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Yield conditions for deformation of amorphous polymer glasses
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Shear yielding of glassy polymers is usually described in terms of the pressure-dependent Tresca or von
Mises vyield criteria. We test these criteria against molecular dynamics simulations of deformation in amor-
phous polymer glasses under triaxial loading conditions that are difficult to realize in experiments. Difficulties
and ambiguities in extending several standard definitions of the yield point to triaxial loads are described. Two
definitions, the maximum and offset octahedral stresses, are then used to evaluate the yield stress for a wide
range of model parameters. In all cases, the onset of shear is consistent with the pressure-modified von Mises
criterion, and the pressure coefficient is nearly independent of many parameters. Under triaxial tensile loading,
the mode of failure changes to cavitation, and the von Mises criterion no longer applies.
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[. INTRODUCTION This pressure modification is motivated by an analogy to
friction, where the shear stress is linearly related to normal
The ability to predict the conditions under which a mate-pressure, rather than to an energy argument like that used to
rial will yield is of great fundamental interest and technologi- motivate Eq.(2). The coefficientx then plays the role of an
cal importancd 1-4]. Over the past three centuries, a num-internal friction coefficient.
ber of yield criteria have been formulated that predict The pressure-modified Tresca criteri@®MT) is also of-
whether a combination of stresses on a solid will producden quoted in the context of polymer yielding. Here the rel-
irreversible deformation. In this paper, we use molecular dy-evant quantity is assumed to be the maximum shear stress
namics simulations to test the applicability of these criteria to
amorphous polymer glasses under multiaxial loading. 1
The yield criterion that is most commonly used for poly- Tmax:§|“i_‘fi|max' (4)
mer glasses is the pressure-modified von Mi§ddvM) cri-
terion. The original von Mises. criteridrd] was based on the ‘and yield is assumed to occur &
assumption that yield occurs in the material when the elastic
free energy associated with the shear deformatQpea, 3
reaches a critical value. For small deformations of an isotro- y — =
. . . . Tmax (70+ a’p) (5)
pic material,Fgeo/iS proportional to the square of the octa- V2
hedral or deviatoric stress
The prefactor in Eq(5) is chosen so that, for the samg
and «, the PMT and PMvM criteria coincide when any two
of the three principal stress components are identical. In all
other cases, the PMT criterion gives a lower yield stress.
1 ) 5 112 Several experimental studies are available that address the
—ﬁ[(‘fﬁp) (o2t p)*+(o3+pP)° 1™, (1) macroscopic yield behavior of polymers. In these experi-
ments, the material is typically strained at a constant strain

where theo- denote the three principal stress com onentsrate using convenient geometries. The most commonly stud-
i ; P pal P led stress states are uniaxial tension or compression, pure
andp= —(o1+ o,+ 03)/3 is the hydrostatic pressure. If one

ianores anharmonic effects. the condition of vield at consta hear, and plane strain compression. Several different defini-
9 ' ) y ions of the yield point have been employed to determine the
F<hear C@N be reformulated as yield at a constant threshol

. ield stress. Most authof§,9,10 take the maximum of the
value of 7o, €., stress-strain curve as the yield stress. The offset dtid$ss
v _ also used, particularly when the stress-strain curve exhibits
Toct™ 70" 2) no clear maximum. It is given by the intersection of the
o ) stress-strain curve with a straight line that has the same ini-
For polymers it is often observe6] that tensile pressure 5| sjope as the stress-strain curve but is offset on the strain
pro.moFes yielding and compressive pressure delays y,"?ld'n%xis by a specified strain, e.g., 0.2%ee Fig. 2 below The
which is not accounted for in E¢2). The pressure-modified st ‘stress is motivated by the idea that if the load was
von Mises criteriorj 7] includes a linear pressure dependence;emoyved the sample would relax elastically along the straight

1
Toctzg[(o'l_02)2+(0'2_0'3)2+(0'3_0'1)2]1/2

in the value of the octahedral shear stress at yield, line to an unrecoverable strain that is equal to the offset
y stress. However, the relaxation is generally more compli-
Toct™ To+ ap. (3 cated. The authors of RdfL2] argue that the true yield point
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ought to be determined from the residual strain measured
after unloading. They define the yield stress as the smallest
stress value that gives a nonzero residual strain.

Raghaveet al.[11] collected yield data for polyvinylchlo-
ride (PVC), polystyrene (PS, polymethylmethacrylate
(PMMA), and polycarbonatéPC). Despite the fact that dif-
ferent definitions of yield were used, all data fit the PMvM
criterion[13] with the same value at=0.18. More recently,
Quinsonet al. [12] concluded that PMMA is always well
described by the PMvM criterion, but that PS follows the
PMT criterion at low temperatures and PC always follows
the PMT criterion. They associated the validity of the PMT
criterion with the occurrence of shear bands. However,
Bubecket al.[10] measured a larger number of yield points
for PC and found that they fitted the PMvM criterion. This
discrepancy may be due to the use of different yield point g, 1. jllustration of some limiting stress states employed in
deﬁnitions in the two StudieS. The Sma” number Of uni' andthis study. For uniaxial Simu|ati0nsz and o3 were kept at zero
biaxial stress states considered in experimental studies makgsing a NoseHoover barostat. For biaxial cases was kept at
it hard to distinguish the two criteria. No experimental testszero. The controlled strains were increased at a constant rate.
of yield criteria appear to have considered triaxial stress
states. 1
On the simulation side, both Monte Cafld4] and mo- Veeng(r)=— EkRSIn[l—(r/RO)Z] forr<Ry, (7)
lecular dynamics simulationgl5] have been presented for

uniaxial deformation of polymer glasses. Coarse-grained stQynere Ro=1.5d andk=30u,/d? are canonical choices that

chastic dynamics of shear flow of local volumes has als%/ield realistic melt dynamicgL8]. Mappings of the potential

peen considerefil 6]. These models were _shown to qualita- to typical hydrocarbon§l7] give values ofu, between 25
tively reproduce experimental stress-strain curves and thel{,, 4 45 meV andi between 0.5 and 1.3 nm.

dependence on temperature and strain rate. However, we a'®The above potentials produce very flexible polymer

unaware of any studies that address multiaxial stress stat@fains, since no third- or fourth-body potentials are present.
and r_elate thef" o ylel_d criteria. _ Melt studies of the bead-spring model have recently been
This paper is organized as follows. In Sec. Il we disCusS,yiended to include the effect of polymer rigid[ty9]. Fol-

the details of our model interaction potential for polymer g, ing these authors, we consider a bond-bending potential
glasses and our method for imposing and measuring streé$§; each chain

and strain. Section Il begins with a comparison of yield
stresses calculated from different definitions of the yield N-1 (Fi =) (Fi=Fii )
point. We then determine both the maximum stress and the Vg= > bl 1— St B (8)
offset stress in multiaxial stress states and compare the re- =2 [(ri—a=rl[(ri=riyo)]
sults to the PMvM and PMT criteria. In particular, we ad- _
dress the nature of the pressure dependence of the yieWherer; denotes the position of thi¢h bead along the chain,
stress and investigate the validity of E¢3) and (5) in dif- ~ andb characterizes the stiffness.
ferent physical limits. We conclude with a discussion in Sec. The equations of motion are integrated using the velocity
V. Verlet algorithm with a time step aft=0.0075 ;, where
= md?/u, is the characteristic time given by the LJ en-
Il. POLYMER MODEL AND SIMULATIONS ergy and length scales. Periodic boundary conditions are em-
. . ployed in all directions to eliminate edge effects. We con-
~ Our model of a polymer glass builds upon extensivegjger two system sizes of 32 768 beads and 262 144 beads at
s!mulatlo_ns of polymer melt dynamlc.{sl.j]. The solid CON- o temperatures of,=0.3uy/kg and T;=0.01ug/kg. Tp,
sists of linear polymers each contalnlmg_beads. Pairs of g very close to the glass transition temperatufg
beads of masm, separated by a distancginteract through ~0.380, /kg for this model[20], andT, represents an effec-

a truncated Lennard-JonésJ) potential of the form tively athermal system. The temperature is controlled with a

v NoseHoover thermostatthermostat rate Q[Jl) [21].
La(r) . . . ;
To study the yield behavior, we impose tensile or com-
Augl (d/r)¥2—(d/r)8—(d/re)*2+(dIre)®] forr<r, pressive straing; on one or more axes of the initially cubi-
= cally symmetric solid at constant strain rates aé;/dt
0 forr>rg, —10 4+ L or | . i fthe i
6) =10 "7 orless. Figure 1 illustrates some of the important

limiting stress states that are discussed below. For uni- and
whereu, andd are characteristic energy and length scalesbiaxial studies of yielding, the stresses in the remaining
Adjacent beads along the chain are coupled by the finiteljwo or one directions are maintained at zero by a Nose
extensible nonlinear elastiEENE) potential[17] Hoover barostatbarostat rate Om{f) [21]. Note that since
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1.6 —————————————1.6 nonlinear region that bends over into a maximum. Note that

14 e o.11.4 the maximum is reached at at strain of about 6%, which is in
12 | T 12 very good agreement with experimental stress strain curves;

s 1 1 < see, e.g.J]12]. Once past that maximum, the stress drops
S 08} o -O.SE_ slightly and the material begins to flow, but these large
© 06 I go D loe ® strains are not shown.

04t loa Figure 2 also illustrates how to obtain the maximum and

02 | ﬁ%ﬂ% o2 offset yield stresses as described in the Introduction. Both

0 a®= quantities are easy to identify for uniaxial stress. To make

0 1 2 3 4 5 6 7 8 contact with the approach of Rdfl2], we have also deter-

&, Eopy [%) mined the amount of residual strain after unloading. Squares

show the residual straig, as a function of the maximum

FIG. 2. Stress-strain curelashed lingin uniaxial loading. The  strain before unloading. Results fef>0.2% are compa-
maximum stress is indicated i@ and the 0.2% offset stress Wy.  rable to the residual strains given in REf2]. These authors
The latter is determined by the intersection with the straight linejdentified the yield point with the strain where a linear ex-
which has the same initial slope as the stress-strain curve, but igapolation ofe, vanishes. We have extended our studies to
displaced by 0.2% on the strain axis. Also shown is the residuafjnych smaller residual strains and find no evidence of a
straine; as a function of the maximum strain during uniaxialX  threshold strain below which the residual strain vanishes.
or bia_xial (O) loading. The biaxial results are plotted against the gy dies of other glassy systems also suggest thfit=a1 a
effective straineeq [Eq. (9)]. Here T=T;, N=256,rc=1.5d, b finite unrecoverable strain should be present for arbitrarily
=0uo, and there are 32768 beads. small initial strains, but the theoretical situation at firiltés

more complicatedi23].

7.5~ 3 ps the strain rates employed are 8—9 orders of mag- Note that in order to obtain 0.2% residual strain the initial
nitude higher than typical experimental strain rates. Neverextension has to be about 4%. This is about twice as large as
theless, by comparing to typical sound velocities we can enthe yield strain from the 0.2% offset criterion. The offset
sure that our strain rates are slow enough that stresses cariterion assumes elastic recovery along the line determined
equilibrate across the system and thus loading proceedsy the elastic moduli of the unperturbed solid. Examination
nearly quasistatically. A detailed study of the rate depenof the recovery curves shows that they are nonlinear. This
dence of yielding in polymers will be presented elsewhere. confirms that much of the nonlinear response under loading

All stresses in this paper are true stresses, @re-F/A,  to the triangle in Fig. 2 is due to recoverable, but anhar-
whereA is the instantaneous cross-sectional area. Likewisanonic, deformations.
we use true or logarithmic straires= flodl/l =In(l/1p). In all The above discussion raises questions about both the ap-

cases, stresses are averaged over the entire simulation celplicability of the unrecoverable strain definition of the yield
Our model lets us address a variety of different physicaPoint and the motivation for thg offset stress dejmnmn_. How-

situations. The influence of adhesive interactions on yieldingVer. since the offset stress is widely used in engineering

can be examined by varying the LJ potential cutoff distancéPplications, we consider both it and the maximum stress

from r .= 21, which gives a purely repulsive interaction, to definition in the following sections.

re=1.5d or r.=2.2d, which include progressively longer

ranges of the attractive tail of the LJ potential. As a by- B. Evaluating the yield stress in multiaxial stress states

pr_oduct, the density of the solid at zero pressure changes Figure 3 shows the principal stress componentas well

with r. o , _ as the octahedral shear stregs, for (a) biaxial and(b) tri-
Polymer dynamics in the melt is greatly influenced by ayia j0ading. In multiaxial stress states one needs to plot the

chain length, particularly 'when entang!ements are presengtresées) against a scalar effective straif; constructed

To study the effect of chain length on yielding, we considery.qm the three principal componenés of the strain tensor.

an entangled cash=256~4N. and an unentangled case Thjs chojce is not unique, and influences the value obtained

N=16~1/4N., whereN,~60 is the entanglement length of o the offset stress. A convenient choice that we employ in
the flexible bead-spring modg22]. The bond-bending po- this paper is

tential Vg is also varied from the flexible limit=0u;) to a

iflexibl =1.5up).
semilexble casei=. %) € ﬁ:;[m—e2)2+<e2—e3>2+<e3—e1)2]1’2
201+ ’
I1l. RESULTS (9)

A. Onset of yielding and yield stress definitions

We begin by considering a uniaxial tension simulation, inwherew is Poisson’s ratio. This expression is proportional to
which the polymer glass is expanded in one direction, whilehe octahedral strain and reducesetounder uniaxial load-
zero stress is maintained in the perpendicular plane. Figureig. It also reduces to the effective strain defined in REf]
shows the resulting stress-strain curve. It exhibits the typicafor biaxial strains, and allows us to treat all strain states on
features of a polymer glass: linear response is followed by the same footing.
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FIG. 3. Nonzero principal stress components in the model poly-=0'3u°/kB and T,=0.0Lig/kg for different stress states. At low

mer glass duringa) biaxial and(b) triaxial loading. The maximum strains, all curves for a given temperature collapse onto a line
9 . - g . whose slope is determined by the elastic mod&e. (10)]. At
and offset yield stresses are indicated @yand A, respectively. : ) . - .
- . Y ; higher strains the curves split apart, with the higher curves corre-
Neither the maximum nor the offset definition can be applied to two . . ) :

. . sponding to higher pressures. Straight lines are drawn at an offset of
of the three components ib). Also shown is the octahedral shear 0.2% strain for each temperature. Hde-256. r.—1.5d. andb
stressr,; (thick dashed linpand the yield stresses that result by =.Ou0 P ' e T
applying the yield point definitions to it. HerE=T,, N=256, r. o

=1.5d, b=0, and th 32768 beads. - . - o
and there are eads strain in a variety of uni-, bi-, and triaxial stress states. For

Figure 3a) illustrates the maximum and offset definitions the k_)iaxial states considered in experiments the yield strains
of the yield point for biaxial stresses. The maximum of theobtained fromo, and o, separately are nearly the same as
stress-strain curves is straightforward to evaluggelid that determined fromro, [11]. Thus the value oty is the
circles, and both nonzero stress components peak at th&dme as that constructed from the separate yield components.
same strain. By contrast, the offset definition gives yield at N the initial elastic response, stress and strain tensors are
slightly different straing(solid triangles. This is troubling, ~ linearly related by a combination of the elastic modzyjiof
since a yield point should refer to a unique instance in timghe solid. The moduli are defined loy; €;= o7, from which
or strain. Moreover, the offset stress depends on arbitraryve obtain
factors in the definition of the effective strain and in the
amount of offset at the yield point. _\/_E (C111+2C15)(C11—C12)

We also evaluated the residual strain for different biaxial Toet™ "3 C11tCyp
loading conditions and added them to Fig.(dlamonds.

Interestingly, these residual strains fall onto the same curvby straightforward insertion. Thus a plot ef.; versuseqs

as the results from uniaxial extension when plotted againsthould collapse all curves onto a stress-strain curve with
e« As above, there is no indication of a finite thresholdcommon initial slope. Figure 4 shows that this condition is
below which the residual strain vanishes. satisfied for two different temperatures and system sizes. All

Figure 3b) shows that determining the yield point is even curves start out with the same slope, but they split apart
more complicated under triaxial loading. For this case, onlyrapidly at higher strains. This reflects the influence of pres-
the tensile stress component exhibits a clear maximum. Theure on yielding. We will show later that this pressure de-
compressive components decrease monotonically over thgendence is well described by E@) for both yield point
range shown. Moreover, the slope of these curves increasegfinitions. As in experiments, the yield stresses decrease
in magnitude with increasing strain so that they do not interwith increasing temperature.
sect the line for the offset criterion. The larger systems in Fig.(d) exhibit much smoother

In order to make progress for general multiaxial stressurves, since many more independent yield events contribute
states, we thus decided to apply both the maximum and offto the average stress response. However, since the values of
set stress definitions not to the three stress components indjield stress and strain do not change significantly with size,
vidually, but to the octahedral shear stregs;. This is a  we use systems with 32 768 beads in most cases. This speeds
natural choice given that, is the quantity that enters the up the computations and allows a larger parameter space to
PMvM criterion. The method is illustrated in Fig. 3 and be explored. Note that each curve represents the stress re-
again in Fig. 4, wherer, is plotted against the effective sponse for one particular initial configuration of polymers in

€eff (10
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TABLE I. Values for 7, and « obtained from the linear fits in
Figs. 6 and 8, as well as the simulations with=2.2d. Unless
noted otherwiseN= 256 andb=0. Typical statistical errors in fits
for the maximum yield stress are0.02u,/d® for 7, and+0.01 for
«. Errors are about three times larger fgrin the purely repulsive
case, and for all offset stress results.

T, max T, offset Ty max T, offset
ol ol ol ol

ro=2d 0.06/0.08 —0.42/0.09

re=1.5d 0.72/0.08 0.37/0.15 0.23/0.10 0.11/0.16
re=1.5d, comp. 0.72/0.08 0.24/0.11 0.23/0.10 0.15/0.06
re=2.2d 0.83/0.09 0.53/0.16 0.45/0.10 0.28/0.09
re=1.5d, b=15 0.76/0.10 0.44/0.13 0.31/0.15 0.19/0.11
re=1.5d, N=16 0.68/0.07 0.36/0.14 0.20/0.12 0.07/0.06

since the solid is isotropic. We have tested this isotropy in
selected cases and find variations on the order of the symbol
sizes. The offset stress is generally lower than the maximum

FIG. 5. Yield points for biaxial stress states. Filled symbols Stréss and becomes very difficult to evaluat&atue to the

(®,A) correspond to the yield point af, and open symbols sm_aII magni_tude of the yield stress and the large thermal
(O,A) to T,,. Circles refer to the maximum yield stress and tri- NOISe. The yield stresses are larger in the lower left quadrant,
angles to the offset stress. Data(@ were obtained for 32 768 and indicating that yield is pressure dependent. Also shown are
in (b) for 262 144 beads. The ellipses represent the PMvM yieldthe yield surfaces predicted by the two yield criteria. As can

surface, Eq(11), and the dashed lines show the PMT yield surface.be seen, the data from both definitions of the yield stress are
Statistical error bars are indicated by the symbol size. Hére better described by the PMvM criterigieq. (11)] than the

=256, r.=1.5d, andb=0u,.

PMT criterion. The values of, and« can be found in Table
| (see also the next sectiprin the following discussion we

the glassy state. We have observed variations on the order &fcus on the PMvM criterion, which provides a better fit for
5% in the magnitude of, with different 32768 bead con- all cases studied.
figurations, but the general features of yielding remained un-

altered.

C. Biaxial yielding

D. General stress states

For general stress states it is simplest to test(Bndi-
rectly by plotting 7%, versus pressure. This plot lets us in-

Experimental tests of yield criteria have generally consid-clude triaxial stress states, which could not be discussed in
ered uniaxial or biaxial loading conditions. In the biaxial Fig. 5. In Fig. Ga we show the maximum shear yield

case, the PMvM criterion predicts that the valuesgfand

stresses from all stress states at two temperatures. In general

o, at yield should lie on the surface of an ellipse in theone would expect Eq(3) to hold as long as the mode of
01-0, plane. The equation for this ellipse can be obtainedailure is shear. The linear law should break down when

from Eq. (3) by letting o3=0:

1-2a 3arg

RY
(o1—03)°+ 1-2a

(Tl+0'2+

a,2

_ 2
=670\ 1t 512

1 . (12)

cavitation occurs in the polymer. Dashed lines in Fi¢p) 6
indicate the threshold for cavitation, which occurs in our
model only when all three stress components are tensile. For
isotropic tensile loading? is rigorously zero and cannot be
used to determine a maximum or offset stress. The end point
at 7,=0 in Fig. 6a was determined from the pressure
where all three stress components reach a simultaneous
maximum. The offset stress is not well defined in this limit

A nonzero value ofa breaks the tensile-compressive sym- becauses. also vanishes.

metry and shifts the ellipse toward the lower left quadrant
(where the stress is compressivéhe amount of the shift

When yield occurs through shear, the yield stresses shown
in Fig. 6(a) lie on a straight line as predicted by E®). To

increases with increasing. The PMT criterion predicts a test this linear dependence over a wider range, we have also

yield surface bounded by straight lines. For the sagpand

performed simulations in which the simulation cell was first

a, it coincides with the PMvM criterion whenever two of the compressed isotropically to a higher pressure. The same

stresses are equal.

range of strains was then imposed again, and the resulting

In Fig. 5, we perform an analysis analogous to the experishear stresses were added to Fig).6This procedure led to
mental studies, where we include only biaxial data from Fig.all the points forpp>1.5u,/d3, which lie on the same straight

4. We employ reflection symmetry about the ling= o5,

line as data from the uncompressed starting state. Other
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08
5 FIG. 7. Maximum shear stresg, minus 7, at T, (filled sym-
o 06 bols) and T, (open symbolsfor three different potential cutoffs
>\P§ 04 | r.=1122% (@®,0), r,=1.5d (A,A), andr,=2.2d (V,V). To
: avoid overlap, results foF, were displaced vertically by 0ug/d>.
02+ Points where cavitation occurred are not included in this plot. Solid
lines show best fits to all points plotted.

our error bars. The value af, increases, leading to a higher
yield stress at all pressures. Increasingalso suppresses
FIG. 6. Octahedral stress at yield versus pressurg filled cavitation. The magnitude of the tensile pressure needed to
symbolg and T, (open symbols The maximum stress is shown in produce cavitation under hydrostatic loading increased by
(a) and the offset stress ii). Solid lines are fits to Eq3), and the 2y, /d® at both temperatures.
values forry and a are given in Table I. Results for>1.50,/d® The opposite limit that we can consider is the purely re-
were obtained by applying strains to a compressed bate text Isive potential obtained whep=2"%. Such a solid does
F.>0|n.ts where cavitation was pbserved are connected by a dash%zt provide any resistance to tensile stressgs=ad, but the
line in (a) and are not shown itb). . . .
same range of strains considered above can be applied at
simulations show that this linearity extends to even greatefigher offset pressures as is done in Fig. 6. Once again, the
pressures of up to 2Q/d3. results are in good agreemen_t with the PMVM crlterlo_n and
Figure Gb) shows the offset yield stresses for two tem- Values ofry anda are quoted in Table I. The value @ is
peratures. While the data from the compressed and uncongreatly reduced from those for largey, but @ remains un-
pressed starting states each fall on a straight line, it is néhanged within our error bars.
longer possible to make a common fit through both data sets. To illustrate that is constant, we summarize data for the
Moreover, the values ofr tend to be smaller for the com- maximum shear yield stress as a function of pressure for all
pressed state than for the uncompressed state. From Fig.tdree different ranges of the potential in Fig. 7. For each
one sees that the value effrom the offset criterion depends case, the value of is subtracted, and results fdr are
on the rate at which stress increases with pressure at fixesisplaced vertically by 01%/d® in order to avoid overlap
strain, and the slope of the stress-strain curve near the intewith the high temperature data. For each temperature, all of
section. Both factors change with temperature and the choice data points collapse onto a common straight line whose
of offset at yield. For this reason, it is not surprising thatslope is consistent with the independently determined values
values ofa from the offset criterion show larger variations of «. Thus, while 7, decreases rapidly as adhesion is re-

than those determined from the maximum stress. duced,« remains unchanged. Similar results have been ob-
tained in recent studig®6] of static friction as summarized
E. Effect of adhesive interactions in Sec. IV.

Intuitively one would expect that increasing adhesive in-
teractions between polymers would lead to a higher yield
stress. In our model this can be achieved by increasing In the previous section we showed that the interaction
which controls how much of the attractive tail in the LJ range has a large effect ag, but does not significantly alter
potential is included. We have verified that increasipgo  «. Other features of the potential have little effect on either
2.2d produces higher yield stresses and that the yield pointguantity.
are consistent with the PMvM criterion. Biaxial data lie on ~ We first consider semiflexible polymers with a value of
an ellipse rather than the straight line segments predicted by=1.5u, and a cutoffr.=1.5d in Eq. (8). This makes the
the PMT criterion(Fig. 5. Values ofr} from general stress polymer conformation more rigid, and one would therefore
states fall onto a straight line when plotted against pressurexpect increased resistance to deformation. Figuf@ 8
(see Fig. 7 beloywas long as failure occurs through shearshows that the PMvM criterion also describes yield of this
rather than cavitation. Fit values of and« are presented in  semiflexible polymer. Values of, and « from linear fits in
Table I. The value ofy is the same as for smalleg within Fig. 8b) tend to be slightly higher than the values for flex-

F. Semiflexible and short polymers
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agreement. Although the difference may be small from an
engineering perspective(21%), it has implications about
the nature of the molecular mechanisms that lead to yield.
More experimental studies seem to be consistent with the
PMVM criterion than the PMT criterion, although the num-
ber of stress states that has been accessed is relatively small
and limited to biaxial cases. One stufi}2] found that the
PMT criterion worked better for polymers that formed shear
bands. Shear banding can be influenced by boundary condi-
tions and the method of imposing shear. In particular, our
periodic boundary conditions inhibit shear banding and this
may be why the PMvM criterion always provided a better fit
to the yield stress. It is also possible that the failure criterion
is dependent on the specific form of the atomic interactions,
and that the simple potentials considered here do not lead to
PMT behavior. These will be fruitful subjects for future re-
search.
/ ; The dependence af, and « on potential parameters and
ol é s s temperature was explored. The valuenofs nearly indepen-
-3 2 -1 0 1 dent of potential parameters, but seems to increase slightly
pd’ug with increasing temperature. The value from the offset stress
is larger and more variable than the value from the maximum
stress. The value of, is also relatively insensitive to the

As before, filled(open symbols correspond 6, (T,,) and circles Cham lengthN and degree of rigidity, Indlf:atlng that yle-ld is
(triangles indicate the maximunfoffsed yield stress. Solid lines dominated by local structure. However, increases rapidly
show fits to the PMvM criterion using values afand 7, given in ~ With increases in the attractive interactions between mol-
Table I. Dashed lines connect points where cavitation occurredecules that determine the cohesive energy. The valug of
HereN=256 andr.=1.5d and there are 32 768 beads. also decreases with increasing temperature. Temperature and
rate dependence will be discussed in subsequent work.
ible chains(Table |, but the changes are comparable to sta- Our calculated values of the dimensionless parameter
tistical uncertainties. compare well with typical experimental values. Quinson
Finally, we have considered shorter chains of lenijth €t al. [12] report values fora between 0.14 and 0.25 for
=16 to contrast the behavior of unentangled and entangleBMMA, 0.03 and 0.12 for PC, and 0.18 and 0.39 for PS. As
(N=256) chains. The long range topological properties that" our simulations, there was a tendency for the value to
are crucial for the dynamics of polymer melts turn out to beincrease with increasing temperature. Bubeatkal. [10]
irrelevant for the small strains required to initiate yi¢m]. ~ found values between 0.04 and 0.07 for PC. Rhagahl.
Values for 7, and a do not deviate substantially from the [11] fitted all data for the above polymers and PVCdo

(b)
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FIG. 8. Yield points for(a) biaxial stress states arftl) general
stress states from simulations with semiflexible chalms {.5u).

results forN= 256, and we merely quote them in Table I. =0.18, and best fit values for individual polymers ranged
from 0.13 to 0.20. They used the offset stress to determine
IV. SUMMARY AND DISCUSSION and our numbers for this quantity are in the same raage:

=0.11-0.16. Comparing values af, is more complicated

We have examined the yield stress of amorphous glassyecause of uncertainty in mapping our potential parameters
polymers under multiaxial loading conditions using molecu-to specific polymergsee Sec. )l Using values ofi, andd
lar dynamics simulations. Measurements of the residuafrom Ref.[17] our values ofr, correspond to 1 to 50 MPa.
strain after unloading indicate that imposing any finite strainThis coincides well with the experimental ranf®12] of
produces some permanent plastic deformation. Thus n§—100 MPa, but quantitative comparisons for specific poly-
threshold for the onset of plastic yield could be identifiedmers are not possible without more detailed models of
[12]. Two other common definitions of the yield point, the atomic interactions.
maximum and offset stress, could not be applied separately It is interesting to note a connection between the results
to the three principal stresses. Instead they were applied t@ported here and recent studies of the molecular origins of
the octahedral shear stresg, for a wide range of loading static friction [25,26). Macroscopic measurements of the
conditions and model parameters. force needed to initiate sliding can be understood as arising

In all cases studied, and for both yield definitions, thefrom a local yield stress for interfacial shear that rises lin-
pressure-modified von Mises criterion provides an adequatearly with increasing normal pressure exactly as in the
description of the shear yield stress. Traditional plots of bi-PMvM criterion [Eq. (3)]. Moreover, the results presented
axial yield points are well fitted by ellipsd€q. (11)] and  here parallel results from simulations of the static friction
multiaxial results forr), vary linearly with pressure. The due to thin layers of short chain molecules that are present on
pressure-modified Tresca criterion always shows worsany surface exposed to di26]. These authors find thad,
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