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Optical rotation and structure of ferrielectric smectic phases
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We analyze the measured optical rotation in three- and four-layer smectic ferrielectric phases within the
matrix approach to the light propagation. We show that ‘‘perfect’’ three- and four-layer structures with 120°
and 90° phase rotation of the director in neighboring layers give negligible optical rotation of polarized
light travelling along the normal to the smectic layers. Significant optical rotation is obtained in deformed
three- and four-layer smectic phases. The analysis of the measured optical rotatory power clearly shows that
three-layer ferrielectric phases of@4-~1-methylheptyloxycarbonylphenyl!-octylbiphenyl-4-carboxylate# and
4-†„4-$@1~* !-methyl#heptycarboxy%phenyl…carboxy‡phenyl-48-decyloxy-1-benzencarbatioate~10OTBBB1M7!
are deformed with the deformation angle of 35°–45°. The deformation angle in the four-layer smectic phase of
10OTBBB1M7 is 70°–90°. This is in reasonable agreement with other experiments and suggests the validity
of the ‘‘deformed clock model.’’

DOI: 10.1103/PhysRevE.64.051706 PACS number~s!: 61.30.Eb, 64.70.Md
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I. INTRODUCTION

The resonant x-ray experiment of Machet al. @1# has
shown that tilted phases of chiral smectics are preferenti
organized in a clocklike manner, where the molecular dir
tion precesses along the normal to the smectic layers, a
move from one layer to another. In the ferroelectric smec
C* phase this precession is slow on the molecular scale
the angle between the in-plane projections of the directoj i

andj i 11 in the neighboring smectic layers denoted byi and
i 11 is of the order of 1°. As a result, a helical superstruct
is formed with a helical periodp in the range of a microme
ter.

In the smectic-Ca* phase, the angle between the in-pla
projectionsj i andj i 11 is of the order of 60°, which result
in a short-pitch structure with a incommensurate helical
riod of the order of 6–7 smectic layers, as shown in Fig.
By decreasing the temperature one usually enters the
ferrielectric phases. The ferrielectric smectic-CFI2* ~i.e.,
smectic-C1/4* ! is a four-layer structure~Fig. 1!, where the
angle between the in-plane projections of the directorj i and
j i 11 in the neighboring smectic layers changes by an an
close to 90° according to the first resonant x-ray experime
of Mach et al. @1#. The ferrielectric smectic-CFI1* ~smectic-
C1/3* or smectic-Cg* ! is a three-layer unit cell structure~Fig.
1!, where the angle between the in-plane projections of
director j i and j i 11 in the neighboring smectic layer
changes@1# by an angle close to 120°. In the antiferroelect
smectic-CA* phase this angle is close to 180° and we obtai
structure with a unit cell of two smectic layers.

Whereas the x-ray experiment gives an elegant and
fied classification of structures of tilted smectics that are c
sistent with the ‘‘clock’’ model@2#, several salient experi
mental observations remain unexplained. In particular, ra
large magnitudes of the optical rotatory power~ORP!, mea-
sured in the two ferrielectric phases@3–5,10#, are several
orders of magnitude larger than what one would expect
‘‘perfect’’ three- and four-layer structures. In view of th
1063-651X/2001/64~5!/051706~7!/$20.00 64 0517
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experimental fact, a ‘‘deformed clock’’ model has been pr
posed @5,6#, which is a ‘‘mixture’’ of XY @7# and one-
dimensional~1D! Ising theoretical models@2#. The results of
recent ellipsometric experiment on freely suspended fe
electric films@8# strongly support the deformed clock mod
and have been recently also supported by higher resolu
resonant x-ray experiments@9#.

The motivation for this paper is an apparent lack of co
plete and accurate analysis of high resolution optical rotat
power experiments in intermediate smectic phases. So
the analysis of the measured temperature dependence of
was either based on the de Vries approximation for the a
ferroelectric and ferroelectric phase of 4-†„4-$@1~* !-
methyl#heptycarboxy%phenyl…carboxy‡phenyl-48-decyloxy-1-

FIG. 1. ~a! The set of tilted phases of polar smectics, as rep
duced within the ‘‘clock’’ model of Cˇ epič and Žekš. ~b! The pro-
posed structures, based on experimental evidence from ellipsom
and ORP measurements.
©2001 The American Physical Society06-1
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I. MUŠEVIČ AND M. ŠKARABOT PHYSICAL REVIEW E 64 051706
benzencarbatioate~10OTBBB1M7! and 11OTBBB1M7
@10#, or concentrated on the analysis of ORP in the four-la
ferrielectric phase using 434 matrix analysis@5# at a given
temperature. To our knowledge, a complete and deta
analysis of the measured temperature dependence of O
helical period, and their relation to the structure of ferriele
tric phase over a large temperature interval has not yet b
performed. We therefore concentrate our analysis on the
tical rotation of these phases, because it is without dou
very sensitive function of the structure of their unit cell.

The theory of optical rotation in chiral birefringent med
is one of the most intensively studied problems in liqu
crystals@11#. Most of the theoretical considerations are bas
on the solutions of Maxwell equations for the propagation
light along the helical axis, using macroscopic forms of
electric tensor. Among them, the de Vries theory was s
cessfully applied to the calculation of the optical rotation
ferroelectric liquid crystals@12#. Some studies also conne
the microscopic picture of molecular ordering with the ma
roscopic dielectric tensor, using quantum statistical te
niques@13#. In this paper we use two different matrix fo
malisms for the calculation of the ORP: the Jones ma
formalism ~see, for example, Ref.@11#! and the 434
transfer-matrix method developed by Yeh@14#. Within these
two approaches, one divides a layer of a liquid crystal intoN
thin layers, which is in our case a single smectic layer. O
tical properties of the liquid crystal as a whole are then c
culated by transfer-matrix multiplication, as described el
where. We present quantitative comparison between
transfer-matrix approach, the de Vries theory, and the res
of ferrielectric phases. We show that Yeh’s 434 matrix for-
malism exactly reproduces the analytical de Vries expres
for the ORP in ferroelectric smectic-C* phase. We also show
that various approximations of the de Vries theory in antif
roelectric and ferrielectric phases overestimate ORP in th
phases. We also calculate the ORP as a function of the a
between the in-plane projections of the directorj i andj i 11
in the neighboring smectic layers. The comparison of
theory and experiment undoubtedly shows that the unit c
of three- and four-layer ferrielectric structures must be d
torted, which is in agreement with the results of ellipsome
measurements in freely suspended ferrielectric films@8# and
supports previous analysis of ORP@5,6,10#.

II. THEORY

The optical properties of ferroelectric chiral smectic li
uid crystals for light propagation along the helical axis a
very similar to the optical properties of cholesterics, whi
has been quantitatively proven in high resolution ORP m
surements@12#. It has been shown that the continuum theo
of de Vries can successfully be applied to the analysis
ORP in the chiral ferroelectric smectic-C* phase, and only
qualitatively to the optical properties of the antiferroelect
smectic-CA* phase@10#. Although the generalization of th
analysis of the optical properties of three- and four-layer u
cell ferrielectric phases is straightforward, it deserves so
precaution, as it implies optical rotation in short-pitch helic
structures. It has been shown by Oldano and Rajteri@15# that
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in short-period helical smectic structures, optical rotati
shows in some cases unexpected results. We shall there
compare the results of the first-order approximation to the
Vries theory, Jones matrix calculus, and Yeh transfer-ma
method and compare these calculations to each other an
the experimental results.

A. Jones matrix calculation of ORP

Within the 232 matrix Jones calculation of the optica
rotation in helicoidally ordered birefringent media@11#, one
regards the medium as being composed of a large numb
infinitesimally thin sections. In our case this thin section is
single smectic layer and thez axis is directed along the laye
normal. The retardation matrixJi that relates the input and
output polarization of light transversing thei th thin section
and travelling along thez axis is

Ji5SiGSi
21. ~1!

Here,

Si5Fcosb i 2sinb i

sinb i cosb i
G , G5Fexp~2 ig! 0

0 exp~ ig!
G ,

~2!

andb i is the angle between the direction of the principal a
of the i th layer with respect to thex, y coordinates, wherea
g describes phase retardation of each layer, i.e.,g
5pdnD/l. Here dn5na2nb is the birefringence of a
single smectic layer of thicknessD and l is the vacuum
wavelength. We assume that layer birefringence is equa
all layers, whereasSi actually depends on the type of stru
ture under consideration. The displacement vectors of
input light waveD̄ in and output light waveD̄out are coupled
via a simple equationD̄out5JI •D̄ in . HereJI is a Jones matrix
for the system ofN layers, which is obtained by successiv
multiplication of the Jones matrices for each layer,

JI 5~SNGSN
21!~SN21GSN21

21 !¯~S2GS2
2!~S1GS1

21!. ~3!

In a simple case of a helically modulated ferroelect
smectic-C* phase, the angleb i is equal for all layers and the
Jones matrix is simplified toJI 5(SiGSi

21)N. In the more
general cases of three- and four-layer ferrielectric phases
expression~3! can also be greatly simplified by groupin
individual Jones matrices to a set of smectic layers that fo
a unit cell. For example, in the case of a smectic struct
with a unit cell of three smectic layers, one first calcula
the Jones matrix for a unit cell,

JI unit5~S3GS3
21!~S2GS2

21!~S1GS1
21!. ~4!

The Jones matrixJ for a system ofM unit cells, rotated with
respect to each other by a small angle is

JI 5~SJunitS
21!M ~5!

Here, S is the matrix that describes the rotation of a giv
unit cell to its neighbor and is equivalent to Eq.~2!, whereb
6-2
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OPTICAL ROTATION AND STRUCTURE OF . . . PHYSICAL REVIEW E 64 051706
is in this case the angle of rotation of a unit cell with resp
to the previous cell. By writing the Jones matrix for a who
stack in a form

JI 5Fa b

c dG ~6!

and following general principles of optical rotation and r
tardation in birefringent structures@11#, the angle of rotation
c of the stack of layers is given by

C52arctanS Re@b#

Re@a# D . ~7!

For a given structure one therefore has to calculate the J
matrix and then the calculation of optical rotation from t
elements of this matrix is straightforward.

B. Yeh’s transfer-matrix method

The formulation of the Jones matrix method implies so
simplification of the problem of light propagation because~i!
it does not consider reflection of light at the interface b
tween neighboring liquid crystalline layers,~ii ! the optical
axis lies within the plane of the smectic layers, i.e., theEz
component of a light wave propagating along the layer n
mal z equals zero. Clearly, this is not fulfilled in alternatin
tilted smectic structures, where the optical axis of an in
vidual layer is tilted at a tilt angle of 20°–30° and changes
direction in space from layer to layer.

On the other hand, the transfer-matrix method of Yeh@14#
is superior in comparison to the Jones method because~i! it
is based on exact solutions of Maxwell’s equations and~ii ! it
considers continuity of electric and magnetic fields at
interface between the neighboring layers. Briefly, Ye
method considers a stack ofi 51,...,N birefringent layers,
which is in our case an individual smectic layer. This ide
ized dielectric layered structure is therefore the only appro
mation within Yeh’s approach. The dielectric permitivi
tensor«I ( i ) in each smectic layer is given by

«I ~ i !5AI iF «1 0 0

0 «2 0

0 0 «3

GAI i
21. ~8!

Here« i denotes principal values of the dielectric tensor o
single tilted smectic layer~equal for all layers! andAI i is the
coordinate rotation matrix, which depends on the phase
the tilt angle of an individual smectic layer@16#. In the next
step, the wave equation is solved for individual smectic l
ers, which gives us two pairs of wave vectors together w
the eigensolutions of the propagating waves. This is follow
by imposing continuity relations for the transverse comp
nents ofĒ and H̄ at each interface. This leads to the 434
transfer matrixTn21,n for the nth layer

Tn21,n5D21~n21!D~n!P~n!, ~9!
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which relates the amplitudesAj of the four eigenwaves in the
neighboring layers,

S A1~n21!

A2~n21!

A3~n21!

A4~n21!

D 5Tn21,nS A1~n!

A2~n!

A3~n!

A4~n!

D . ~10!

The elements of the transfer matrixTn21,n , i.e., D(n) and
P(n) are calculated from the eigensolutions of the wa
equation for a particular layer@14#. The transfer matrix for a
series of smectic layers with arbitrary orientation of the pr
cipal axis of the dielectric tensor in each layer is obtained
subsequent multiplication of individual transfer matrices. F
a given polarization of the input light wave, the electric fie
amplitude of a transmitted wave is calculated as a vector s
of the electric field amplitudes of four eigenwaves. The o
tical rotation of a stack of smectic layers is then calcula
similarly to the Jones method, i.e., following the Eq.~7!.

C. de Vries’s theory of optical rotation

Within de Vries’s calculation of optical rotation of helica
birefringent structures, one solves Maxwell equations for
light propagating along the helical axis. The calculation
based on the macroscopic dielectric tensor«I , which has a
complicated form in ferroelectric and antiferroelectric helic
phases@16#. It has been shown experimentally@12# that op-
tical rotatory powerr in the ferroelectric phaseis given by a
modified de Vries expression

r5
C

d
52

2p

p

a2

8l82~12l82!
. ~11!

Here,C is the angle of the rotated output polarization wi
respect to the input polarization,d is the thickness of the
sample,p is the helical period,l85&l0 /pA« i1«' is the
reduced wavelength,l0 is the wavelength in vacuum, an
a5(« i2«')/(« i1«'). Here « i5«2«3 /(«2 sin2 u
1«3 cos2 u) and «'5«1 are the dielectric constants in th
direction perpendicular to the plane of the tilt~i.e., along the
direction of polarization! and in the direction of the projec
tion of the tilt onto the smectic layers, respectively.«1 , «2 ,
and «3 are the eigenvalues of the dielectric tensor defin
elsewhere@16# andu is the tilt angle.

For the calculation of the ORP in the antiferroelectric a
ferrielectric phases, de Vries description can be modified
considering a unit cell of the ferrielectric phase asa single
birefringent layer with dielectric tensor that is equal to a
average of the dielectric constant tensorwithin the unit cell
@10,16#. For example, let us consider a four-layer distort
unit cell, as shown in Fig. 1~b!. Let us denote the dielectric
tensor of the individual smectic layer by«I ( i ), i 51,...,4. In
the first step we calculate the space average of the diele
tensor of a four-layer unit cell and obtain a new tensor t
describes average birefringence of the unit cell as a wh
After solving the wave equation using this unit-cell-averag
6-3
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I. MUŠEVIČ AND M. ŠKARABOT PHYSICAL REVIEW E 64 051706
dielectric tensor, ORP of a deformed four-layer helical str
ture is again given by the Eq.~11!, where

a5

1
2 ~«32«1!sin2 u

«11 1
2 ~«32«1!sin2 u

cosb ~12!

and l5lo /(pA«11 1
2 («32«1)sin2 u). As the ORP is pro-

portional to the square of the angle of distortionb, it is
therefore quite sensitive to the distortion of the unit cell. T
enables us to directly determine the magnitude of the or
tational distortion of the unit cell of ferrielectric phases.

FIG. 2. Comparison of optical rotatory power of ferroelect
smectic-C* phase, calculated from de Vries’s analytical solutio
of the wave equation, Yeh’s 434 matrix approach, and Jones m
trix formalism as a function of helical period. The tilt angle is 16.2
whereas the eigenvalues of the dielectric tensor are«152.28 and
«352.89, the wavelength of light is 632.8 nm.

FIG. 3. Optical rotatory power of smectic-Ca* phase as a func
tion of the phase difference between the directions of director
neighboring smectic layersdF, calculated for different values of th
tilt angle. The wavelength of light is 632.8 nm and the eigenval
of the dielectric tensor are«152.28 and«352.89, ORP was calcu
lated within Yeh’s 434 matrix formalism.
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III. RESULTS AND DISCUSSION

Figure 2 shows a comparison of the ORP of the ferroel
tric smectic-C* phase, calculated from the de Vries expre
sion, Jones matrix, and Yeh matrix formalism. As expect
de Vries’s and Yeh’s formalisms give practically identic
results, whereas Jones method typically gives underestim
values of the ORP. This is most remarkable in the vicinity
the Bragg selective reflection peak, which is very well rep
duced by Yeh’s method and totally absent in Jones calcu
These can be understood by noting that the Bragg reflec
peak is a result of the interference of traveling light wav
that are reflected back and forth in the medium. As th
reflections are not considered in Jones’s formalism, Bra
reflection is absent too. We therefore conclude that Ye
formalism is superior for the analysis of the ORP in thre
and four-layer ferrielectric phases.

The optical rotary power calculated using Yeh’s forma
ism for the incommensurate smectic-Ca* phase is shown in
Fig. 3 for different values of the tilt angle and for differen
periodicities. One can see that ORP in smectic-Ca* is practi-
cally unobservable, which is in agreement with high reso
tion experiments that show negligible ORP in this phase

The optical rotatory power for three- and four-layer fer
electric phases, calculated from the Yeh matrix formalis
are shown in Fig. 4 as a function of the angle of orientatio
distortion b and for a typical value of the helical period o

in

s

FIG. 4. Optical rotatory power of~a! the three-layer smectic
CFI1* , ~b! the four-layer smectic-CFI2* ferroelectric phase as a func
tion of the angle of distortion of a unit cell, indicated in the ins
Yeh’s formalism was used withl5632.8 nm, «152.28, «3

52.89, p53 mm, andu517°. The dashed line in Fig. 4~b! is de
Vries’s calculation according to Eqs.~11! and ~12! with the same
set of parameters.
6-4



of
th

lu

tio
o

e
s

d

pr
fo
ri
th
tri
h

is
r
en
nd

th

s.
eo
o

is
tio
i-
el
te
tio
es

ion

x-
e re-

-
and
lated
d in
re
is-
than

the

ical
de-

the
of

OPTICAL ROTATION AND STRUCTURE OF . . . PHYSICAL REVIEW E 64 051706
p53 mm and tilt angleu517°. As one can see, the ORP
these phases is extremely sensitive to the distortion of
structure. For an undistorted case~i.e., b50! the ORP is in
both cases very small and well below experimental reso
tion of C'0.02° for a sample of thickness 100mm. The
ORP then increases strongly with the angle of deforma
b. It reaches maximum value for the maximum angles
deformation, b1560° for a three-layer structure andb2
590° for a four-layer structure. These maximum distort
structures correspond to the three-and four-layer structure
the 1D Ising models.

The dashed line in Fig. 4~b! shows the ORP calculate
using de Vries’s expressions@Eqs. ~11! and ~12!# and the
same set of parameters. One can see that de Vries’s ex
sion, which is based on the space-averaged tensor for a
layer unit cell, significantly overestimates ORP in compa
son to Yeh’s method. The reason for this difference is in
fact that averaged dielectric tensor of the antiferroelec
phase is in this case equal to the dielectric tensor of a c
lesteric liquid crystal. As a consequence, theEz component
of the electric field calculated from the wave equation
zero. This artificially increases the value of the parametea
and consequenty leads to an increased ORP. The differ
between Yeh’s and de Vries’s values for the ORP depe
linearly on the dielectric anisotropy«32«1 and becomes
smaller than 10% for very low birefringent materials wi
Dn,0.04.

In order to test the overal procedure, we present in Fig
and 6 the comparison between the experiment and the th
of ORP in the ferroelectric and antiferroelectric phases
10OTBBB1M7 and MHPOBC. The calculation of ORP
not presented in ferrielectric phases, since the distor
angleb is, in principle, not known. The high resolution b
refringence and ORP experiment has been described
where and we have also used our measurements of the
perature dependence of the tilt angle and indices of refrac
@4,19#. The temperature dependencies of the pitch in th
materials have been taken either from literature@17# or have
been determined either directly by microscope observat

FIG. 5. Temperature dependence of the measured ORP~s! in
MHPOBC @4# together with the calculated ORP~l!. The calcula-
tions were made within Yeh’s formalism.
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or indirectly from our additional electro-optic response e
periments. In these experiments, we have measured th
laxation rates of the phase mode, which is given byt21

5(K3 /g)qc
2, whereqc52p/p @16#. Whereas the ferroelec

tric and the antiferroelectric phases give an excellent
quantitative agreement between the measured and calcu
ORP values, such a good agreement can only be obtaine
three- and four-layer ferrielectric structures if they a
strongly distorted. If the ferrielectric structures are not d
torted, the calculated value is several magnitudes less
the measured values.

We have therefore used the measured ORP data for
calculation of the distortion angleb in the ferrielectric
phases. For this calculation, reliable values of the hel
pitch in the ferrielectric phases are necessary. We have

FIG. 6. Temperature dependence of the measured ORP~s! in
10OTBBB1M7 @18# together with the calculated ORP~l!. The
calculations were made within Yeh’s formalism.

FIG. 7. Temperature dependence of the helical period in
smectic-CFI1* phase of MHPOBC, measured by the observation
disclination lines~filled circles!. The values in the smectic-C* and
smectic-CA* phase are from Ref.@17# ~open circles!. The inset
shows a picture of disclination lines of the smectic-CFI1* phase un-
der polarizing microscope at the temperature of 116.5 °C.
6-5
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I. MUŠEVIČ AND M. ŠKARABOT PHYSICAL REVIEW E 64 051706
termined the temperature dependencies of the pitch in
ferrielectric phases by observing the homogeneously
ented samples under a polarizing microscope and by mea
ing the distance between the disclination lines. In Figs. 7
8, the measured temperature dependencies of the pitch i
ferrielectric phases of MHPOBC and 10OTBBB1M7 a
shown together with a polarizing microscope image of
structures. In the smectic-CFI2* phase of 10OTBBB1M7, he
lical period has been also determined from electro-optic
sponse measurements. We have observed that the relax
rate in the smectic-CFI2* goes to zero at the temperature 0.8
below the transition from the smectic-C* phase. This is ex-
plained by the change of sign of ORP in the smectic-CFI2*
phase, accompanied with the unwinding and rewinding
helix.

FIG. 8. Temperature dependence of the helical period in
smectic-CFI1* and smectic-CFI2* phases of 10OTBBB1M7, measure
directly by the observation of disclination lines~open squares! and
determined indirectly from relaxation rates of the phase m
~filled circles!. The inset shows a picture of disclination lines und
polarizing microscope in the smectic-CFI2* phase at the temperatur
of 118.5 °C.

FIG. 9. Temperature dependence of the calculated distor
angle b in the smectic-CFI1* phase of MHPOBC and
10OTBBB1M7.
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Finally, combining all these data, we show in Figs. 9 a
10 the temperature dependence of the calculated disto
angle b in the smectic-CFI1* and smectic-CFI2* phases. The
error bars have been calculated by considering errors o
data, entering into calculation, which are~i! the tilt angle
du50.2°, ~ii ! length of the helical perioddp/p50.04, ~iii !
index of refractiond«350.01, and~iv! ORPdc/c50.04.

Figure 9, shows the distortion angleb1 for a three-layer
ferrielectric structure and one can see thatb1 is nearly tem-
perature independent. In the three-layer smectic-CFI1* phase
of MHPOBC, the average value of the distortion angle
b̄1541°65°, and in the smectic-CFI1* phase of

10OTBBB1M7 it is equal tob̄1536°65°. Both values are
close tob1532° in @4-~1-methylheptyloxycarbonyl!phenyl-
48-octylbipheny#-4-carboxylate ~MHPBC! reported by
Johnsonet al. @8#. This analysis clearly shows that the thre
layer smectic-CFI1* phase is significantly distorted and th
angle of distortion is nearly temperature independent. I
however also clear that this structure is not Ising-like.

In the smectic-CFI2* phase of 10OTBBB1M7 the averag

value of the distortion angle isb̄2575°115°211°, and
again the distortion angle is nearly temperature independ
However, due to rather large uncertainty inb̄2 , we cannot
say whether the smectic-CFI2* phase is completely distorte
(b2590°) and consequently Ising-like, or not. The observ
average value is however very close to the valuesb2583° in
MHPBC andb2572° in MHDDOPTCOB@20# reported by
Johnsonet al. @8#.

IV. CONCLUSIONS

In conclusion, we have shown that Yeh’s 434 matrix
formalism for the propagation of light in modulated birefrin
gent structures gives a good quantitative agreement with
analytic de Vries expression for optical rotation only in t
ferroelectric smectic-C* phase. Jones matrix method an
various approximations of de Vries’s theory show significa
deviations from Yeh’s method in the case of antiferroelec

e

e
r

n

FIG. 10. Temperature dependence of the calculated distor
angleb in the smectic-CFI2* phase of 10OTBBB1M7.
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and ferrielectric phases. These deviations are smaller
10% for low birefringence material ofDn,0.04.

We have clearly shown that high optical rotatory pow
observed in three-and four-layer smectic structures is inc
sistent with ‘‘perfect’’ orientational structure, suggest
from the first resonant x-ray experiments. A distortion of t
orientation of the molecules in the unit cell is necessary
describe quantitatively the high value of ORP from optic
experiments. In this sense, our analysis of ORP in the fe
electric phases of MHPOBC and 10OTBBB1M7 complete
supports the analysis of ellipsometric experiments in the
rielectric phases of MHPBC and MHDDOPTCOB@8# and is
also consistent with recent higher-resolution resonant x
experiments, reported by Pindak@9#. The angle of the distor-
tion of the unit cell in MHPOBC is estimated tob1541(1
n,

,
,

hy

-

o,

J

fe
e

on

05170
an

,
n-

o
l
i-

r-

y

60.13)deg in the smectic-CFI1* ~i.e., smectic-C1/3* or smectic-
Cy* !. In 10OTBBB1M7 the angle of distortion is estimated
b1536(160.13)deg in the smectic-CFI1* ~i.e., smectic-C1/3*
or smectic-Cg* ! and to b2575(110.220.15)deg in the
smectic-CFI2* ~i.e., smectic-C1/4* !. Consequently, the three
layer ferrielectric phases are clearly not consistent with
proposed 1D Ising model, whereas the four-layer ferrielec
phases are more consistent with 1D Ising model. Howe
as the model has to generally describe the structure of fe
electric phases of a given substance, it is clear that the I
model is ruled out. However, we would also like to point o
that the present clock model has to be modified and co
pleted in order to generate~i! large, alternating phase disto
tions and~ii ! temperature-independent distortion angles.
l.
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