lattice.

wherew is a relevant parameter defined in the model. If we
know a*, the critical exponent can be estimated by

dé (a) / d& (a)

da da o

1+ v L ’ @ where the sum is over all configurations of the polymer in

In(—) the strip,N, is the number of monomers incorporated into
the polymer andN, is the number of opposite pairs of edges

in elementary squares that are occupied by bonds of the

polymer, so thakN, is the energy associated to the configu-

ration of the polymer.

A transfer matrix may be defined for each widthof the
1 L strip and in the thermodynamic limit the adimensional free
(3)  energy per site will be given by

In Y=2 xMyly, 5

and the critical exponeny is given by[11,12]

T é(ad)
% - . . . —-InY 1
whereca? is the fixed point extrapolated for the square lattice é=lim ———=——In\,, (6)
(L—voo limit). The correlation length is obtained from the New N L

transfer matrix throughl3]

where\ ; is the largest eigenvalue of the transfer matrix. The
transfer matrix is block diagonal, the first X11) block cor-
responding to the empty lattice, or nonpolymerized phase
(A=1), and the remaining block for all other configurations.
N1, being the largest and the second largest eigenvalue df is this second block of the transfer matrix we consider
the transfer matrix, respectively. We define the model in Sedhelow. For a pair of widthsl. andL’, we calculate the cor-

I, and Sec. Il shows the results and discussions. Conclurelation length¢ [using Eq.(4)] and then the fixed points,

_ Ay
el “

sions can be found in Sec. IV. of Eq. (1), for a given value of. Changingy, we can find the
whole phase diagram for the pair-L’. We are restricted to
Il. THE MODEL OF SAW'S WITH INTERACTING BONDS L=<7, since the size of the transfer matrix grows very

In order to study the model of a polymer with interacting  tagLE |. Number of states\s of the transfer matrix as a func-
bonds with periodic boundary conditions on the square lation of L. Nggp is the size of the matrix after a block-

tice (see Fig. 1, we define an activityx=e?* associated diagonalization process.
with the monomers that belong to the polymer, and a Boltz

mann factory=e #¢ for the interaction between bonds, L 1 2 3 4 5 6 7
wheree is the interaction energy. Thus, an eneggig asso-  Nggp 1 3 9 31 114 442 1777
ciated to each pair of bonds belonging to the polymer that argy 1 6 27 124 570 2652 12439

located on opposite edges of an elementary square
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FIG. 3. A possible configuration of the walk between two neigh-
boring sets of horizontal bonds and the corresponding contribution
to the transfer matrix. “0 1 2 3 4
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quickly with L (see Table )l and we have computational FIG. 5. Density of sitegp, for x=0.2.
limitations. Furthermore, there are parity problems and we

are forced to choose’=L+2, so we study the pairs 1-3, e point out that both densities are normalized, being equal

2—4, 3-5, 4-6, and 5-7, obtaining the phase diagrams fqg one for hamiltonian walks, that visit every site of the
each pair of widths. The transfer matrix is built starting from |tiice. Also, the internal energy per site of the model is

the definition of the connectivity properties of the walk, a”dgiven by ep, .

this is done according to a prescription introduced by Derrida Y

[2], generalized to take the attractive interactions into ac-

count. As an example, we show in Fig a graphical repre-

sentation of an element of the transfer matrix. To study the Ill. RESULTS AND DISCUSSIONS

physical properties of the phases in the diagrams, and also All phase diagrams we obtained are shown in Fig. 4, and

the kind of transition between them, we calculate the denSit¥here are three phases in the phase diagrams: a nonpc;lymer-

of sites (or mpnomer)sinc.orporatgd into. the polymerp(() ized phaseNP), which hasp,(x,y)=0 andp,(x,y)=0 in

and the density of bond interactions, in the strips. The  yhe \whole phase, so there is no polymer on the lattice; a usual

densities are obtained through polymerized phase(UP), with O=p(x,y)<1 and 0
<py(X,y)<1; and a second polymerized phase, in which

(N 1 x ang px(X,y)=1 andpy(x,y)~1 in the whole phase, so we call

Px ==, (7)  this a dense phag®P). In this phase, all sites of the lattice
N L Ny 9X

are visited by the polymer, in a configuration that maximizes
the number of the interactions between bonds. The phase
and diagram of the model of polymers with interacting bonds on
the Husimi lattice/8] also shows these three phases.
The transition between the NP phase and the DP phase is
P :M _ E Yy ﬂ ®) of first order, since the values of the densities change from 0
YN LAy gy’ to 1 abruptly. We can see this behavior in Figs. 5 and 6,
where we show the densities of monomers and of bond in-

teractions forx=0.2 as a function of. For this value ofx,

1-3 <— we are in the NP-DP transition region. It should be stressed
5 94 B—
3-5 &—
3-5, 2f A 1.0 ST—AT—H
4 46 -— 094 L=24—
y 5-7 0— I—3 8-
DP 5-7,2f o— 084 [ —4 -
3+ 0.74 L=5 A&—
' L=6 o
9 Py .64
0.5+
1 % 0.4
uUP
0.3
0 T T T T T T T 0.9
0 06 08 10 12 14 16 18 20 .
”” 0.1
FIG. 4. Phase diagrams obtained for all pair of widths studied. 0-§ T T T T
NP is the nonpolymerized phase, UP is the usual polymerized phas 0 1 2 3 4 2 6 7 8 9 10
and DP is the dense polymerized phase. All are explained in the
text. FIG. 6. Density of bond interactions, for x=0.2.
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TABLE Il. Results obtained fox; and v in the NP-UP transition.

PHYSICAL REVIEW E64 051810

L L' Xe (Ye=1) v (Ye=1) Xe (Yc=1.2) v (Y.=1.2)

1 3 0.357100282 0.68778987 0.348073927 0.676736580
2 4 0.369539639 0.73077081 0.358084540 0.711872248
3 5 0.375076826 0.74186350 0.363995791 0.726761201
4 6 0.377291276 0.74621498 0.366642726 0.735815099
5 7 0.378185851 0.74825396 0.367805168 0.741344430
o2 0.37909-0.00004 0.750Z 0.0008 0.36919 0.0003 0.7498& 0.0004

®Results extrapolated for the square lattice.

that in this diagram of a density as a function of a statisticathe boundary between both polymerized phases using meth-
weight and in the ones below, we are considering the bloclkds such as the three widths renormalizatj8h [see Eq.

of the transfer matrix that corresponds to one polymer that9)], we were not successful. Nevertheless, this does not rule
passes through the whole strip in the longitudinal directionout the possibility of existence of a tricritical point, since we
Thus, the lowest value ab, consistent with the boundary have big limitations in our analysis due to the rather small
conditions is equal to 1/. As expected, the transition is not widths we were able to consider, which are further enhanced
sharp for finiteL, but builds up as the width is increased. If PY the parity effects present in the problem. The study of the

the nonpolymerized block of the transfer matrix is included densities of monomers and interactions calculated for strips
the usual NP-UP transition on the strips fpr1 is of first 'of increasing width furnishes evidence for the existence of

order, and the discontinuity ip, at the transition is reduced € tricritical point. In order to obtain an estimate of the
asL is increased, vanishing in the two-dimensional liit Ioca_tlon of this point we show some plots of these densities.

R ! : In Figs. 7 and 8 we show the densities for a small valug of
— o0, where the transition turns into a continuous ¢hé].

o . . =0.4),while in Figs. 9 and 10 the densities for2.4, a
The transition NP-UP is of second order, and the point 0f;,qe Value, are shown. Both are in the UP-DP transition

this frontier that corresponds to noninteracting polymsrs ( region. Forx=0.4 we believe the transition to be of first
=1) was obtained by several techniqUds2]. One of the  der, while forx=2.4 the transition should be continuous.
best values of this point at the moment isx( We may estimate the location of the tricritical point cal-
=0.3790522%0.000000 1%=1) [1]. Our results for this  culating the functionsip,/dy and dp,/dy. In the second-
point are shown in Tables Il and IlI, for all paits-L’, and  order region, these quantities are monotonically decreasing
after extrapolation we found x(=0.37909-0.00004y  functions ofy, while in the first-order region they should
=1). The critical exponents and » for this frontier were diverge in the two-dimensional limit, and thus for finite and
also calculated. Foy=1, the values of the exponents should sufficiently largeL a sharp peak should be found in these
bev=3 and p=2=0.20833 . .. [14], exactly. From uni- quantities. When one behavior changes to another, we have
versality, we expected that the critical exponents should béhe tricritical point. Our estimate of this point is{,=1.5
the same in all boundary NP-UP. So, we calculate the values 0.1y,,,=1.1+0.1). Figures 11 and 12 show these func-
of these quantities fory=1.2 too, and we obtained> tions for some values of.
=0.7507:0.0008 andp=0.2082+0.0004, fory=1, andv The first-order boundary between the two polymerized
=0.7498t0.0004 andp=0.205+0.003, fory=1.2. The ex- phases reaches the frontier between NP and DP phases,
ponents remain constant, within the error bars, and, therewhich is also of first order. At this point, the critical line
fore, universality is verified. Tables Il and Il also show thesebetween NP-UP phases ends, and thus we have a critical
extrapolated values. endpoint there. We use the phenomenological renormaliza-
Finally, the transition between the two polymerized tion of three widthg3] to estimate the location of this point.
phases is more interesting. For large values,dhe transi-  This method uses the equation
tion is of second order, but asis lowered, there are indica-
tions of a discontinuous transition. In the=4 Husimi lattice
solution of the model, a tricritical point was found separating E0y") - £ Oy - (XY
these two regimes. Although we tried to locate this point on L L’ L” ’

(C)

TABLE Ill. Results obtained for exponeni. We used the values of; of Table Il in Eq.(3) for each width, and then performed the
extrapolation.

L 1 2 3 4 5 6 7 o
7 (y.=1) 0.327775991 0.281475961 0.24990429 0.221282919 0.215882203 0.213115816 0.211526338- 0002082
n (Ye=1.2) 0.317177926 0.270674229 0.239802629 0.223985085 0.215855055 0.211387646 0.208599364 0.@M305

8Results extrapolated for the square lattice.
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0.3 L=7-%- 0.65-% L=6*—
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0 1 2 3 4 5 6 7 8 10 0 1 2 3 4 5 6 7 8 9 10
y y
FIG. 7. Density of sitep, for x=0.4. FIG. 9. Density of sitep, for x=2.4.

expected values, in particular, regarding the universality of

to find higher order critical pointsx¢,y*) (such tricritical or  the exponents and #. It should be mentioned that recently,
critical endpoints We found ..,=0.244+0.002y.,, based on field theoretical arguments, it was speculated that
=3.86+0.03). In Fig. 13 we show a sketch of the phasesuch an universality might break down for the expongnt
diagram of the model of interacting bonds on the squareelated to the number of SAW configurations, for a model of
lattice. bond-interacting SAW'’s where @irectionis assigned to the
SAW and the interaction energy between bonds is chosen to
be different for the parallel and antiparallel ca$&g]. Al-
though there are conflicting results in the literature concern-
ing evidences for this conjectufd8], it seems now that it

Based on the results shown above, we may conclude th&ctually is not true, as may be concluded through methods
the model of interacting bonds on the square lattice has aimilar to the ones we used hét9] and from data furnished
phase diagram with three phases: a nonpolymerized phasérough extensive simulationg20]. We found estimates
with p,=p,=0; a usual polymerized phase, in which 0 (Xtep= 1.5 0.1y,¢p=1.10.1) for the tricritical point at the
<pu(x,y)<1 and O<p,(x,y)<1; and a dense polymerized frontier between the two polymerized phases, amgey(
phase, which hap,(x,y)=1 andpy(x,y)~1, in the whole =~ =0.244*0.002yce;= 3.86+ 0.03) for the critical endpoint,
phase. The transiton is of first order, in the where the critical polymerization line meets the first-order
nonpolymerized—dense-polymerized frontier, and, for smaltransition line. Figure 13 shows a sketch of the phase dia-
X, in the frontier between the two polymerized phases. It is ogram for the model defined on the square lattice, and this
second order in the nonpolymerized—usual-polymerizedliagram is qualitatively similar to the one for the same
frontier, and, for large values of in the frontier between the model defined on the Husimi latti¢8]. To our knowledge,
two polymerized phases. Figures 4—12 support these aghe model studied in more detail which is close to the one we
sumptions. are considering here is thevector model with four-spin

The values of critical exponents on the polymerizationinteractions[7], which may be mapped on a model of non-
line are shown in Tables Il and IIl, and they agree with theintersecting loops covering the edges of the lattice. In this

IV. CONCLUSIONS

1.0 r— 1.0 < A y
094 L=2%— 0.9
L=3
08 [_41 o 0.8 A
| L=5 & |
07 [Zo 0.7 h
Pyoe| L=7-— Py 0.6
0.5+ 0.5+
0.4+ 0.4 v
L=2 <%—
0.3+ 0.3 L=3
L =4 &—
0.2+ 0.2 L=5&—
0.1 0.1 L=6 %
" L=7 ©—
0 T T T T T T 0+ T T T T T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10
y y
FIG. 8. Density of bond interactions, for x=0.4. FIG. 10. Density of bond interactions, for x=2.4.
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FIG. 11. Functiorvp,/dy for some values of, for L=5. FIG. 13. Sketch of the phase diagram of the model of interacting

bonds on the square lattice. Solid lines are second-order transitions,
model, the spins are located on tedgesof the original while dashed lines are the first-order ondll. is the point
(0.37909:0.00004,1), ¢ represents the critical endpoint (0.244

square lattice. In the limih—0, the number of loops van- - 0.002.3.86-0.03 dA is the tricritical point (1.5-0.111
ishes and, therefore, a model for a polymer is recovered: 0-092:3-86:0.03), andA s the wicritical point (1.50.1,1.

There are two interpretations for the vertex configurations of O-1)-
the model, which are depicted in Figure 14. The first inter-thjs interpretation the loop gas model corresponds to a subset
pretation corresponds to considering the loops drawn on thef the configurations allowed in the model we considered. It
original lattice. Forw=0 andu=v=x, the model corre- may be seen in Fig. 14 that the configurations of the polymer
sponds to the one we considered here whenl, that is, in the model we considered may also be specified fixing the
without attractive interactions. The configurations with bond configurations of each colored elementary square in a
weight w correspond to the attractive interactions, and theychessboard lattice. The loop gas model allows, whei0,

are locatecht a site of the lattice. The four edges incident onfor second neighbor bonds in these squares. On the other
these vertices are occupied, and thus in the loop gas modegnd, configurations with two and three occupied edges on
configurations are considered far 0, which are absent in colored elementary squares are not allowed in the loop gas
the model we studied here, where four coordinated vertice§0del. In conclusion, the model considered here and the

are not allowed. In the other interpretation of the configural20P gas model are not equivalent when attractive interac-

tions of the loop gas model the graphs are drawn on the dudions are present, although they are physically similar, since

square lattice formed by joining the middle points of then both models the attractive interactions favor more com-
edges of the original lattice. In this mapping, four coordi- paﬁ C%rr:fgglrattrl\oenshase diaaram of ihes0 loop gas model
nated vertices are absent but fox 0 bonds between second 9 ’ P 9 P9

neighbors are allowed. Furthermore, on half of the elemen-
tary squaregthose with a vertex of the original lattice in
their centersonly the bond configurations with or{eveight
u) or two (weightw) bonds are allowed and thus for=0 in ®
a b—l—d >—[—< +
/

\

At ats?
e

FIG. 14. Vertex configurations of the interacting loop gas model
on (a) the original square lattice ar()) the dual square lattice built
by joining the middle points of the edges of the original lattice. The
FIG. 12. Functiongp, /Jy for some values ok, for L=5. Boltzmann weights of the configurations are indicated.

e

N
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