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Density change effects on crystal growth from the melt
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When a crystal grows from its undercooled melt the local density changes, driving a convective flow in the
liquid phase. Then, the purely diffusional description of the process ceases to be satisfactory. Moreover, the
dynamic pressure associated with the flow field may affect the melting tempefahd¢he effective under-
cooling of the system. Both these effects have been addressed in recent experimental work. In the present
study we derive a thermodynamically consistent phase-field model that accounts for the density change effects
in the solidification of a pure substance. Starting from a thermodynamic potential that includes squared gra-
dient terms for both the order parameter and the density, the field equations are derived assuming positive local
entropy production. The model is numerically solved in one dimension to show deviations from the classic
phase-field description of the same phenomenon.
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[. INTRODUCTION these studies showed that, due to the effects of the pressure
field, some inconsistencies of the classic Stefan formulation
Solidification from an undercooled melt is accompaniedof the problem could be removed and the interface velocity
by a local change of density. The solid is generally denseis free of singularities during the entire freezing process. It is
than the liquid. The change is typically a few percent forworth noting that a shift of the equilibrium melting tempera-
simple metals. In some caséslicon, bismuth, watgrthe  ture induced through a static pressure field has been recently
reverse is observed, and the liquid expands upon freezingroposed as a method to control the growth dynamics of the
The change of density during the phase transition causes solidification proces§7].
flow in the liquid towards the solid-liquid interface or away  The theoretical description of density effects in solidifica-
from it, depending on the sign of the density effect. Thistion has been generally based on the free boundary formula-
mass advection in turn carries heat. Consequently, even ition of the problem, coupled with proper interface boundary
absence of natural convection in the liquid phase, the aspeconditions. With respect to the classic Stefan problem, the
of the growth process that involves pure diffusion ceases téatter must incorporate additional constraints for the mass
be satisfactory and must be coupled with an accurate descripnd momentum conservation. A more stimulating approach
tion of hydrodynamic phenomena. This point emerged in thecould be based on the phase-field moFM), which re-
interpretation of some recent experiments conducted bylaces the sharp solid-liquid interface with a diffuse inter-
Glicksman and co-workers aboard the space shililen a  face. In this model the phase of the system at each point is
microgravity environment, where natural convection wascharacterized by an order parameigfx,t) that assumes
suppressed, these authors studied the growth of a free deoenstant values in the bulk phases and varies continuously in
drite. The experimental data show a departure from the prethe interface region. A suitable thermodynamic potential is
dictions of the Ivantsov diffusional theof]. A careful re-  then constructed, that depends éras well as on the other
examination of the data, based on a refinement of theelevant thermodynamic variables; squared gradient terms
Ivantsov approacti3] to incorporate flow effects, showed account for the energy cost of the interface. The extremiza-
that, apart from some finite size effects, any inconsistencyion of the functional in respect to these variables results in
could be removed taking into account the additional heathe dynamic equations for the process. Several studies both
transfer due to the advection mechanighh analytical[8—13] and numerical14,15 established on a firm
A further effect due to the density changend to the basis the notion that the phase-field model for a pure sub-
consequent flow fieldresults from the dynamic pressure stance, in the limit of a vanishingly small interface width,
drop across the melt. At large growth rates the pressure inreduces to the sharp-interface diffusional equations, incorpo-
crease(or decreaseat the interface may significantly alter rating in a natural fashion the Gibbs-Thomson effect as well
the equilibrium melting temperature. This point has beeras the kinetic undercooling of the moving interface. More-
previously considered by Horvdy], who studied the ten- over, the extension of the PFM to the solidification of binary
sion field created by a spherical nucleus freezing into aralloys[16—22, accounts for non-equilibrium effects as sol-
infinite undercooled melt of lower density. In his study, ute trapping , and was able to interpret complex phenomena
based on the free boundary approach, the liquid phase &s the formation of solute bands in solidification far from
treated as an incompressible inviscid fluid and the transitioequilibrium.
temperature is viewed as affected by both the curvature of Caginalp and Jonef23,24] were the first to extend the
the nucleus and the hydrodynamic pressure due to the flovphase-field model to incorporate flow effects, within the con-
A similar analysis was subsequently conducted by Charactext of a unified and consistent derivation. They obtained a
and Rubinstein6] for the growth of a planar interface. Both system of differential equations for the variables tempera-
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ture, order parameter, fluid velocity, density, and pressure. Inum of a two-phase system will be analyzed. The dynamic

the momentum equation, capillary and viscosity effects werequations of the model will be derived in Sec. Ill, using the

neglected. An asymptotic analysis led to a new interface reconcepts of the extended irreversible thermodynamics. In

lation, showing that the front velocity in the kinetic under- Sec. IV we present the scheme for the numerical solution of

cooling term should be replaced by the front velocity minusthe model, and in Sec. V the results of the numerical simu-

the normal fluid velocity. lations will be discussed. The conclusions will follow in
In a subsequent study, Oxtol§5] introduced a grand Sec. VI.

canonical potential in which, besides the nonconserved phase

field, also the local density is regarded aganserveglorder Il. EQUILIBRIUM OF A TWO-PHASE SYSTEM

parameter. The dynamic equation for the growth rate results

from the extremization of the potential in respect to the

phase field, and the Navier-Stokes equation is written in the Let us first consider a closed solid-liquid system in equi-

interfacial region using an expression for the capillary stresgbrium at fixed temperatur& and volumeV. The local state

tensor that is derived resorting to density functional argu©f the system is characterized by a coarse grained density

ments. Then, the coupled problem to determine the growt?(X,t) and a nonconserved order paramet¢x,t). We pos-

rate and the flow field is stated through the above equation#/late a generalized Helmholtz free energy density of the

and the mass conservation condition. Steady state solutiofi@rm

of the model, obtained in isothermal conditions, put in evi-

A. A closed system

: : 1 1

dence the role of sound modes in density transport. W (0, T, Vp,V )= ¢(p,¢,T)+§5,2:(Vp)2+§6,2:(v¢)2,
In the present paper we present a phase-field model that

accounts for the change of density in the solidification pro- (1)

]wheredf(p,¢>,T) is the bulk free energy density and the gra-

mass, momentum, and energy, is used to derive governing'ent te_rms account for nonlocal contributions in the interfa-

equations of the model that drive the system towards eqUI-'alI region. We assume thgﬁ and 5 dep?”d only on tem- :

librium. In this sense the model extends the approach oP€rature. We wish to derive the equations for the spatial

Antanovskii [27] and Anderson, McFadden and Wheeler Variation of the density and the phase fielg. As the whole

[28], incorporating the nonconserved order parameter anﬁystem is closed, minimizing the total Helmoltz free energy

allowing one to treat solid-liquid phase transitions. SeveraP'Ves

ideas come also from the analysis of Yang, Fleming, and

Gibbs [29] for a liquid-gas interface of a one _component 5(F_'“0M):5f (' — pop)dv =0, 2

system. The scalar part of the entropy production fixes the

dynamic equation for the structural order parameter; the VG ere - is a Lagrange multiplier; the corresponding Euler-

tor contribution results in the classic Fourier expression forLagrarl:Lgoe equations read: '

the heat flux. A third term, of tensorial character, allows to '

find an expression for the stress tensor, starting from the oW oW

assumption that this contribution is only due to viscous dis- 62V?p— —=0, €2V?¢p——=0, 3

sipation. This form of the capillary tensor satisfies the Euler- ap I

Lagrange conditions for the grand canonical potential when

the system is in equilibrium. w
The equations of the model have been solved numericall

in one dilgnension, to study the coupled effects of the thermal),/ Wip, 4, T)=4p(r), (1), )= p(1) o(T). @

mechanical, and chemical relaxation on the growth process. Let us consider the planar one-dimensional case and as-

As solldlflcatlor_l starts, the_ sudden contraction of the'llqmdsignzzo at the position of the Gibbs dividing plarghase

in front of the interface originates a pressuemd density  jyierfaca. In the bulk phases, recalling that the chemical

wave that propagates into the sample. The results of oy icntial is aiven bvu=gu/dp. Eas.(4) and(3) reduce to
simulations show that this phenomenon, as well as the dy- g Wu=dyiop, Bas.(4) ®
Iy Iy

namics of the interface advancement, of the advected flow

field and the stress field is properly described. For isothermal Ms= M= Mo, (@) _(ﬁ)
growth we found that in a wide range of temperatures the b=¢s d=¢
growth rate increases almost linearly with increasing the in-

terface undercooling. When the thermal field is allowed towhere the subscripts,| indicate the physical properties in
relax, we observe that the purely diffusive dynamics of thethe bulk solid and liquid phases, respectively. Multiplying
process is only slightly affected by the convective heat transthe first of Eqs.(3) by p, and the second by, and adding
fer. This point merits further investigation. At present we them together, we obtain, through simple integration
cannot predict whether these small deviations could result in 1
(r;;)i(raes ;errgirgrz]isbi:jeereefge.cts when different materials or geom §(5§p§+e§¢§)+p(z),uo(T)— W(p(2),(2),T)=Py(T).

The paper is organized as follows. In Sec. Il the equilib- (6)

here

=0, 5
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Here Py(T) is clearly the coexistence pressure at tem- Using the Euler-Lagrange equatiori$l) in Eq. (12)
peratureT, since in the bulk, wherg,,#,=0 it reduces to yields
the usual expressign= up— . Equationg5) and(6) define
the chemical and mechanical equilibrium of the two-phase 9, Ty=0, (13)
system. Equationgl) and(6) allow to find a simple expres-
sion for the surface tension. We rewrite Ef) as

where
(82p3+ €t %)+ p(2) po(T) = ¥/ (p(2),4(2), T)=Po(T).
(7 , ow’ W’
. Tik= W' = pi| = | = éi| 7~
When Eq.(7) is integrated over the total volume of the P o
system(from —L far in the solid to+L far into the liquid, ool 2
it can be written as SiW' — 52pipk— €r i b (14
F=uoM—PoV+ vA, (8) Equation (13) states the mechanical equilibrium of the

_ _ ~system, in terms of an intrinsically symmetric capillary ten-
yvhgreA is the system cross section and the surface tengion sorT, where components are defined through (E_q.) (5ik is
is given by the Kronecker symbgl Following the method indicated in
[28] we show in the next section that represents the non-
22, 20 dissipative part of the overall stress tensor. An alternative
v= (Opstepdy)dz (9) p p _ sor.
-L form of Eq. (14) can be given observing thawv=—p

] o N _ +p(awldp) and using the first of Eq43):
This result extends to a solid-liquid phase transition with

density change well known results obtained either for fluid- 1 1
fluid interfaces or for solidification without density change. T=0 — p+p5§V2p+§5§(Vp)2+§e§(v¢)2

B. Equilibrium for an open system _ 5|2:PiPk_ 5}2=¢i br, (15)

When the mass constraint is relaxed, the variational prob-

lem must refer to the function4B0], i.e., is in the diagonal part of the contribution due to the

bulk pressure is clearly decoupled from the interface terms.
Q=J (W' (p,¢,T,Vp,V)]dv In the case of a planar interface normalzideq. (14) along
with the Euler-Lagrange conditions yields

1 1
= | |W(p,,T)+=82(Vp)2+=e(Ve)?|dv,
f[ (P ¢ ) 2 F( p) ZEF( ¢) v Tzz:_POv Txx:Tyy:_P0+5|2:pipk+6|2:¢i¢kl

(10)

L Txz= Tyz: Txy=0, (16)
wherew(p,®,T), is given by Eq.(4), and reduces to the
grand canonical potential for the bulk phases in equilibrium. L
The corresponding Euler-Lagrange equations still riesed and the surface tension is given by

Eqgs.(3)] .
w' (aw’) aw' aw’) v= jﬁ (T Tzpdz 17)
———|—|=0, —(——|—-|=0, (11 L
dap X\ dp;j (9¢) IX F?(,Z’)|

wherep; , #; indicate spatial derivatives with respect to the ~ 1hus we see that the difference between the stress normal
coordinatex; . Here and in the following the summation con- to the interface and the tangential stress is the surface tension
vention over repeated indexes is used; an explicit deper€r unit length. This result is well known from the analysis

dence of the functionv on its variables will be given later. of the equilibrium of fluid-fluid interfacegsee, for example
[29]), and has been recovered here in a more general context.
C. The capillary stress tensor . To summarize, for a planar i.nterfa_lce the equilibrium pro-

: file for the phase and density fields is governed by

The equilibrium conditiong11) allow to find a general

expression for the capillary stress tensor. Let us dedpte oW ap
=9d/dx;, and calculate the gradient of the grand canonical 3,T,~=0; e§¢zz—<—> =0, (—) =0, (18
potential density considering as a constant parameter: I at

_(aw’ (aw’)
W' = %)Pi"’ 9 di+

ow’
| —
pkl a(,bk

ow’

Ipx

b along with the condition of uniform and constant tempera-
ki ture. In the next section, we shall derive the dynamic equa-
(120  tions for an out of equilibrium system.
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ll. THE DYNAMIC EQUATIONS . 1, -
S’(p,¢,e,Vp.V¢)=S(p.¢,e)—Z[és(vp)zﬂ%s(v@z],

(26)

A. The entropy production rate

We now address the nonequilibrium situation through a
thermodynamic procedure, starting from the local balance of 1
mass, momentum, energy and entropy. Let us denote the’(p,¢,s,€p,€¢)=e(p,¢,s)+2—[5§(ﬁp)2+ e2(V)?].

p

velocity field byJ, the specific energy bg', and the specific 27)
entropy bys’. The two latter quantities are determined by
the specific free energy’ (p,#,T,Vp,V¢) and in general Under the above assumptions the differential form of the

involve gradient contributions. The stress tensor will be dessecond law of thermodynamics reads
noted byP; Jg, Jg stand for the energy and entropy flux

vectors, respectlvely, ana is the entropy production rate. Tds=de' — —dd——|p— 1 =5 (Vp)z— —eF(V¢)
Finally, g stands for a specific body force field. In terms of ¢ 2
these variables the classical balance laws read
dp o - —[5 (Vp)d(Vp)+e(V)d(V)]. (28)
T pV-v, (19

Combining Eq. (280 with the balance equations
(19),(20),(22) yields, after some manipulations,

dv > =
pgr=P9—V-P, 20 ds'  V.Je 52* (9Ps, e 9%,
P at T dt
de’
e s : e 1d¢
pgr =~V Ie—P:Vu, (21) _Td_( P g E,:Vz(ﬁ)__(Pm"_le)aUk!

ds' - 29
p——=-V-Jsto. (22 . - i

dt whereT;, is the capillary stress tensor defined by Ebp)

and rewritten, out of equilibrium, as
The constitutive relations and the explicit form of the

fluxes will follow from the Courie principle and from the _ . 00 2 2
local form of the second law of thermodynamics, which im- Tik=dik| W P Sepipk—€rdidk. (30
plies 0=0. In addressing the solid-liquid transition we will
assume that the solid phase is at rest. We can rearrange E@29) according to the entropy bal-
The specific Helmoltz free energy is given by ance equatiori22) adopting an entropy flux
I | . = 1 ,dp ,do
(p @ T.Vp. Vo) =y (p. 4. T.Vp.V ) =1(p..T) Js=3 JE+5thVp+6F GtV ¢l (3D
1 - - Finally we find
+ o R(Vp)2+ (V)2 (23 g
2p ds’
p——=-V-Jsto, (32
wheref(p,d,T)=¢(p,d,T)/p is the specific bulk free en- dt
ergy. The nongradient part of the specific energy and entro
argydefined b)? P P oy p%here the entropy production rateis given by
1 d¢( of 1) dp. 52
of =—— V2| +J v( —Vp V(—
S(p.6.&)=— =i epbS)=Hp. s D+Tspde). 7 Tat|Pag F ¢/ TIEVIT/ TGPV T
(24) dp. .[e2) 1 R
+EV¢V T —T(P‘FT).VU. (33

Similar relations are postulated for the corresponding

guantities incorporating gradient terms. Denoting As observed by Charach and Fifa1], the non classical

) contributions of the above equatidgthird and fourth terms
2=_F. 2= E R T2 2=e2—Te2 on the right-hand sidecan be treated, according to the Cou-
S dT’ F » CECF S rier principle, as either of vectorial or of scalar origin, de-
(25  pending on the way in which the corresponding thermody-
namic forces or fluxes are defined. However, to simplify the
We obtain from Eq(23) discussion, extending the choice of Waegal. in their
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model for solidification at constant density2], we assume To complete the model, we must specify an equation of
that e2= 52=0; €2, 52=const. Moreover in the sequel we state relating the local pressure to the temperature and den-
shall neglect the spatial variation of botf and 52, which  sity fields. The latter takes the form

amounts to neglect the thermal gradient across the interface.

Then, the constraint of local positive entropy production re- _ w(p,é,T) _
duces 1o p=p——p— ~W(p.4.T). (39
d af R o . s .
_¢: —F(p—— E|2:V2¢), (34 More_oviar., along a solid-liquid transition, the internal energy
dt d densitye is assumed to change as
Je=—KVT, (35 e=e,+p(e)L. (40

wherel is a positive constant arid is the thermal conduc- Then, Eqs(19—(21), (34), and (39) along with specifi-

tivity. Moreover, assuming that the tensor contribution is.tions &35)_('37) and ’(40) :';md the Clapeyron equation

only amenable to viscous dissipation, we obtain which accounts for the dynamical shift of the melting point,
P=—T—TI (36) represent the evolution equations for the system.

with IT indicating the standard stress tensor for viscous flu- C. Nondimensional equations in one dimension

ids. We assume equal values of the thermal diffusitynd

the specific heatat constant pressure, in both phases. A
nondimensional form of the model equations is obtained
We still need an explicit expression for the grand canoni-adopting a reference lengthand scaling time tar= £2/D.
cal potential densityv. At equilibrium the latter is postulated Density is scaled ag/p, and a nondimensional temperature
as a double well over thp,¢ plane, with two minima of isintroduced asi=cp(T—Tqg)/L, with T,y being the initial
equal depth centered at the bulk solid={ps,¢»=0) and melting temperature. The components of the stress tensor
liquid (p=p;,¢=1). The undercooling of the system is de- and the energy densities are scalegd,tq%, wherevy=¢/7is
scribed shifting the liquid branch through an additional termthe natural reference for velocities. Retaining for simplicity
of the form p(fl’)Pl:(Tm—T)/Tm. wherel is the heat of the same symbols for the scal@tbndimensionalquantities,
fusion per unit mass an@l,, the pressure dependent melting @nd in absence of body forces, the model equations in one
temperature(in the sequel we shall use also a volumetricdimension read

latent heat defined ds=p,L). . 7
The functionp(¢) is monotonic and increasing witth, =—p—
assuming the valugs(0)=0, p(1)=1. We note that from a E 9z’

numerical perspective it is desirable to have fixed values of
¢ for the bulk phases. This resylvhich is incompatible  d¢ d¢ P m[ag(p gb)

B. The grand canonical potential

(41)

p'(p)p @ e(u+up)|,

with a linear dependence qi(¢)] is obtained choosing gt "V 37 M a2 2| g
p(¢) = ¢*(10— 154+ 6¢7). (42)
In terms of a nondimensional density, scaled to the liquid
density p,, the following form forw revealed suitable for ov ov 9 a9(p, &) Pp v
numerical calculations, retaining near the minima a parabo- p— tpuoo =M — Nop——3tN3—=
loid structure that should capture the essential physics of the ~ 9t 9z dp gz 9z
problem: 9 5 g
+M[ 9(p,¢) 2 ¢ [ 43)
A(Tp=T) d¢ 972 | 97"
wip,¢,T)=ag(p,$)+p(p)pb———, (37
" au au_ ¢ A +(92u+)\3 v\ ?
with ER A I R A w Fr
(44)

1
9(p, )= Z[¢2+ b(p—9)?I[(¢—1)*+b(p—1)%],

along with the state equations for pressure and the dynamical
(38 shift up of the pressure dependent melting point:

whereS=p4/p,. The well height depends on the parameters ag(p,d) Col Tmo— Tm(P)]
a,b; the latter fixes the stiffness of the potential in the p=»\; p&——g(p,cﬁ) ; usz
direction(i.e., the compressibilitywith respect to the one in p

the ¢ direction. Notice that here and in the following we 1 1-S

neglect thermal expansion effects and we assume equal com- =-————p. (45)
pressibilities in both phases. aen; S
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TABLE I. Values of the model parameters.

Parameter Value
S 1.11
m 0.05
P 0.001
o 530
b 1.6
N 3560
Ay 3.56x10°3
N3 1.05x 10!
\s 4940

The parameters appearing in the above equations are d¢
fined as

€2 L L ¢
- a= -5
%2 Cplmo €F \/5

pressure field

g
(383
T

4
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z

FIG. 1. The pressure wave originated at the solid-liquid inter-

a 52p, 7 L face. The interface is located nes 1.60, and the different curves

_ 2:— 3:
, £y’ PG PIVG

(46)

where 7 is the fluid viscosity. Notice that imposing=S
=1 the model collapses on the classical phase-field descrip-
tion of the solidification of a pure substance. In this case

Ng= 5, represent the pressure field at times 0.002, 0.003, 0.004, 0.005, and
0.006, from left to right. The wave speedug=53.25. The model
parameters are specified in Table I.

IV. THE NUMERICAL METHOD

Equations(41)—(44) have been solved on the computa-

for exampld 12,37)) the model parameters, ¢, «, e, and tional domain @Ezsgm. In-itially a phase boundary at
a can be related to the material properties through =2, separates a solid regioz<{z,,¢=0,=9) from the
liquid region (z>z,,6=1,p=1). The system is initially at

m= MO-TmO }:E a= f
DL 1 g’ 6\/§d0,
2=6\20h, a=6\/§%, 47

whereh is the interface thickness; the surface tension, and
do=(0cTo)/L? the capillary lengthy is the kinetic under-
cooling coefficient that relates the interface undercooling to
the interface velocityv, throughv,=u(Tno—T). We as-
sume that the above equations still represent a reasonab§
estimation of the model parameters in terms of the thermo-*
physical properties of the material. To estimaie we as-
sumed equal contributions of the gradient terms to the sur-
face tension, i.e.e2=p 62 .

To conduct the numerical simulations we referred to the
thermophysical properties of Nickel. However, due to limi-
tations of computational resources, and to render more trac
table the numerical integration, a compressibility value has
been chosen, resulting in a sound velocity that is an order o
magnitude lower than the actual value. The interface thick-
ness has been chosen las20x 108 cm. With a length

d velocity

80

60

20

rest and the liquid is undercooled, i.ev(z,0)=0, u(z

1000

2000 3000 4000 5000
M

FIG. 2. The wave speed versus the slapeof the potential in

scaleé=2x10"* cm, the resulting values of the nondimen- the p and ¢ plane. The solid dots show the results of the present
sional model parameters are summarized in Table I. simulation. The line represents the theoretical prediction.
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I E . . .
=S &
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> - . . .
0.0 | ’ ) .
r ke 1 . 4 .

0.20 0.25 0.30 0.35 0.40 0.45 0.50

z

FIG. 3. The phaséa), density(b) and velocity(c) fields at different times. The curves are takerta#.09,t=0.15,t=0.21, andt
=0.27 from left to right.

<74,0)=0, u(z>2(,0)<0. For the phase, density, and tem- solved on a computational grid shifted a&/2 with respect
perature fields we imposed Neumann boundary conditiondo the one used for the scalar fields.
the velocity is fixed ag (0,t)=0 at the left end of the solid,
while we chose {v/dz)=0 atz=z,,. V. THE NUMERICAL RESULTS

An explicit Euler integration scheme was employed to We first checked whether the model gives a consistent
advance the solution forward in time. Second order centraflescription of the mechanical effects due to the density
differences were used to discretize the Laplace operator, arféf@nge in solidification. To this aim we solved the model
upwind differences for the convective terms. To ensure afduations at constant temperature=(—0.005), fixing our
accurate resolution of the solid-liquid interface the grid spac@tténtion to the mechanical relaxation of the system. The

. ~ ) i . contraction of the liquid in front of the interface originates a
ing was selected asz=e; the time step required for numeri- presgyre wave that propagates both into the solid and into the
cal stability isAt=0.4x10"". Following a standard method |iquid. This effect is illustrated in Fig. 1, where only the

in computational fluid dynamics, the velocity field was liquid portion of the system is shown. The solid-liquid inter-
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10 100.0

e 100

interface velocity
]
N
AN
interface velocity

O I L I 1 I L I 1 L N . T . N T . . L i
0.1
0.00 0.01 0.02 0.03 0.04 0.05 0.01 0.10 100 10.00

-u time

FIG. 4. The interface velocity versus the dimensionless under- F|G. 5. The interface velocity as a function of time. The dimen-
cooling of the mel{(solid dotg. The dashed line is the best fit of the gjonless undercooling 4 =0.75. The solid line represents the dif-
numerical data. The model parameters are specified in Table I.  f,sive solution obtained witls= 1,b=0 (the classic phase-field

mode). The solid dots refer to the numerical solution of the present
face is located near= 1.6 (here and in the following all the model. Notice the effedtindicated by the arrowsof the impact on
numerical results will be presented in nondimensional form the interface of the elastic wave reflected at the domain’s walls.
and the pressure field is represented at different times. The
initial pressure was initialized g%(z,0)=0, and we see the ity. In steady growth, due to mass conservation, we still ex-
negative pressure front that propagates into the liquid. Theect a linear behavior for theg (u) dependence. This is con-
velocity of the wave, estimated tracking the position of thefirmed by the results shown in Fig. 4, where we represent the
wave front, resultsvs=53.25; this value is in excellent growth rate versus the dimensionless undercooling. We ob-
agreement with the theoretical one for the liquid in equilib-serve that in the range represented in the figure, the data are
rium, (¢=1,p,=1), assumed as a pure elastic medium. Thewell fitted by a straight line. As the interface velocity ap-
latter is\/dp/dp=+/0.5\b[1+b(1—S)?]=53.88. To better proaches the sound speed a different behavior should be ex-
characterize the process, we checked also the dependencepefcted, but this region is beyond the scope of the present
the wave speed oR;. In Fig. 2 we show both the numerical study: for extremely high growth rates even the parabolic
results (solid dotg and the theoretical dependencg(\ ;) energy equation should be modified into a hyperbolic equa-
(solid line). The agreement between the two sets of datdion, to account for the finite speed of the thermal wave.
(within 2%) is quite satisfactory. The small discrepancy is A central aim of our investigation was to check the effect
probably due to the dissipative behavior of our system. of the convective heat transport on the dynamics of the

After a short transient, growth at fixed temperature resultgrowing interface. To this end we solved the full set of the
in a steady advancement of the solid-liquid interface. In Figsmodel equations, allowing the thermal field to relax towards
3(a)—3(c) we show the phase, density, and velocity profilesequilibrium. The initial undercooling was set as= —u(z
obtained at different times, withi=—0.005. We observe >Z7,,0)=0.75; to avoid finite size effects for the thermal
that the solid is at rest, while the liquid is advected towarddield the domain’s length was selected zs=25. Figure 5
the interface with a velocity = —0.114. The interface ve- shows in a log-log plot the interface velocity versus time
locity, as resulting from the numerical data, dg=1.034. (solid dot3. The arrows indicate the perturbation of the
Notice that this is the same value fixed by the mass consegrowth rate due to the pressure wave impinging on the inter-
vation law through the relation=(1—S)v, . face, after the first and the second reflection on the domain’s

The growth of the solid phase into the liquid requires awall. In the same graph we represented the purely diffusive
departure from the local interfacial equilibrium. The classicalsolution of the classic phase-field modglolid line), ob-
phase-field model incorporates in a natural fashion this effediained by imposingp=S=1. We observe that after a first
and, in the limit of a vanishingly small interface width, pre- transient the two sets of data converge towards the same
dicts a linear dependence of the growth rate on the interfacasymptotic behavior: in either case the best fit of the data in
undercooling. Caginalp and Jongx4] proposed a different the late stage of the growthi%$3) indicates a power law
interface relation, showing that in presence of fluid flow the~t*, with « very close(within 0.15% to the diffusional
front velocity in the kinetic undercooling term should be value a=—0.5.
replaced by the front velocity minus the normal fluid veloc- Then, at present the effect of the convective heat transfer
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on the growth process seems to be negligible. However thisess for a dimensionless undercoolidg=c(T 0~ T.)/L
point is far from being conclusive. Our analysis, performed< 1, to investigate possible deviations from the purely diffu-
in one dimension and for a planar geometry, discards intersive picture. Our first results seem to indicate that in the late
esting phenomena as the early growth of a spherical nucleugage of the growth the process dynamics is almost unaf-
or the onset of morphological instabilities. Further investigafected by the density change effects. However, this point
tion is required to assess the relevance of density effects fQfeserves further investigation. Our analysis was performed in

a more complex growth dynamics. one dimension and utilizes a planar geometry. Perhaps a
more interesting behavior could be observed in a spherical
VI. CONCLUSIONS geometry, due to the interplay between the capillary pressure

The classical phase-field model is a well established toof"d the dynamical shift of the equilibrium melting point. In
to describe solidification far from equilibrium. In this paper the early stage of the process we observed the effects of the
we derived the governing equations of the model in thePressure wave originated at the solid-liquid interface. In our
framework of the extended irreversible thermodynamicssimulation the wave was redirected towards interface itself,
considering different densities of the solid and liquid phasegfter a reflection at the domain’s walls. In a real process, as
and taking into account the effects of capillary stresses. Théhe nucleation starts, the homogeneity of the melt is rapidly
equations reduce to the classical formulation for equal solidost and all the growing nuclei become the source(foi-
and liquid densities. The numerical solution of the modelmary or reflecteflelastic waves. This phenomenon results in
shows that the sound wave propagation, the interfacial dya new interaction mechanism between the growing germs,
namics, and the flow field are properly described. and could alter in a significant way the first stage of the

We focused on the dynamical behavior of the growth pro-crystal growth.
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