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Yield conditions for deformation of amorphous polymer glasses

Jörg Rottler and Mark O. Robbins
Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 2121

~Received 24 April 2001; published 18 October 2001!

Shear yielding of glassy polymers is usually described in terms of the pressure-dependent Tresca or von
Mises yield criteria. We test these criteria against molecular dynamics simulations of deformation in amor-
phous polymer glasses under triaxial loading conditions that are difficult to realize in experiments. Difficulties
and ambiguities in extending several standard definitions of the yield point to triaxial loads are described. Two
definitions, the maximum and offset octahedral stresses, are then used to evaluate the yield stress for a wide
range of model parameters. In all cases, the onset of shear is consistent with the pressure-modified von Mises
criterion, and the pressure coefficient is nearly independent of many parameters. Under triaxial tensile loading,
the mode of failure changes to cavitation, and the von Mises criterion no longer applies.
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I. INTRODUCTION

The ability to predict the conditions under which a ma
rial will yield is of great fundamental interest and technolo
cal importance@1–4#. Over the past three centuries, a nu
ber of yield criteria have been formulated that pred
whether a combination of stresses on a solid will produ
irreversible deformation. In this paper, we use molecular
namics simulations to test the applicability of these criteria
amorphous polymer glasses under multiaxial loading.

The yield criterion that is most commonly used for pol
mer glasses is the pressure-modified von Mises~PMvM! cri-
terion. The original von Mises criterion@5# was based on the
assumption that yield occurs in the material when the ela
free energy associated with the shear deformationFshear
reaches a critical value. For small deformations of an iso
pic material,Fshearis proportional to the square of the oct
hedral or deviatoric stress

toct5
1

3
@~s12s2!21~s22s3!21~s32s1!2#1/2

5
1

A3
@~s11p!21~s21p!21~s31p!2#1/2, ~1!

where thes i denote the three principal stress compone
andp52(s11s21s3)/3 is the hydrostatic pressure. If on
ignores anharmonic effects, the condition of yield at const
Fshear can be reformulated as yield at a constant thresh
value oftoct, i.e.,

toct
y 5t0 . ~2!

For polymers it is often observed@6# that tensile pressure
promotes yielding and compressive pressure delays yield
which is not accounted for in Eq.~2!. The pressure-modified
von Mises criterion@7# includes a linear pressure dependen
in the value of the octahedral shear stress at yield,

toct
y 5t01ap. ~3!
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This pressure modification is motivated by an analogy
friction, where the shear stress is linearly related to norm
pressure, rather than to an energy argument like that use
motivate Eq.~2!. The coefficienta then plays the role of an
internal friction coefficient.

The pressure-modified Tresca criterion~PMT! is also of-
ten quoted in the context of polymer yielding. Here the r
evant quantity is assumed to be the maximum shear stre

tmax5
1

2
us i2s j umax, ~4!

and yield is assumed to occur at@8#

tmax
y 5

3

A2
~t01ap!. ~5!

The prefactor in Eq.~5! is chosen so that, for the samet0
anda, the PMT and PMvM criteria coincide when any tw
of the three principal stress components are identical. In
other cases, the PMT criterion gives a lower yield stress

Several experimental studies are available that addres
macroscopic yield behavior of polymers. In these expe
ments, the material is typically strained at a constant str
rate using convenient geometries. The most commonly s
ied stress states are uniaxial tension or compression,
shear, and plane strain compression. Several different de
tions of the yield point have been employed to determine
yield stress. Most authors@7,9,10# take the maximum of the
stress-strain curve as the yield stress. The offset stress@11# is
also used, particularly when the stress-strain curve exhi
no clear maximum. It is given by the intersection of th
stress-strain curve with a straight line that has the same
tial slope as the stress-strain curve but is offset on the st
axis by a specified strain, e.g., 0.2%~see Fig. 2 below!. The
offset stress is motivated by the idea that if the load w
removed the sample would relax elastically along the stra
line to an unrecoverable strain that is equal to the off
stress. However, the relaxation is generally more com
cated. The authors of Ref.@12# argue that the true yield poin
©2001 The American Physical Society01-1
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JÖRG ROTTLER AND MARK O. ROBBINS PHYSICAL REVIEW E64 051801
ought to be determined from the residual strain measu
after unloading. They define the yield stress as the sma
stress value that gives a nonzero residual strain.

Raghavaet al. @11# collected yield data for polyvinylchlo-
ride ~PVC!, polystyrene ~PS!, polymethylmethacrylate
~PMMA!, and polycarbonate~PC!. Despite the fact that dif-
ferent definitions of yield were used, all data fit the PMv
criterion@13# with the same value ofa.0.18. More recently,
Quinsonet al. @12# concluded that PMMA is always wel
described by the PMvM criterion, but that PS follows t
PMT criterion at low temperatures and PC always follo
the PMT criterion. They associated the validity of the PM
criterion with the occurrence of shear bands. Howev
Bubecket al. @10# measured a larger number of yield poin
for PC and found that they fitted the PMvM criterion. Th
discrepancy may be due to the use of different yield po
definitions in the two studies. The small number of uni- a
biaxial stress states considered in experimental studies m
it hard to distinguish the two criteria. No experimental te
of yield criteria appear to have considered triaxial str
states.

On the simulation side, both Monte Carlo@14# and mo-
lecular dynamics simulations@15# have been presented fo
uniaxial deformation of polymer glasses. Coarse-grained
chastic dynamics of shear flow of local volumes has a
been considered@16#. These models were shown to qualit
tively reproduce experimental stress-strain curves and t
dependence on temperature and strain rate. However, w
unaware of any studies that address multiaxial stress s
and relate them to yield criteria.

This paper is organized as follows. In Sec. II we discu
the details of our model interaction potential for polym
glasses and our method for imposing and measuring s
and strain. Section III begins with a comparison of yie
stresses calculated from different definitions of the yi
point. We then determine both the maximum stress and
offset stress in multiaxial stress states and compare the
sults to the PMvM and PMT criteria. In particular, we a
dress the nature of the pressure dependence of the
stress and investigate the validity of Eqs.~3! and ~5! in dif-
ferent physical limits. We conclude with a discussion in S
IV.

II. POLYMER MODEL AND SIMULATIONS

Our model of a polymer glass builds upon extens
simulations of polymer melt dynamics@17#. The solid con-
sists of linear polymers each containingN beads. Pairs of
beads of massm, separated by a distancer, interact through
a truncated Lennard-Jones~LJ! potential of the form

VLJ~r !

5H 4u0@~d/r !122~d/r !62~d/r c!
121~d/r c!

6# for r<r c

0 for r .r c ,
~6!

whereu0 and d are characteristic energy and length scal
Adjacent beads along the chain are coupled by the fini
extensible nonlinear elastic~FENE! potential@17#
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VFENE~r !52
1

2
kR0

2 ln@12~r /R0!2# for r ,R0 , ~7!

whereR051.5d andk530u0 /d2 are canonical choices tha
yield realistic melt dynamics@18#. Mappings of the potentia
to typical hydrocarbons@17# give values ofu0 between 25
and 45 meV andd between 0.5 and 1.3 nm.

The above potentials produce very flexible polym
chains, since no third- or fourth-body potentials are pres
Melt studies of the bead-spring model have recently b
extended to include the effect of polymer rigidity@19#. Fol-
lowing these authors, we consider a bond-bending poten
for each chain,

VB5 (
i 52

N21

bS 12
~rW i 212rW i !•~rW i2rW i 11!

u~rW i 212rW i !uu~rW i2rW i 11!u
D , ~8!

whererW i denotes the position of thei th bead along the chain
andb characterizes the stiffness.

The equations of motion are integrated using the veloc
Verlet algorithm with a time step ofdt50.0075tLJ , where
tLJ5Amd2/u0 is the characteristic time given by the LJ e
ergy and length scales. Periodic boundary conditions are
ployed in all directions to eliminate edge effects. We co
sider two system sizes of 32 768 beads and 262 144 bea
two temperatures ofTh50.3u0 /kB andTl50.01u0 /kB . Th
is very close to the glass transition temperatureTg
'0.35u0 /kB for this model@20#, andTl represents an effec
tively athermal system. The temperature is controlled wit
Nosé-Hoover thermostat~thermostat rate 2tLJ

21) @21#.
To study the yield behavior, we impose tensile or co

pressive strainse i on one or more axes of the initially cub
cally symmetric solid at constant strain rates ofde i /dt
51024tLJ

21 or less. Figure 1 illustrates some of the importa
limiting stress states that are discussed below. For uni-
biaxial studies of yielding, the stressess i in the remaining
two or one directions are maintained at zero by a No´-
Hoover barostat~barostat rate 0.1tLJ

21) @21#. Note that since

FIG. 1. Illustration of some limiting stress states employed
this study. For uniaxial simulationss2 and s3 were kept at zero
using a Nose´-Hoover barostat. For biaxial casess3 was kept at
zero. The controlled strains were increased at a constant rate.
1-2



a
e
e
c

e
en
e

is

ce
ca
in
c

to
r
y
g

by
en
e
e
f

-

in
il
re
ic
y

hat
in

ves;
ps
ge

nd
oth
ke

-
res

x-
to

f a
es.

rily

ial
e as
et
ned
on
his
ing
ar-

ap-
ld
w-
ring
ess

the

ned
in

to

on

ne
ut
u

he

YIELD CONDITIONS FOR DEFORMATION OF . . . PHYSICAL REVIEW E 64 051801
tLJ;3 ps the strain rates employed are 8–9 orders of m
nitude higher than typical experimental strain rates. Nev
theless, by comparing to typical sound velocities we can
sure that our strain rates are slow enough that stresses
equilibrate across the system and thus loading proce
nearly quasistatically. A detailed study of the rate dep
dence of yielding in polymers will be presented elsewher

All stresses in this paper are true stresses, i.e.,s5F/A,
whereA is the instantaneous cross-sectional area. Likew
we use true or logarithmic strainse5* l 0

l dl/ l 5 ln(l/l0). In all

cases, stresses are averaged over the entire simulation
Our model lets us address a variety of different physi

situations. The influence of adhesive interactions on yield
can be examined by varying the LJ potential cutoff distan
from r c521/6d, which gives a purely repulsive interaction,
r c51.5d or r c52.2d, which include progressively longe
ranges of the attractive tail of the LJ potential. As a b
product, the density of the solid at zero pressure chan
with r c .

Polymer dynamics in the melt is greatly influenced
chain length, particularly when entanglements are pres
To study the effect of chain length on yielding, we consid
an entangled caseN5256'4Ne and an unentangled cas
N516'1/4Ne , whereNe'60 is the entanglement length o
the flexible bead-spring model@22#. The bond-bending po
tentialVB is also varied from the flexible limit (b50u0) to a
semiflexible case (b51.5u0).

III. RESULTS

A. Onset of yielding and yield stress definitions

We begin by considering a uniaxial tension simulation,
which the polymer glass is expanded in one direction, wh
zero stress is maintained in the perpendicular plane. Figu
shows the resulting stress-strain curve. It exhibits the typ
features of a polymer glass: linear response is followed b

FIG. 2. Stress-strain curve~dashed line! in uniaxial loading. The
maximum stress is indicated byd and the 0.2% offset stress bym.
The latter is determined by the intersection with the straight li
which has the same initial slope as the stress-strain curve, b
displaced by 0.2% on the strain axis. Also shown is the resid
straine r as a function of the maximum strain during uniaxial (h)
or biaxial (L) loading. The biaxial results are plotted against t
effective straineeff @Eq. ~9!#. Here T5Tl , N5256, r c51.5d, b
50u0, and there are 32 768 beads.
05180
g-
r-
n-
an
ds
-

.

e,

ll.
l
g
e

-
es

t.
r

e
2

al
a

nonlinear region that bends over into a maximum. Note t
the maximum is reached at at strain of about 6%, which is
very good agreement with experimental stress strain cur
see, e.g.,@12#. Once past that maximum, the stress dro
slightly and the material begins to flow, but these lar
strains are not shown.

Figure 2 also illustrates how to obtain the maximum a
offset yield stresses as described in the Introduction. B
quantities are easy to identify for uniaxial stress. To ma
contact with the approach of Ref.@12#, we have also deter
mined the amount of residual strain after unloading. Squa
show the residual straine r as a function of the maximum
strain before unloading. Results fore r.0.2% are compa-
rable to the residual strains given in Ref.@12#. These authors
identified the yield point with the strain where a linear e
trapolation ofe r vanishes. We have extended our studies
much smaller residual strains and find no evidence o
threshold strain below which the residual strain vanish
Studies of other glassy systems also suggest that atT50 a
finite unrecoverable strain should be present for arbitra
small initial strains, but the theoretical situation at finiteT is
more complicated@23#.

Note that in order to obtain 0.2% residual strain the init
extension has to be about 4%. This is about twice as larg
the yield strain from the 0.2% offset criterion. The offs
criterion assumes elastic recovery along the line determi
by the elastic moduli of the unperturbed solid. Examinati
of the recovery curves shows that they are nonlinear. T
confirms that much of the nonlinear response under load
to the triangle in Fig. 2 is due to recoverable, but anh
monic, deformations.

The above discussion raises questions about both the
plicability of the unrecoverable strain definition of the yie
point and the motivation for the offset stress definition. Ho
ever, since the offset stress is widely used in enginee
applications, we consider both it and the maximum str
definition in the following sections.

B. Evaluating the yield stress in multiaxial stress states

Figure 3 shows the principal stress componentss i as well
as the octahedral shear stresstoct for ~a! biaxial and~b! tri-
axial loading. In multiaxial stress states one needs to plot
stress~es! against a scalar effective straineeff constructed
from the three principal componentse i of the strain tensor.
This choice is not unique, and influences the value obtai
for the offset stress. A convenient choice that we employ
this paper is

eeff5
1

A2~11n!
@~e12e2!21~e22e3!21~e32e1!2#1/2,

~9!

wheren is Poisson’s ratio. This expression is proportional
the octahedral strain and reduces toe1 under uniaxial load-
ing. It also reduces to the effective strain defined in Ref.@11#
for biaxial strains, and allows us to treat all strain states
the same footing.
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JÖRG ROTTLER AND MARK O. ROBBINS PHYSICAL REVIEW E64 051801
Figure 3~a! illustrates the maximum and offset definition
of the yield point for biaxial stresses. The maximum of t
stress-strain curves is straightforward to evaluate~solid
circles!, and both nonzero stress components peak at
same strain. By contrast, the offset definition gives yield
slightly different strains~solid triangles!. This is troubling,
since a yield point should refer to a unique instance in ti
or strain. Moreover, the offset stress depends on arbit
factors in the definition of the effective strain and in t
amount of offset at the yield point.

We also evaluated the residual strain for different biax
loading conditions and added them to Fig. 2~diamonds!.
Interestingly, these residual strains fall onto the same cu
as the results from uniaxial extension when plotted aga
eeff . As above, there is no indication of a finite thresho
below which the residual strain vanishes.

Figure 3~b! shows that determining the yield point is eve
more complicated under triaxial loading. For this case, o
the tensile stress component exhibits a clear maximum.
compressive components decrease monotonically over
range shown. Moreover, the slope of these curves incre
in magnitude with increasing strain so that they do not int
sect the line for the offset criterion.

In order to make progress for general multiaxial stre
states, we thus decided to apply both the maximum and
set stress definitions not to the three stress components
vidually, but to the octahedral shear stresstoct. This is a
natural choice given thattoct is the quantity that enters th
PMvM criterion. The method is illustrated in Fig. 3 an
again in Fig. 4, wheretoct is plotted against the effectiv

FIG. 3. Nonzero principal stress components in the model p
mer glass during~a! biaxial and~b! triaxial loading. The maximum
and offset yield stresses are indicated byd and m, respectively.
Neither the maximum nor the offset definition can be applied to t
of the three components in~b!. Also shown is the octahedral she
stresstoct ~thick dashed line! and the yield stresses that result b
applying the yield point definitions to it. HereT5Tl , N5256, r c

51.5d, b50, and there are 32 768 beads.
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strain in a variety of uni-, bi-, and triaxial stress states. F
the biaxial states considered in experiments the yield str
obtained froms1 and s2 separately are nearly the same
that determined fromtoct @11#. Thus the value oftoct

y is the
same as that constructed from the separate yield compon

In the initial elastic response, stress and strain tensors
linearly related by a combination of the elastic modulici j of
the solid. The moduli are defined byci j e i5s j , from which
we obtain

toct5
A2

3

~c1112c12!~c112c12!

c111c12
eeff ~10!

by straightforward insertion. Thus a plot oftoct versuseeff
should collapse all curves onto a stress-strain curve w
common initial slope. Figure 4 shows that this condition
satisfied for two different temperatures and system sizes.
curves start out with the same slope, but they split ap
rapidly at higher strains. This reflects the influence of pr
sure on yielding. We will show later that this pressure d
pendence is well described by Eq.~3! for both yield point
definitions. As in experiments, the yield stresses decre
with increasing temperature.

The larger systems in Fig. 4~b! exhibit much smoother
curves, since many more independent yield events contrib
to the average stress response. However, since the valu
yield stress and strain do not change significantly with si
we use systems with 32 768 beads in most cases. This sp
up the computations and allows a larger parameter spac
be explored. Note that each curve represents the stres
sponse for one particular initial configuration of polymers

-

o

FIG. 4. Octahedral shear stresstoct versus effective strain in
simulations with ~a! 32 768 and ~b! 262 144 beads atTh

50.3u0 /kB and Tl50.01u0 /kB for different stress states. At low
strains, all curves for a given temperature collapse onto a
whose slope is determined by the elastic moduli@Eq. ~10!#. At
higher strains the curves split apart, with the higher curves co
sponding to higher pressures. Straight lines are drawn at an offs
0.2% strain for each temperature. HereN5256, r c51.5d, and b
50u0.
1-4



er
-
un

id
al

he
e

-
an

e

er
ig

in
bol
um

mal
ant,
are
an
are

or

n-
d in
d
neral
f
en

ur
For

e
oint
re
ous
it

own

also
rst
me

lting

t
ther

ls

ri-
d
el
ce

6
6

9
1
6

YIELD CONDITIONS FOR DEFORMATION OF . . . PHYSICAL REVIEW E 64 051801
the glassy state. We have observed variations on the ord
5% in the magnitude ofty with different 32 768 bead con
figurations, but the general features of yielding remained
altered.

C. Biaxial yielding

Experimental tests of yield criteria have generally cons
ered uniaxial or biaxial loading conditions. In the biaxi
case, the PMvM criterion predicts that the values ofs1 and
s2 at yield should lie on the surface of an ellipse in t
s1-s2 plane. The equation for this ellipse can be obtain
from Eq. ~3! by letting s350:

~s12s2!21
122a

3 S s11s21
3at0

122a D 2

56t0
2S 11

a2

2~122a! D . ~11!

A nonzero value ofa breaks the tensile-compressive sym
metry and shifts the ellipse toward the lower left quadr
~where the stress is compressive!. The amount of the shift
increases with increasinga. The PMT criterion predicts a
yield surface bounded by straight lines. For the samet0 and
a, it coincides with the PMvM criterion whenever two of th
stresses are equal.

In Fig. 5, we perform an analysis analogous to the exp
mental studies, where we include only biaxial data from F
4. We employ reflection symmetry about the lines15s2,

FIG. 5. Yield points for biaxial stress states. Filled symbo
(d,m) correspond to the yield point atTl and open symbols
(s,n) to Th . Circles refer to the maximum yield stress and t
angles to the offset stress. Data in~a! were obtained for 32 768 an
in ~b! for 262 144 beads. The ellipses represent the PMvM yi
surface, Eq.~11!, and the dashed lines show the PMT yield surfa
Statistical error bars are indicated by the symbol size. HereN
5256, r c51.5d, andb50u0.
05180
of
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since the solid is isotropic. We have tested this isotropy
selected cases and find variations on the order of the sym
sizes. The offset stress is generally lower than the maxim
stress and becomes very difficult to evaluate atTh due to the
small magnitude of the yield stress and the large ther
noise. The yield stresses are larger in the lower left quadr
indicating that yield is pressure dependent. Also shown
the yield surfaces predicted by the two yield criteria. As c
be seen, the data from both definitions of the yield stress
better described by the PMvM criterion@Eq. ~11!# than the
PMT criterion. The values oft0 anda can be found in Table
I ~see also the next section!. In the following discussion we
focus on the PMvM criterion, which provides a better fit f
all cases studied.

D. General stress states

For general stress states it is simplest to test Eq.~3! di-
rectly by plottingtoct

y versus pressure. This plot lets us i
clude triaxial stress states, which could not be discusse
Fig. 5. In Fig. 6~a! we show the maximum shear yiel
stresses from all stress states at two temperatures. In ge
one would expect Eq.~3! to hold as long as the mode o
failure is shear. The linear law should break down wh
cavitation occurs in the polymer. Dashed lines in Fig. 6~a!
indicate the threshold for cavitation, which occurs in o
model only when all three stress components are tensile.
isotropic tensile loadingtoct

y is rigorously zero and cannot b
used to determine a maximum or offset stress. The end p
at toct

y 50 in Fig. 6~a! was determined from the pressu
where all three stress components reach a simultane
maximum. The offset stress is not well defined in this lim
becauseeeff also vanishes.

When yield occurs through shear, the yield stresses sh
in Fig. 6~a! lie on a straight line as predicted by Eq.~3!. To
test this linear dependence over a wider range, we have
performed simulations in which the simulation cell was fi
compressed isotropically to a higher pressure. The sa
range of strains was then imposed again, and the resu
shear stresses were added to Fig. 6~a!. This procedure led to
all the points forp.1.5u0 /d3, which lie on the same straigh
line as data from the uncompressed starting state. O

d
.

TABLE I. Values for t0 anda obtained from the linear fits in
Figs. 6 and 8, as well as the simulations withr c52.2d. Unless
noted otherwise,N5256 andb50. Typical statistical errors in fits
for the maximum yield stress are60.02u0 /d3 for t0 and60.01 for
a. Errors are about three times larger fort0 in the purely repulsive
case, and for all offset stress results.

Tl max Tl offset Th max Th offset
t0 /a t0 /a t0 /a t0 /a

r c521/6d 0.06/0.08 20.42/0.09
r c51.5d 0.72/0.08 0.37/0.15 0.23/0.10 0.11/0.1
r c51.5d, comp. 0.72/0.08 0.24/0.11 0.23/0.10 0.15/0.0
r c52.2d 0.83/0.09 0.53/0.16 0.45/0.10 0.28/0.0
r c51.5d, b51.5 0.76/0.10 0.44/0.13 0.31/0.15 0.19/0.1
r c51.5d, N516 0.68/0.07 0.36/0.14 0.20/0.12 0.07/0.0
1-5
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JÖRG ROTTLER AND MARK O. ROBBINS PHYSICAL REVIEW E64 051801
simulations show that this linearity extends to even grea
pressures of up to 20u0 /d3.

Figure 6~b! shows the offset yield stresses for two tem
peratures. While the data from the compressed and unc
pressed starting states each fall on a straight line, it is
longer possible to make a common fit through both data s
Moreover, the values ofa tend to be smaller for the com
pressed state than for the uncompressed state. From F
one sees that the value ofa from the offset criterion depend
on the rate at which stress increases with pressure at fi
strain, and the slope of the stress-strain curve near the in
section. Both factors change with temperature and the ch
of offset at yield. For this reason, it is not surprising th
values ofa from the offset criterion show larger variation
than those determined from the maximum stress.

E. Effect of adhesive interactions

Intuitively one would expect that increasing adhesive
teractions between polymers would lead to a higher yi
stress. In our model this can be achieved by increasingr c ,
which controls how much of the attractive tail in the L
potential is included. We have verified that increasingr c to
2.2d produces higher yield stresses and that the yield po
are consistent with the PMvM criterion. Biaxial data lie o
an ellipse rather than the straight line segments predicte
the PMT criterion~Fig. 5!. Values oftoct

y from general stress
states fall onto a straight line when plotted against press
~see Fig. 7 below! as long as failure occurs through she
rather than cavitation. Fit values oft0 anda are presented in
Table I. The value ofa is the same as for smallerr c within

FIG. 6. Octahedral stress at yield versus pressure atTl ~filled
symbols! andTh ~open symbols!. The maximum stress is shown i
~a! and the offset stress in~b!. Solid lines are fits to Eq.~3!, and the
values fort0 anda are given in Table I. Results forp.1.5u0 /d3

were obtained by applying strains to a compressed state~see text!.
Points where cavitation was observed are connected by a da
line in ~a! and are not shown in~b!.
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our error bars. The value oft0 increases, leading to a highe
yield stress at all pressures. Increasingr c also suppresse
cavitation. The magnitude of the tensile pressure neede
produce cavitation under hydrostatic loading increased
2u0 /d3 at both temperatures.

The opposite limit that we can consider is the purely
pulsive potential obtained whenr c521/6d. Such a solid does
not provide any resistance to tensile stresses atp50, but the
same range of strains considered above can be applie
higher offset pressures as is done in Fig. 6. Once again,
results are in good agreement with the PMvM criterion a
values oft0 anda are quoted in Table I. The value oft0 is
greatly reduced from those for largerr c , but a remains un-
changed within our error bars.

To illustrate thata is constant, we summarize data for th
maximum shear yield stress as a function of pressure fo
three different ranges of the potential in Fig. 7. For ea
case, the value oft0 is subtracted, and results forTl are
displaced vertically by 0.5u0 /d3 in order to avoid overlap
with the high temperature data. For each temperature, a
the data points collapse onto a common straight line wh
slope is consistent with the independently determined va
of a. Thus, whilet0 decreases rapidly as adhesion is
duced,a remains unchanged. Similar results have been
tained in recent studies@26# of static friction as summarized
in Sec. IV.

F. Semiflexible and short polymers

In the previous section we showed that the interact
range has a large effect ont0, but does not significantly alte
a. Other features of the potential have little effect on eith
quantity.

We first consider semiflexible polymers with a value
b51.5u0 and a cutoffr c51.5d in Eq. ~8!. This makes the
polymer conformation more rigid, and one would therefo
expect increased resistance to deformation. Figure~a!
shows that the PMvM criterion also describes yield of th
semiflexible polymer. Values oft0 anda from linear fits in
Fig. 8~b! tend to be slightly higher than the values for fle

ed

FIG. 7. Maximum shear stresstoct
y minus t0 at Tl ~filled sym-

bols! and Th ~open symbols! for three different potential cutoffs
r c51.1225d (d,s), r c51.5d (m,n), and r c52.2d (.,,). To
avoid overlap, results forTl were displaced vertically by 0.5u0 /d3.
Points where cavitation occurred are not included in this plot. So
lines show best fits to all points plotted.
1-6
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ible chains~Table I!, but the changes are comparable to s
tistical uncertainties.

Finally, we have considered shorter chains of lengthN
516 to contrast the behavior of unentangled and entan
(N5256) chains. The long range topological properties t
are crucial for the dynamics of polymer melts turn out to
irrelevant for the small strains required to initiate yield@24#.
Values for t0 and a do not deviate substantially from th
results forN5256, and we merely quote them in Table I.

IV. SUMMARY AND DISCUSSION

We have examined the yield stress of amorphous gla
polymers under multiaxial loading conditions using molec
lar dynamics simulations. Measurements of the resid
strain after unloading indicate that imposing any finite str
produces some permanent plastic deformation. Thus
threshold for the onset of plastic yield could be identifi
@12#. Two other common definitions of the yield point, th
maximum and offset stress, could not be applied separa
to the three principal stresses. Instead they were applie
the octahedral shear stresstoct for a wide range of loading
conditions and model parameters.

In all cases studied, and for both yield definitions, t
pressure-modified von Mises criterion provides an adequ
description of the shear yield stress. Traditional plots of
axial yield points are well fitted by ellipses@Eq. ~11!# and
multiaxial results fortoct

y vary linearly with pressure. The
pressure-modified Tresca criterion always shows wo

FIG. 8. Yield points for~a! biaxial stress states and~b! general
stress states from simulations with semiflexible chains (b51.5u0).
As before, filled~open! symbols correspond toTl (Th) and circles
~triangles! indicate the maximum~offset! yield stress. Solid lines
show fits to the PMvM criterion using values ofa andt0 given in
Table I. Dashed lines connect points where cavitation occur
HereN5256 andr c51.5d and there are 32 768 beads.
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agreement. Although the difference may be small from
engineering perspective (,21%), it has implications abou
the nature of the molecular mechanisms that lead to yiel

More experimental studies seem to be consistent with
PMvM criterion than the PMT criterion, although the num
ber of stress states that has been accessed is relatively
and limited to biaxial cases. One study@12# found that the
PMT criterion worked better for polymers that formed she
bands. Shear banding can be influenced by boundary co
tions and the method of imposing shear. In particular,
periodic boundary conditions inhibit shear banding and t
may be why the PMvM criterion always provided a better
to the yield stress. It is also possible that the failure criter
is dependent on the specific form of the atomic interactio
and that the simple potentials considered here do not lea
PMT behavior. These will be fruitful subjects for future re
search.

The dependence oft0 anda on potential parameters an
temperature was explored. The value ofa is nearly indepen-
dent of potential parameters, but seems to increase slig
with increasing temperature. The value from the offset str
is larger and more variable than the value from the maxim
stress. The value oft0 is also relatively insensitive to the
chain lengthN and degree of rigidity, indicating that yield i
dominated by local structure. However,t0 increases rapidly
with increases in the attractive interactions between m
ecules that determine the cohesive energy. The value ot0
also decreases with increasing temperature. Temperature
rate dependence will be discussed in subsequent work.

Our calculated values of the dimensionless parametea
compare well with typical experimental values. Quins
et al. @12# report values fora between 0.14 and 0.25 fo
PMMA, 0.03 and 0.12 for PC, and 0.18 and 0.39 for PS.
in our simulations, there was a tendency for the value
increase with increasing temperature. Bubecket al. @10#
found values between 0.04 and 0.07 for PC. Rhagavaet al.
@11# fitted all data for the above polymers and PVC toa
50.18, and best fit values for individual polymers rang
from 0.13 to 0.20. They used the offset stress to determina
and our numbers for this quantity are in the same rangea
50.11-0.16. Comparing values oft0 is more complicated
because of uncertainty in mapping our potential parame
to specific polymers~see Sec. II!. Using values ofu0 andd
from Ref. @17# our values oft0 correspond to 1 to 50 MPa
This coincides well with the experimental range@3,12# of
5–100 MPa, but quantitative comparisons for specific po
mers are not possible without more detailed models
atomic interactions.

It is interesting to note a connection between the res
reported here and recent studies of the molecular origin
static friction @25,26#. Macroscopic measurements of th
force needed to initiate sliding can be understood as aris
from a local yield stress for interfacial shear that rises l
early with increasing normal pressure exactly as in
PMvM criterion @Eq. ~3!#. Moreover, the results presente
here parallel results from simulations of the static fricti
due to thin layers of short chain molecules that are presen
any surface exposed to air@26#. These authors find thatt0

d.
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represents an increase in the effective normal pressure d
adhesive interactions. As in our study,t0 increases with in-
creasing range of interactions,r c , and the value ofa is
insensitive to many details of the interactions. A simple g
metrical model fora was developed based on the idea th
surfaces must lift up over each other to allow interfacial sl
ing. It will be interesting to determine whether a similar ge
metric model can be developed for yield of bulk polymer
er
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t t
bl
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