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Microscopic dynamics of molecular liquids and glasses: Role of orientations
and translation-rotation coupling
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We investigate the dynamics of a fluid of dipolar hard spheres in its liquid and glassy phases, with emphasis
on the microscopic time or frequency regime. This system shows rather different glass transition scenarios
related to its rich equilibrium behavior, which ranges from a simple hard sphere fluid to long range ferroelectric
orientational order. In the liquid phase close to the ideal glass transition line and in the glassy regime a medium
range orientational order occurs leading to a softening of an orientational mode. To investigate the role of this
mode we use the molecular mode-coupling equations to calculate the spgattaw) and x (g, ). In the
center of mass spectes(q,w) andxg(g,w) we found, besides a high frequency peakgt, a peak atv,,
about one decade below,;. w,, has almost n@ dependence and exhibits an “isotope” effen:(;pocl’l’z,
with | the moment of inertia. We give evidence that the existence of this peak is related to the occurrence of
medium range orientational order. It is shown that some of these features also exist for schematic mode
coupling models.
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[. INTRODUCTION two different sides. First, the low temperature specific heat
c(T)/cp(T) scaled by the phonon contributiary(T) o T3
The dynamical properties of liquids and glasses are still ahows a peak at about 10 K for several glass forniseg,
challenging problem. In the vicinity of the glass transition e.g.,[16]). This excess with respect ,(T) around 10 K
the frequency(or time) range can be decomposed into atimplies the existence of additional excitations besides the
least three different domains, tle B, and microscopic re- long wavelength acoustic phonons. Second, Raman spectra
gimes. The first one describes the structural relaxationl(w) compared to the phonon contributidg(w) w? ex-
which dramatically slows down when the glass transition ishibit at about 1 THz an excess al@ee, e.g.[17]). Since the
approached from above. In the idealized mode-couplingemperature dependence of the excess intensity scales with
theory (MCT) for simple liquids[1—-4] and for molecular the Bose distribution functiong(T), the peak is called the
systems[5—7] it even stops at a critical temperatufg . boson peak.
Probably the most interesting result of MCT is the existence That these two observations might have a common origin
of the so-called3 relaxation, which describes the dynamics was first shown by Buchenaet al. [18,19. For vitreous
within a cage of particles above and bel@y. The corre- silica these authors also found an excess with respect to
sponding frequency scale is much larger than that for gp(w)>w? for the vibrational density of stateg w) deter-
relaxation. At still higher frequencies there are vibrationalmined from inelastic neutron scatteriftgNS) data. Using
and librational motions, which constitute the microscopic re-g(w) to calculatec(T)/cp(T) led to good agreement with
gime. the result from heat capacity measurements. In particular, the
One may say that most of the attention in the field ofpeak positions for both results coincided. Although the boson
glassy dynamics during the last 15 years has been devoted peak does not seem to posses any singular T depen-
a and B relaxation. This activity has been mainly stimulated dence it is a universal phenomenon for all systems with the
by MCT which in these two regimes predicted scaling lawsexception of glass forming colloids, in the sense that it ap-
with diverging « and B8 time scales. These predictions have pears more or less for almost all glass formers. For, e.g., LiCl
been tested intensively by experiments and numerical simwsolutions[11] and orthoterpheny]20], it has been stressed
lations. A satisfactory agreement has been found for manthat the boson peak, together with the narrowing of a central
glass forming system&/—15]. Experimental and simulation peak atw=0, develops continuously from the liquid to the
results do not exhibit any singular or crossover behavior foglassy phase.
microscopic frequencies, i.e., for v=1 THz. Neverthe- Despite considerable experimental and numerical effort
less, in that regime an interesting phenomenon occurs iits microscopic origin is still not satisfactorily understood.
most glasses but not in crystals and colloidal glasses, th&wo reasons might be responsible for that. First, e.g., in the
so-called boson peak. Indications for this peak came frontase of light scattering, the precise connection between the
measured quantity and the basic theoretical objects, the time-
or frequency-dependent site-site or molecular correlation
*Present address: InstitutrfiPhysik, Reichenhainer Strasse 70, functions for molecular liquids, is not known. For instance, it

TU-Chemnitz, D-09107 Chemnitz, Germany. has been shown that several coupling mechanisms between
"Present address: Schott Glas, Research and Developement, Hight and distinct modes of liquid Znglexist which have
tenbergstrasse 10, 55014 Mainz, Germany. different w-dependent coupling constanf1]. This may
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complicate the determination @f(w) from Raman spectra. znCl, was considered in its liquid phase, only an instanta-
Second, the relationship between the variotts or  neous normal mode analysis is feasible. Restriction to the
w-dependent correlators and microscopic modes obtainegtable modes accurately reproduces in the microscopic fre-
from a diagonalization of the dynamical matrix is not obvi- quency regime the dynamical structure facgfq,) ob-

ous. In addition, these correlators can be calculated analyttained from a MD simulatioh40]. This implies a harmonic
cally only under serious approximations. It is apparent thainode character at temperatures even above the MCT glass
numerical investigations represent a powerful tool since theitransition temperaturé, .

microscopic nature allows calculation of both the correlators  There is not much analytical work on the boson peak. For
or spectra and under certain conditions the microscopig harmonic crystal with random spring constants it has been
modes. The possible character of these modes ranges as fghown[43,44 that an excess density of states follows. It has

lows. recently been stressdd5] that the approach ih44] has
vibrational ~ — relaxational some shortcomings which may be removed by use of off-
extended <« localized lattice modelg46]. Another theoretical framework is the soft
propagating <+ non-propagating potential mode[47-50 which allows a description of the
harmonic < anharmonic low temperature anomalies beld K and those at 10—-20 K,

that includes the excess density of states.
As already mentioned above, MCT has been rather suc-
cessful in describing the and 8 dynamics. Schematic MCT
i i models[1] where the wave number dependence was ne-
acoustic < optic glected were also used to describe experimental spectra in
Since these feature can occur in combinations, the conthe microscopic regime, including the boson péak,51—
plexity of the problem becomes obvious. In addition, differ-56]. Whereas the results in Fig. 6 of R¢L1] and Fig. 4 of
ent experimental approaches to a specific material or a sp&ef. [53] yield spectra that are reminiscent of boson-peak
cific measurement of different types of glass former, e.g.spectra the line shape does not come out satisfactorily. How-
strong or fragile ones, may exhibit different features of theever, recently a detailed MCT investigation for a glass of
same phenomenon. hard spheres was performed, including thedependence
Without demanding completeness let us briefly review thg57]. Besides a high frequency peak @f; an additional
present status. Inelastic x-ray scatterii¥S) on v-Si0,  peak atwpop, about one decade below,;, was seen for a
gave evidence that propagating acoustic sound waves exigblume fractionp = 0.6. This peak, which strongly resembles
even abovewgp, the position of the boson pe4R2]. This  that in Refs[11] (Fig. 6) and[52] (Fig. 7), originates from
led these authors to conclude that the propagating modes atiee distribution of harmonic oscillators within the cages and
also involved in the boson-peak itself. On the other hand, @as been called thanomalous oscillation peakAOP). As
crossover atwgp from propagating to localizedstrongly  explicitly demonstrate57], it shares many features with the
scattereglacoustic modes was deduced {e6iO, from INS  boson peak.
and IXS[23]. Comments on this controversy are given in  In contrast to a system of hard spheres or binary van der
Refs.[24—26. However, interpretations of IXS experiments Waals liquids, molecular liquids also have orientational de-
that are free of any model have recently strengthened at leagtees of freedom. One may ask: Does the boson peak also
the fact that there are propagating modes ahoye[27,28|. involve orientational motion? Indeed, one of its first interpre-
Molecular dynamics(MD) simulations forv-SiO, have tations forv-SiO, involved coupled rotations of Sittetra-
given evidence that the boson-peak modes cannot beedra[18]. Such an interpretation was supported by MD
strongly localized and that there is a contribution of trans-simulations forv-SiO, [35,58 and ZnC} [40] and by neu-
verse propagating modes in the boson-peak red@8e30.  tron scattering experiments, proving nonsoundlike contribu-
IXS experiments for LiCl solutions and glycerol seem totions aroundwgp [59]. Dielectric loss measurements probe
detect propagatintpngitudinal modes atwgp [31], whereas the orientational dynamics only. Since these measurements,
a MD simulation for HO shows a mixing of propagating e.g., for glycerol and propylene carbonate, also exhibit a bo-
longitudinal and transverse modes, at least for large enougéon peak[60,61], this gives additional evidence that this
q (g>4 nm1) [32]. peak may also be related to the orientational degrees of free-
Further important information about the nature of thedom. The role of orientational modes becomes even clearer
boson-peak modes comes from a normal mode analysis forfeom experiments on ethan®2,63. Around 100 K, ethanol
system of soft spherg83] and for SiQ deep in its glass can occur in several phases: a glass phase, an orientational
phase[34—37. There was found that these modes are harglass phase, a crystalline phase and a rotator phase. The cen-
monic and quasi localizd®3,36]. They occur due to hybrid- ter of mass positions of the molecules are frozen in an amor-
ization of localized low frequency optic modes with propa- phous structure for the glass phase, and in a crystalline struc-
gating acoustic states[34] and are extended but ture for the three other phases. The orientational dynamic is
nonpropagating. In addition each normal mode has a cohenonergodic for the glass and the orientational glass and er-
ent and a random component. The latter finding is consistergodic for the crystal and the rotator phase. INS has shown
with other numerical results for a Lennard-Jones liquel]  the existence of a boson peak for the orientational glass
and liquid ZnC} [21,39,4Q, and conclusions drawn from which does not differ much from that in the glass. Even in
experimental data for various glass formédd,42. Since the rotator phase there is a boson peak, but it is shifted to

longitudinal « transversal
coherent <~ random
translational < rotational
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lower frequencies. Similarly to structural glasses the orientawith initial conditions
tional glass phase also exhibits an excess in the specific heat

c(T)/cp(T) [62]. These findings suggest that these excess S(q,00=5(q), 2
modes are primarily related to the orientational degrees of
freedom. §(9,00=0=5(q,0), )

In the present paper we will not calculate the density of

states, but the susceptibility and correlation spectra of the s P a2
collective dynamics. These quantities show the appearance S%(9.0=-1J%q)a" @
of an extra peak about a decade below the high frequency -
peak, where the former also originates from the orientational (A 1m, 17 m = 91(A) Sy Oy 5
degrees of motion.

The outline of the paper is as follows. In Sec. Il, we will @ q, a=T V I, ©
briefly review the derivation of the equation of motion for g/ (q):= - 6
the relevant correlators of rigid, linear molecules and the VI(I+1),  a=R V¥ q,

mode-coupling approximation. In addition, we will discuss
the linearized equations. The molecular mode-coupling equa- o> wa!
tions are solved numerically for a liquid of dipolar hard QU imprm =i, 1rme (A) =
spheres in Sec. Il D. Finally, Sec. Ill contains a discussion of

the results and some conclusions. and the density—current-density correlator:

- kgT
I_aaaa’éll’amm’ ’ (7)

Il. MOLECULAR DYNAMICS

- 1 - -
(s — __/ia%
In the first part of this section we will present the equa- Sim i (48 = 55 im (A1) 8p1rm (9,0))- (8)
tions of motion for the most relevant correlation functions of
a molecular liquid. The second part contains a discussion Qfjere 5(q) andJ*’(q) denote, respectively, the static den-

the corresponding linearized equations, which yields infor-sity and current density correlation matrix and
mation on the microscopic time scale, and in the third part

we will briefly review the mode-coupling approximation. M, a=T,
1= €)
A. Equation of motion I, a=R.
We restrict ourselves to a system Bfrigid and linear This set of equations is still exact, but needs an expression

molecules with mas# and moment of inertid. There are wa! R o )
two possibilities to describe molecular liquidssite-siteor a  for the memory kernelm, |, ., (q,t). This is where approxi-
molecularrepresentatiofi64]. The latter, which will be cho- mations come in. Their nature depends strongly on the physi-
sen here, decomposes thdl legrees of freedom intoN8  cal situation: for examplem®®’ for a supercooled liquid will
translational and ® orientational ones. Of particular interest be quite different from that for a liquid at higher tempera-
are the molecular correlato&ﬁ,t)=(S|m,|,m,(ﬁ,t)) [5,6]. tures. We also note that instead of choosing the scalar current
The partial dynamical structure factors in a site-site descripeensities one could also use each Cartesian compgfignt
tion are linear superpositions (Slmym,(ci,t) but not vice i=x,y,z, as a slow variable. This was done recently for
versa[65]. =T but not fora=R in order to discuss the role of trans-

The Mori-Zwanzig formalism has been used to deriveverse currents on light scattering sped&]. The resulting
equations of motion fo§(q,t) for a single linear molecule in eqL.Jati.ons again are exact but involve memory kernels
a liquid of isotropic particle$5] and for a molecular liquid mf;';f“,’{;,(a,t),
of linear [6] and arbitrary moleculef7]. Similar work has ’
been done in a site-site descriptiff6]. A comparison be-
tween the tensorial and the site-site mode-coupling theories
has recently been performed for a single dumbbell in a liquid Since the memory kernels will not be independent func-
of hard sphere§67]. tions of the tensorial density correlatio®q,t), the third

It turns out that the original form of the equations of mo-term in Eq. (1b) is a kind of nonlinearity Within MCT
tion is not suitable for a numerical solution. Therefore wepea'(q t) is approximated by superpositions of products
have rewritten those equations as follows:

B. Linearized equations of motion

(g;,t)S(q5,t) with g=q;+d,, which makes obvious the
L . nonlinear character of the equations of motion. It is this non-
S(q,t)+i2 q“Ss*(q,t)=0, (1a linearity that leads to a slowing down of the structural relax-
“ ation by decreasing the temperature or increasing the density
of a liquid. This behavior takes place on the liquid side as a

QN saterave—1li N 5
S*(a.0)+ig*J%(@)S (a.0S(a.1) two-step relaxation process characterized by two diverging
L[t L L time scales,~|T—T.| Y#2 andr~(T—T,)~” wherea and
+J"(Q)Ldt'2 m** (q,t—t")S" (q,t")=0. y are positive and, is the ideal glass transition tempera-

ture. The time scale for, and 7 is determined by a micro-
(1b) scope scale,. ty depends on inertia and damping effects
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where the latter are due to the regular partmﬁ“'((j,t), . S ek b
accounting for the fast motions. Because our main interest i§COPIC Hamiltonian is the most natural one, at leastdor
the microscopic dynamics, we can get an estimate of the~0 andt—0.

representation that takes care of the isotropy of the micro-

microscopic time scale by neglecting the memory term in- S0 far we have considered thiguid phase only. The
cluding its regular part. This results in a set of linear equaldealized version of MCT, which neglects so-called hopping

tions from which one immediately obtains for the normalizedProcesses, is a theory developed on the liquid side of the

correlatord(q,t)=S"Y%(q)(q,t)S™¥%(q)

glass transition, because it uses as an input static correlators
in equilibrium. It may also be used below, but close to the
transition point where the singular behavior still dominates.

- 2y o 4
®(q,0) + 0%(q)P(q,)=0, (10 Whether MCT is even capable of describing dynamical fea-
with initial conditions tures far beloyv the glass transition point is unclear. Never-
theless, we will also apply MCT for parameters deeper in the
> 505 — glassphase. An ideal glass is a nonergodic phase with non-
®@0=1 ®(q0=0 (1) ergodicity parameter@ot normalized
and the Hermitian frequency matrix squared N -
Flm,l’m’(q): lim Slm,l’m’(qvt) (16)
t—oo
QZ 5 2871/2 5 a 2J(1871/2 5 (12
(@) (q)za: (@) @ ) that are nonzero. One can easily prove that Efb) then
imply that
or with Egs.(5), (6), and(9)
c, ()= lim m*®, (qt 1
) . i . kBT ) kBT ) |m’| m (q) - |m’| m (q ) ( 7)
QDN = 2 (YA A7 370+ =
rm are nonzero too, and that
X (1"+ 1) [(SY2(Q)) i1 rm - (13 e, - I
e 2 qH{[CP ()] a* =[S(a) —F(a)JF (@) S(q).
Here, some comments are in order. First, the static corr- (18

elatorsS, |/ (q) and therefore,,, ;v (q) are not diago-
nal inl andl’ in general. Accordingly, translational and ro-

Therefore, we introducé((i,t) and rﬁ““'(d,t) such that

tational modes generally are coupled to each other for given S(ci t)=F(d)+é(<i ) (19
g. Second, this coupling vanishes in the limit-0, because ’ Y
the static Correlator§|my|rm/(q) and therefordhmym,(q) maa’(a,t)zcaa'(a)+r'haa'(c_i't), (20)

[cf. Eq.(13)] become diagonal and independent of each other

for an isotropic liquid:

in analogy with the approach [57]. Substitution of Eq(19)
and Eq.(20) into Eq. (1) yields

le,l’m’(a)—’wl(Q)5ll’5mm’ (14) _
with S(q,H)+i > q*S%(q,t) =0, (213
kBT ol N saqal — 1/ NS~
wo(q)= \/Eq, (153 S*(q,t) +iq“I*(a)S (q)S(q,t)
> t ~ ;> TS
— +Ja(q)JOdt'§; mee’(q,t—t")S¥ (q,t")
w(q)= \/I%\/mﬂ), 1>0, (15b “

+ig®3%(q)S Y(q)F(q)

the translational and rotational frequencies er0 andS

r, > t =
=S0,0(0=0). wo(q) describes the well knowmcoustic +J“(Q)2 ce (q)fodt’Sa (9,t")=0 (21b
isothermal sound wave dispersion a@a@q) the optic rota- “
tional frequencies fol>0. with initial conditions

Third, the limitg— 0 was already discussed for a molecu-
lar liquid using asite-site description[69]. These authors &q,0=S(q)—F(q) (22)

also set the corresponding memory matrix to zero, which, by

the way, is completely equivalent to a short time expansioynd

of the equation of motion in leading order. But there the

coupling between the partial dynamical structure factors does lim&(q,t)=0, limm**'(q,t)=0. (23)
not vanish forg— 0. In this respect the choice of a molecular t—oo t—oo
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With the same argumentat|on as above we linearize Egs. keT , -
(21b) by takingm®®'(q,t) to be zero. Then, taking the time (& (Q))OOOO__q (S"H(@)oood 1+(S(ATTT(A))oo0d

derivative of Eg.(21b and using Eq.(219 we get for
§*(a,)=(3%(a)) *s*(a.t)

S@+2 (@) @an=0 (24

with the frequency matrix squared

(@)™ =@*(@)"a"s H(a)g* —C* (DI (@)

(25
Integration of Eq.(218 from 0 to t and substituting
Jidt’'s*'(g,t") from Eqgs.(21b) with m**'=0 allows one to
expressy(q,t) by $%(q,t):

S(g,t)=iF(@)S *q) > q[(C**'(q)) 11«

’
@,

X (3% ()25 (q,t) (26)

Like Q, the matrix(f!““') is nondiagonal id,l” and in

a, . This again leads to a coupling between the transla-
tional and orientational modes, which are the eigenmodes of

Q). Now it is (see[6])

ce'(q)=g*C** (q)q*’ (27)
with
nmcl‘;;"l,m,(q)qéo (28)
q—>0
and
(aa)lm,l’m’:aflmwmlzalaéll'émm’ ) (29
~ @ (a,1)=(T,0),
W11, (a)£(T0), (30)

not to be confused witly®. Therefore, we get from Eq25)
with Egs.(5), (6), (27), and(29),

/ R 1
(mﬁmrmr(qi))slow:z’\l E

Q1Q2

2my
+ ! !
Q1 Q2 q I2 A

1m |

The explicit expressions for the verticesare given in Ref.
[6]. Equations(1) together with Eqs(32) and (33) are a

closed set of equations deIm’,,m,(ﬁ,t) which need the

damping coefﬂuentsf,m rm

> 2 V|m| mr(q|QI|lml1|imi;qzlszilémé)Sllml,li

(31)

for the acoustic part of((?)**"). Taking into account that

we have not normalize8**" andC**’, the result Eq(31) is
completely analogous to the result derived [i67] for

(€©(q))? for simple one-component liquids. However, we
note that in contrast tf57] the equations of motion for the

rescaled correlator§(q,t) andm®®'(q,t) are not covariant,
due to the splitting of the current density into a translational

and a rotational part. Therefo(@?(q))**’ is not a straight-

forward generalization oﬂz(d) for simple liquids to mo-
lecular liquids.

The coupling between translational and orientational
modes in the liquid and in the glass already on the linear
level of the equations of motion is not surprising due to the
interaction between translational and orientational degrees of
freedom. But it is also obvious that memory effects will lead
to additional couplings, and it is this point, that we will in-
vestigate in Sec. Ill.

C. Mode-coupling theory
In the preceding subsection we have neglected the
memory kernels. Approaching the glass transition significant

memory effects occur. Therefora**’ must be taken into
account. Using mode-coupling theory an approximate ex-
pression for the slow pam‘m'(ﬁ,t) has been derived which
leads to a closed set of equations &ﬁ,t). This has been
done for molecular systems using the molecular representa-
tion [5-7] and a site-site descriptiof67]. For a liquid of
linear molecules we will use

VIR

mlm,l'm’(q't)% kBT

T (@) S+ (M () siow
(32

where the first and second terms on the right-hand side of
Eqg. (32) accounts for the fast and the slow contributions,
respectively. MCT vyield$6]

mi(c_il 1t)SIZm2,Iémé(d)2 1.

(33

Slm,l’m'((_i) as a input. The latter uniquely determine the ver-
tices.

It is obvious that the MCT polynomidm’“ , )0 leads

Im,1”m’

(q) and the static correlators to additional coupling between the correlat@;gm,m,(a,t).
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Due to this nonlinearity the MCT equatiorni$), (32), and |, |'=2 is an artifact of both approximations. Additional
(33) can only be solved numerically. We have performedshortcomings aréi) the independence of the center of mass
such a numerical solution for dipolar hard spheres, one of theorrelatorSy(q) of temperature angi) the smooth behavior
simplest systems involving translational and rotational mo-of S,(q) at ¢,,,=0.64, the value for random close packing.

tion. The static correlators from Wertheim'’s approach exhibit a
divergency ath= ¢,=1, only. We will come back to these
D. Dipolar hard sphere liquid points below.

Due to Egs.(34) and (35 mode coupling occurs only
tween the time-dependent correlators withlg,l,,15
smaller than or equal to 1. In order to simplify the MCT
equations as much as possible we use the additional approxi-
mations(in the g frame

The investigation of dipolar hard spheres has the advaqae
tage that approximate analytical expressidid]| for the
static correlators are known.

We consider a system df hard spheres with homoge-
neous number density, diameterd, massM, moment of
inertia| = ;5Md?, and dipolar momeng.. The origin of the
body-fixed frame is chosen to coincide with the center of S, I,m,(cﬁ,t)wl
mass of each sphere, which is the natural choice. Since the ’

Sim(q,t) 8y 6y, 1=0,1]"=0,1,
0 otherwise,

density of the particles is homogeneous, the center of mass is (36)
equal to the center of the spheres. The reader should note that wa! ,
the MCT equationg1), (32), and(33) and even the original Miy (4,8) 8/ Ompy . 1=0,1)"=0,1,

) . = o M, (q,t)~

exact equations of motion Eqggl) are not covarian{i.e., im.17m (41) {o otherwise.

invariant in their form under a shift of the reference point (37)

for the body-fixed frame. In order to get covariant equations . .

one has to project on the individual Cartesian components dn Sec. I1B we showed that the translational and orienta-
JTm(d) and J-*Ian(a)_ Nevertheless, we think that the presentt'onal dynamics is already coupled on the linear level due to

equations are a reasonably good approach to the dynamics 3pndiagonality inl andl’. Above we have chosen all corr-
molecular liquids, because of the natural choice of the refer€/ators to be diagonal ihandl’. Thus a coupling between
ence frame. Of course, this point needs additional investiga2oo(d:t) and S(q,t) with 1>0 can originate only from
tion. The advantage of MCT in site-site representaf&d is r_node—cpup!lng effects. Thus, our diagonalization approxima-
that this problem does not occur, because no reference poifien (Which is even exact in our case due to the restriction of
must be chosen. | 'andl’ to 0 and 1) allows us to study the influence of the

The physical control parameters are the packing fractiodl"ode-coupling terms on the microscopic dynamics without
&= (m16)pd® and the temperatur&. In the following the interfering with the direct coupling mechanism between the
length unit is chosen such thdt=1. In addition we choose COrrelatorsSiy(a,t) discussed in Sec. 11 B.

M=1 andu=1. This choice means that timand tempera- ' "€ memory kemelscf. Eq. (33] in the q frame
ture T are measured in units d*2d>% u andkg'u?/d®, M0 (Q,0) =mis (q,t) 8/ Sy contain  the  following
respectively. In the following we will use T* couplings[6]:

=T/(u?/kgd®) as dimensionless temperature.

As already stated, the MCT equatiofis, (32), and(33) mgg'(q,t)HSoo(ql,t)SOO(qz,t) and
requirel’| . (d) andSym(d) as input. Throughout this S (Q1.0)Sum (Qa 1), (39)
paper we will put all damping coefficienlﬁfﬁyl,m, to zero. ' ?

The static correlator§|m,|/m,(ﬁ) are obtained from Wer- mi"ﬁ]'(Q-t)HSoo(QLt)Slm (gp,t) and
theim’s solution, who used the Percus-Yevick and mean 2
spherical approximations’0] This leads to Slml(ql,t)soo(qz,t). (39
S (~)% Sm(®) 8+ Omp» 1=0,1, 1"=0,1, Equation (38) shows that the center of mass correlator
m.1'm'{d S 6mmy  Otherwise. Soo(g,t) may undergo a glass transition independently from

(34 the dipoles whereas E@39) demonstrates that the dipoles
are “slaved” by the center of mass dynamics and can freeze
The vertices of the memory kernels are bilinear in the direcbmy if So(q,t) has become nonergodic. In order that
correlation functions: Soo(a,t) and S;(q,t) freeze simultaneously the vertices of
the bilinear terms in Eq(39) must be large enough. This
e (Q) = 4_77{1_ 1 } (35) happens at low enough temperatures. Sirf&e (q,t)
p Sim(a) =S n(q,t) [6], there are three independent correlators, the
center of mass correlation functi®y(q,t) and two dipolar
Since we have chosen the so-callgdrame [71] [for  onesS;(q,t), m=0,1. In the following we consider the
which q=qg,=(0,09)] the correlators and the kernels be- normalized correlatorgh,,(q,t) = S (d,t)/Sm(q).

come diagonal irm andm’ [6]. The fact that the static cor- The three static correlators are shown in Fig. 1 for two
relators are diagonal ih and |’ and are structureless for different pairs of ¢,T*). Three main features can be seen.
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FIG. 1. Theq dependence of the static structure fact8rs(q) FIG. 2. Glass transition phase diagram for dipolar hard spheres:

for (Im)=(0,0),(1,0),(1,1) and two different pairs of(T*) in- The solid and the dashed line are critical lines at which a discon-
dicated by the full circles in Fig. 2 below: (0.53,0.3)eft), tinuous (type B) and a continuoustype A) glass transition takes

(0.381,0.04)(right). Aq is the peak width 0fS;y(q) at half maxi- ~ Place between the phases |, Il, and W. B, C, andD denote the
mum. The symbols indicate the discretizgdalues(see text various paths on which we have investigated the control parameter
dependence of the dynamics. The full circles indicate the two points

First, theq variations ofSy, of the “longitudinal” dipolar at which the static correlators in Fig. 1 and the microscopic frequen-

R "
correlator and ofS,, are rather similar to each other and €ies in Fig. 3 below were calculated. Fof andT; , see text.
resemble that of a simple liquid with a well pronounced main

peak atq.c~27/a, wherea~d=1, the mean distance be-
tween nearest neighbors. The “transverse” dipolar correlat
S11(q) behaves quite differently. It exhibits only one peak, a
g=0, and it becomes almost structureless dor Aq, the
peak width at half maximum. Secon8;,(q=0) increases
with decreasing temperature, whereag decreases. This
behavior signals medium range orientational order due to
precursor of ferrofluid order. This order is induced by en-
hancement of the dipolar interactions at lower temperature uency
with respect to the hard core repulsion. Thi&l,,(q=0) .

depends om. because of the long ranae nature of the dino- Before we come to the dynamics let us briefly discuss the
Iarpinteractior,15 g rang P phase diagram for a glass transition that has already been

In addition to the truncation dt=1 we must also truncate calculated(6,75]. Throughout the rest of this paper all the

. . : ) : results are given in thg frame. The modification with re-
and discretize they variable. Since the reductioffor N spect to Refs[6,75] of the q discretization leads to a small

—) to a single integral of the sum ovely andq; in Eq.  quantitative change of the glass transition lines, but without

(33) for simple liquids[72] cannot easily be used for mo- changing the topology. Therefore we have again calculated
lecular liquids the number of steps to calculate this sum inthe nonergodicity parameters

creases quadratically with the numbergpfalues, instead of

the linear increase for simple liquids. This fact makes the f,m(q) = lim (1) (41)
numerical solution of the molecular MCT equations rather t—oo

CPU time consuming. Therefore we decided to choose a

nonequidistant distribution of 3@ values betweerq,,  as a function ofp andT*, from which the phase diagram is
=0.51 andq,,=40. These values were generated by thepbtained(Fig. 2. Since ¢ cannot exceedp,.,=0.64, the

or that atg=0 in S;1(q) (which drive the glass transitipn
oPur choice forq, should not influence our results, at least
tqualitatively. We have solved the molecular MCT equations
(1), (32), and(33) in time space using an algorithm already
developed to solve the MCT equations for simple liquids
[73]. However, our numerical procedure differs from that of
Goatze et al. [74] for the single dumbbell in an isotropic lig-
flid. These authors introduced an effective memory kernel
éindependent ofr anda’) and an effective microscopic fre-

nonlinear relation value for random close packing of hard spheres, we have
1 plotted only ¢=<¢,.,. There are two significant tempera-
q,,zaarctanlﬁvAx), v=1,2,...30, (40)  turesTi andT; . At T7 the critical line gy A(T*) (dashed

line in Fig. 2 reachesp= ¢, and atT; it merges into the

with A,=tanh(xq.,)/31 andg.,=50. The parametes has critical line ¢gep(T*) (soligl line in F?g. 2. These two tem-
been chosen such that the main peak of, &g(q), is still  Peratures have the following meaning. FBf>T7 an in-

in the linear regime of arctanh. The right of Fig. 1 demon-crease ofg leads atgy,.g(T*) to a glass transition for the
strates this forr=0.065. It is obvious from Eq40) that for ~ center of mass motion, but not for the dipoles. Choodifig
q<a!theq, are almost equidistant and for>a ! they betweenT; andT5 , again a glass transition of the center of
become more and more diluted. Since the lajgegime is  mass motion occurs ahg,(T*). But on increasingp be-
not as important as the range around the main pe&it) yond gbfypeB(T*) a spin-glass-like transition for the dipoles
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occurs atpy,.A(T*). Below T3, center of mass and dipolar 12
dynamics freeze simultaneously aby,.g(T*). For T* 12 :(a)
>T5 the critical valuedg,, g(T*) is identical to that for 6l
hard spheregy,s. For the present choice ofdiscretization 4l
we find ¢f,s=0.5265, which does not differ much from the 3 S N
more precise valueg;s=0.516 obtained with 100 equidis- S 0 pmE
tantq values[76]. o 10 L (b)
The glass transition at high and low temperatures is 81
driven by different physical mechanisms. At high tempera- 61 /N AT
tures it is the so-called cage effect, which leads to the freez- Ar /o =~
ing of the liquid into a nonergodic phase, due to an increase ﬁ N

with increasing density of the main peak of the center of 0 2 4 4 s 8 10
mass correlatoByy(q). Lowering the temperature enhances ) ,

the role of the dipolar interactions, which leads to a strong, F'C- 3-a dependence of the microscopic frequendigg(q) for
increase of the peak af=0 of the “transverse” dipolar ('™ =(0.0) (solid, (1,0) (dotted, and (1,1) (dashedl (@ &

- . _ . - .

correlatorS;;(q). The increase of the dipolar correlations is 0381, T*=0.04 andb) $=0.53, T*=0.3, indicated in Fig.
. -~ 2 by the full circles.

accompanied by a decrease of the center of mass correlations

(TC;'. FLg.hl), .ancll thel}ll tik?j (.)V('f[:] the role ofd.th.(ta cage efff[ect‘observed for decreasing temperatii® for which the role
IS behavior IS Tefiected In the nonergodicity parameters dipolar interactiongcompared to the hard core repulsion
f11(g=0) increases with decreasing temperature much mor

: ) Becomes more and more enhanced. This “softening” comes
Ftaongly thanf yo(qmay- FOr details the reader is referred to from the strong increase &4(q) for q— 0 (see Fig. 1and
6]. y

: . . has its physical origin in the occurrence of a medium range
The properties of the phase diagram require SOome MOrg.. i-voo o der of the dipoles. The inverse widttg) —*
comments.(i) the T* independence oty g(T*) for T*

. o . of the peak inS;4(q) atg=0 is a measure of the length scale
>T; originates from the™ independence dBy(q), which ot this orientational order.Aq) ~* increases with decreasing

is an artifact of Wertheim’s solution. Removing this artifact temperaturdsee Fig. 1 We will come back to this point in
will result in aT* dependence o&fypeB(T) forall T* with  the final section.
limx .. dpes(T*) = ¢iis, Since dipolar interactions will be  The microscopic frequencies in the glass phase are given
irrelevant at infinite temperaturdii) The existence off} by the “renormalized” frequency matrix[(()z(ﬁ))““'].
relies on the fact thay,..(T*) approaches the valug.,  Taking again into account the diagonalization with respect to
at a finite temperature. This is true when the static correlatorsand|’ we obtain from Eq(25) with Egs.(5) and (27)
within the Percus-Yevick approximation are used. Whether
or not an improved theory reproducing the singular behavior s ) B 1
at ¢, would lead to the same conclusion is not obvious. (Qim(g))*® = NS
Since such a theory does not exist, we cannot exclude the (lala) m

ossibilities that ¢y T*) approache only at T* ana' | TaTa Raa’
i Popenl 7). approachestie, only x[afar +arar S (@) Sm(a)].

Now we turn to the time- or frequency-dependent features (43

of dipolar hard spheres. We have studied the control param- -,
eter dependence of the dynamics along the paftB; C, and  SinceCgy (q) is different from zero forw=a'=T only, we
D, indicated in Fig. 2. In contrast to the determination of theget with Egs.(6), (18), (27), and(29):
long time behavior, inertia effects will play an important role R
in the microscopic time or frequency regime. In the liquid, Qoo(q)=Qoo(/[1— ool @) Y2 (44)

these inertia effects enter through the microscopic frequency |
matrix (q). Due to the diagonality ofS(q) the matrix Cim (q) is nonzero for all &, «'). Therefore two eigen-
Q(q) becomes diagonal with diagonal elemefits the q  frequencies27(q) exist for eachm. Qq(q) and Q7,(q)
frame that follow from Eq.(13): are shown in Fig. 4. The “renormalized” frequencies require
the nonergodicity parameters as input. The latter become less
KgT kg T accurate for smaly), because the discretization of theval-
Qm(q) = \/[VQZJF I—I(I +1) / Sm(q), (42)  ues influences the results much more strongly for decreasing
g. Therefore we do not present data belgw 1. Of course,
restricted tol =0,1. Figure 3 depict€,(q) for two differ-  oo(d)—cq and () —€23,(0)>0 for g—0. Note that
ent pairs ,T*) in the vicinity of the critical line (i) Qii(q) does not vary much withy and (i) Qy3(q)
bepes(T*). This figure reveals two features which stem <Qqy(gma=7).
from the properties ofS,,(q) discussed above. First, Now let us turn to Eq(1) including the time-dependent
Q1,(q=0) depends omm. Second, and most important, a memory kernels given by Eq&32) and(33). From the solu-
“softening” of the “optic” frequency Q,(q) with g—0 is  tions of these MCT equations we get the normalized correla-
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FIG. 4. q dependence of the renormalized microscopic frequen-
A~ " — * __
cies for¢p=0.53, T*=0.04.(a) Qo(q) is shown as solid line; the FIG. 6. Log-log plot ofx|i,(q,») atq=4.7, Ty =0.04, and¢

R - . " along pathA in Fig. 2: liquid (left column and glasgright columrn).
posm.onSwhf andwop obtained fromoo(q,sz are pres?rlted by the The dashed line corresponds to the resultghate.=0.3782. ¢
full circles and squares, respectivelyn) (34(q) and Q33(q) are

i . values fory7,(q,») and x7,(q,w) are the same as fory(q, ).
shown as circles and squares, respectively. X100, @) X1:(9, @) Kool 9 )

time axis[73]. After a certain number of time steps the in-
crement is doubled, etc. Although thedependent data

' m T . shown in Fig. 5 look continuous, they exhibit tiny disconti-
$im(q, @) by X'w(q’“’)_w'm(q’“’)' Figures 5 gnd 6 show . jities of the correlators and of their first time derivatives at
¢im(a,t) and xim(q,w) for g=4.7 along pathA in Fig. 2. 556 times at which the increment is doubled. These discon-
Figure 5 clearly demonstrates for all correlators the formasjnities which could be diminished by an increase of the

tion of a plateau and the tremendous slowing down of thespy time, lead to the wiggles which can be seen, e.g., in
relaxation with increasingé#, which stops at¢¢(T*)  Fig. 6. However, we have checked by variation of the param-
=0.3782. etersh, the boundary values of the Fourier integrals, etc., that

The dynamical features are better recognizedispace. the features we will address below are not influenced by the
Before we discuss these results, let us comment on the qu%iggles. Further, the low frequency wing of thepeak for

ity of our w-dependenF data. Because glassy dynamics in)'({’m(q,w) in Fig. 6 shows a rather small deviation from a
volves many decades in time one has to use a special algfaear )-dependence, as it should. This failure is due to the
rithm, which decimates the time step with increasing time,cpgice of the lower bound for the Fourier integral. If this is
i.e., one chooses an initial time increménto discretize the 5 0n to be zero, the wiggles become more pronounced.
Therefore, choosing a nonzero bound is a compromise be-
tween reduction of the wiggles and a small deviation from
linearity in @ for o—0. We have also used a spline tech-
nique for smoothing the data in time space. The Fourier
transform of those data reproduced all the relevant features
obtained from the originatdependent correlators.

Let us now discuss the spectra. RO ¢(TA), i-e., in
the liquid phase, Fig. 6 left column reveals the existence of
three peaks foryg(d=4.7w) and two peaks fory7,(q
=4.7w) and x1o(q=4.7w). The low frequency peak in all
spectray;(q=4.7w) is the « peak related to the slowing
down of the structural relaxatiofiranslational and rotational
degrees of freedom xg(q=4.7w) has a high frequency
(hf) peak atw,~10 and an additional peak af,,~=1, i.e.,
about one decade below the hf peai(q=4.7w) and
X11(q=4.7 w) exhibit only one peak in the microscopic fre-
quency domain at~w,,. Below we will show that the
peak inxgo(q=4.7w) at o=~ w,, originates from the orien-

FIG. 5. Linear-logarithmic plot ofg,(q,t) at q=4.7, TX tational dynamics. Therefore we call it the “orientational”
=0.04, and¢ along pathA in Fig. 2. The dashed line corresponds peak(subscriptop).
to the results ath=¢.=0.3782. The situation for¢p>¢(Tx), i.e., in the glass phase, is

tors ¢n(q,t) or equivalently the corresponding susceptibil-
ity spectra x;,(q,) related to the correlation spectra

d,.(0,0)
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FIG. 7. x/(Q,®) on linear scales aj=4.7, Tx=0.04, and¢ . FIG. 8. x{in(0,®) on linear scales aj=4.7, ¢c=0.3786, and
along pathA in Fig. 2. The dashed line corresponds to the results afl ~ @long pathCin Fig. 2. The dashed line corresponds to the result
b= ¢.=0.3782. at T*=T*=0.04.
similar with two exceptiongcf. right column of Fig. 6. First ~ ~1 andwp¢~10, respectively. Their corresponding intensi-

it is clear that there is no longer am peak and second an ties behave qualitativ_ely simi_larly for decreasifﬁg as we

additional peak located between the orientational and the Hpund along pathA for increasinge. Intermediate peaks be-

peaks exists inyf(q=4.7w) for ¢=0.53 and 0.60, i.e., tween the orientational and hf peaks do not ocogfy(q

deep in the glass phase. A further “peak” looking more like =4.7w) differs from the result along path, whereas

a shoulder even appears fgr=0.6. Such additional peaks Xx11(d=4.7w) looks similar.

can also be seen ig;(q=4.7w) and x},(q=4.7w) (cf. Translational and orientational dynamics freeze on paths

right column of Fig. 6. A and C simultaneously. Therefore we have also calculated
In the following we will concentrate on the microscopic Xim(d=4.7w) on pathB for fixed T* = 0.30 wherepy(d,t)

regime. Therefore we can use a lineascale, which allows freezes awpg °=0.5265 first, whereag,(q,t) undergoes a

us to recognize thew and ¢ dependencdéwhich we have spin-glass-like transition aj)fypeA(T* =0.3)=0.62. The cor-

described aboyemuch better for 0.£ w<<10. This is done responding results are presented in Figy®(q=4.7w) and

in Fig. 7 for the data from Fig. 6. Both microscopic peaks aty/' (q=4.7w) exhibit a well pronounced main peak. Its po-

wop~1 andwp~10 can clearly be seen in the compressibil-

ity spectrumygs(q=4.7w). Whereas the intensity of the hf 08 [ ' AR '0 o
peak increases with increasinfg the orientational peak be- 06 | 06 ©, )7
comes more pronounced when approaching the glass transi- ! 053038 hf

tion from the liquid side. In the glass phasedat 0.44 and 0.4 1 50052 ]
¢=0.48 it is less prominent but again becomes more pro- 0.2 XN ]
nounced for¢>0.5, although its intensity decreases. The 0.0 4

appearance of the intermediate peak th+0.53 and ¢ . 20r (1,0)]
=0.60 atw~6 andw~8, respectively, can be observed, as 3 1.5 7
well as the shoulder ab~4. Due to the lineaw scale we = 1.0 ¢ .
clearly see thaj](q=4.7w) also exhibits an intermediate >§ 05 - -
peak for ¢=0.53 and ¢=0.60, i.e., x1(q=4.7w) re- 0.0 Vs m— ; PR
semblesypo(g=4.7w) but with the opposites dependence 10 L (1,1)
of the intensity of the orientational and hf peaks feér

>p(Th). x1:(q=4.7w), which is proportional to the di- 05 _
electric losse”(gq=4.7w), possesses only one well pro-

nounced peak ab~w,,. To check how far the features 0.0 : . .
depend on the path through a critical point, we have investi- 0 10 20 ?(f)l 40 50 60

gatedy|,(q=4.7w) along pathC (see Fig. 1 for which ¢
= ¢.=0.3786 is fixed. This allows to study how far density  FiG. 9. y/ (q,®) on linear scales ag=~4.7, T;=0.3, and¢
and temperature variation lead to similar or different suscepalong pathB in Fig. 2. The dashed line corresponds to the result at
t|b|||ty spectra. The results for patﬁ are given in Flg 8. ¢=¢.=0.5265. Becausﬁi’m(qyw) does not vary much witlkb we
Xoo(d=4.7w) shows an orientational and a hf-peakeaf,  have not labeled the various curves with
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FIG. 10. ¢jn(q=4.7 ) onlinear scales in the glass phase along  F|G. 11. ¢ (q=4.7w) on linear scales fo* =0.30 and¢
path A in Fig. 2, i.e., T*=0.04 and¢=0.381 (solid), $=0.44  g0ng pathB in Fig. 2. The dashed line corresponds to the result at
(dotted, ¢=0.48 (dashedl $=0.53 (long-dashey and $=0.6 4~ 4 ~0.5265. Becauss|, (g, ) does not vary much witkp we
(dot-dashep have not labeled the various curves with

sition depends sensitively orp in the case of xgo(q . Y
=47w) and is practically ¢ independent forx7,(q One of thf conclusmn; we  can .draw from,mgq
~4.7w). The latter quantity also posesses a small peak at 4-7«) and $(q=4.7w) is that there is an orientational
w~10, which originates from the translational motion via peak atw,,~ w,,~1 roughly one decade below the hf peak.
translation-rotation coupling. The hf peak is related to a damped oscillation for the inves-
A peak in the susceptibility spectra can be of either relaxtigated range off* and ¢, whereas the orientational peak
ational or oscillatory origin. To distinguish between the two changes its character from purely relaxational to damped os-
types of behavior one must study thedependence of the cillational behavior on going from the liquid to the glass.
correlation spectrap|,(q,w). Spectra from neutron scatter- Since the dipolar spectray|,(q=4.7w) and ¢jy(q
ing are superpositions qusi'm(q,w) [65]. A peak in =4.7w) have a main peak at about~1 it is tempting to
#!(q,0) at @>0 proves the existence of an oscillation associate the orientational peak ipo(q=4.7w) and
whereas a peak at=0 is of purely relaxational type. The ¢oo(d=4.7) with the orientational degrees of freedom and
corresponding peak width is a measure of the dampingtheir coupling (via mode-coupling effecjsto the transla-
These correlation spectra are shown in Figs. 10 and 11 fdional ones. If this interpretation is correct then the orienta-
pathA and pathB, respectively. Foip< ¢.(T*) (not shown tional peak must exhibit an isotope effect with respect to a
in Figs. 10 and 1jlthere is no peak at nonzero frequency,
except for the hf peak. Therefore the orientational peak we
found in x;,(q=4.7 w) in the liquid phase is a purely relax-
ational excitation. Now let us discuss the correlation spectra
in the glass phase. Figure 10 shows that in the glass, but
close to the critical packing fraction, there is a hf peak at
[ohfwlo. Deeper in the glass the position of that hf peak
shifts to higher frequencies and an orientational peak at
&)Op~1 appears. On decreasigigeven more an intermediate
peak between the orientational and hf peaks is produced as
well. The positions of the orientational and intermediate
peaks shift to higher frequencies with decreasintike the
hf peak, due to the increase of the glass stiffness. dhe
dependence ofh|,,(q=4.7w) at much higher temperature
T*=0.3 (pathB in Fig. 2) is presented in Fig. 11. We ob-
serve similar behavior as in Fig. 10, i.e., besides the hf peak
at &)hf=20—60 for 0.56< $»=<0.63 there occurs an orienta-

tional peak afuop~ 1, and for¢p=0.60 and¢=0.63 a shoul-
der at abouto~ 20 that corresponds to the intermediate peak FIG. 12. x|.(q=4.7w) at ¢=0.381, T*=0.04 for |=7;
in Fig. 10. (solid), 1 (dotted, and 10(dashed
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10™

1

FIG. 13. ¢/ (q=4.7w) at $=0.53, T*=0.04 for | =

(solid), 1 (dotted, and 10(dashed

change of the moment of inertia Figure 12 presents
Xim(Q=4.7w) at Tx=0.04, ¢=0.381 for 1=1/10 (the
correct value for a hard sphere witi=1 andd=1 and
homogeneous mass distributjpi, and 10. From this result
we find

(45

o™ i

This type of isotope effect also occurs féf.(q, ), which
is shown in Fig. 13 forg(q=4.7w) at TA=0.04, ¢
=0.530, and fol =1/10, 1, and 10. This result yields:

1

T

The approximate scaling a@,, and w,, with 1/y/I strongly

wopoc

(46)

supports the orientational origin of the orientational peak.

Sincewy,; andwy, are rather insensitive to a change dlfieir
origin must lie in the translational motion.

So far we have not studied ttep dependence of all of
these peaks. Since this may further elucidate the features
the several peaks, we preseylt,(q,0) at Tx=0.04, ¢

=0.381 in the glass but near the glass transition and

dim(0,0) at TA=0.04, ¢=0.53 deeper in the glass in
Figs. 14 and 15, respectively. The result §g(q, ») shows

a nearlyg-independent position of the orientational peak at

wop~1 for 1.0sq=10.6, whereas the positian of the hf
peak changes witly. A similar q sensitivity holds for the
position of the main microscopic peak j{,,(d,®) for m
=0 and 1. The result fop,(q,w) yields the samej inde-
pendence of the orientational peak fa;gpzl and a high

sensitivity of the position of the hf peak éthfmlo. The
high frequency peak is essentially absent within a "win-
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FIG. 14. g dependence of;(q,w) at ¢=0.381,T* =0.04 for
g=2.0 (solid), q=4.7 (dotted, q=5.3 (dashed, q=6.5 (long-
dasheg, andgq=9.8 (dot-dasheqd

Finally, let us comment on the dependence of the peaks
onT* and ¢ as well as ornx, which characterizes the distri-
bution of the values foqg [cf. Eq. (40) and Fig. 1. Let us

start with thea dependence. Figure 16 prese)agg(amax,w)
at Tx=0.04, ¢=0.381 for three different values of.

Omax. Which depends o has been chosen as tliavalue
closest to the main maximum &yy(q). Although the peak
position and also the intensity vary witla the qualitative
features do not depend an at least for reasonably chosen
values ofa.

The T* dependence of the position,, and the height
hop of the orientational peak fog=4.7 is shown in Fig.
17(a) for ¢p=0.525 along patlD in Fig. 2. The correspond-
ing ¢ dependence for the samevalue andT =0.04 along
pathA is given in Fig. 17b). h,, follows a linearT* depen-
dence betweed™* =0.04 (the lowest temperature we have
studied and T*~0.1. In the temperature region wheig,

0.03

0.02

of

FIG. 15. q dependence ob,(q,w) at¢=0.53, T*=0.04 for

dow” aroundq= 6.5 and appears below and above that win-q=2.0 (solid), q=4.7 (dotted, q=5.3 (dashedj q=6.5 (long-

dow.

dasheg andq=9.8 (dot-dasheg
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' ] relators which are the input quantities for the MCT equations
are known analytically within some approximations. These
approximations make the tensorial correlators indlfeame

(f’lm,l’m’(q:qut):¢Im(qat) O Oy diagonal inl and1’.
In addition they lead to a restriction af,,,(q,t) to 1=0,1
1 only. This means that our calculations yield information on
center of mass and dipolar dynamics.

The major result we have found in the microscopic fre-
quency regime is the existence of an orientational peak at

wop(liquid)~&)op(glass) about one decade below the high
FIG. 16. « dependence of(Gmax, @) at ¢=0.381, T* frequency peak. Th|_s_ 0ne_ntatpnal peak EX.IStS apove and be-
=0.04 for a=0.06 (dasheg 0.065(solid), and 0.068dotted. low the glass transition lines in the two dimensional phase
diagram of dimensionless temperatdre and packing frac-
has a minimumh,,, shows a crossover to a constant. As cantion ¢ provided that thar-peak position,, is much smaller
be observed from Fig. 17b the positien,, and the height thanw,,. On the liquid side it exists ivg(q, »), the com-

hop are almost constant belovs (T =0.04)=0.3782 and  Pressibility spectrum, but not ithso(q, ), which proves its
increase with increasing above that value. pure relaxational character. However, on crossing the glass

transition line this peak also appears in the correlation spec-
trum ¢go(q, ) if T* and ¢ become, respectively, small and
large enough. This means that the orientational peak exists
Recently we extended the mode coupling theory foron bothsides of the glass transition line and changes from a
simple or binary liquid§1-4] to molecular liquidg6,7,68.  relaxational to a damped oscillational type of excitation un-
This was done within a molecular representation, whichder transformation of the liquid to the glass. The manner of
separates translational from orientational degrees of freedomdevelopment of the orientational peakyfj(q, ») as a func-
This molecular theory has already been applied and testeiibn of ¢ (see the double logarithmic representation in Fig.
for diatomic molecule$77,12,13 and water molecules with 6) resembles at least qualitatively the behavior of the extra
the SPC/E potentidl7,14]. These tests were restricted to a peak in the susceptibility spectra for, e.g., salol and orthot-
comparison of the nonergodicity parameters and critical amerphenyl[78,20,79 at w~300 GHz under variation of the
plitudes(for diatomic molecules onlyfrom molecular MCT  temperature.
with the corresponding quantities from a MD simulation. A Since the positionw,, is almost independent df it is
satisfactory agreement between MCT and MD simulatiorrelated to a localized, nonpropagating mode. In addition, the
was found. So far no dynamical results have been detelisotope effect, i.e.w,,1 2 clearly proves its orientational
mined from mode-coupling theory fonolecular liquids The  origin. Since the bare frequencifs,(q) for | =1 scale with
only solution of the time-dependent MCT equations for aj ~2for q=0 only[cf. Eq.(42)], the orientational peak must
system with orientational degrees of freedom was obtainee generated by orientational modes wiik-0. Why do
recently for the orientational correlators of a single dumbbellsuch long waved orientational modes play a crucial role? An
in an isotropic liquid[67,56. In the present paper we have answer follows from the static correlatSi,;(q). In contrast
solved the time-dependent molecular MCT equations for gq Soo(0) andS,(q) it exhibits a dominant peak with width
system of dipolar hard spheres. This is one of the simplesiq at q=0 and decays rapidly to 1 fay>Aq (see Fig. L
systems involving translational and orientational degrees ofyith decreasing temperature its peak height increases and
freedom. In addition, it has the advantage that the static corAq decreases. The increase $f;(q~0) has two implica-
tions.
146 L® ' ' | (i) Since the glass transition in MCT is driven by the
1 increase of the main peaks of the static correlatdrss the
increase 0fS;,(q~0) and the coupling of the orientational

mode p11(q,t) to peo(q,t), the translational one, that en-

] hance the tendency for glass formation. This type of glass
0.8 - 7 transition mechanism was already described within the

] S framework of MCT for crystalline systems. For orientational

7 ‘ 3= A ' glasseq 84,85 and strictly periodic lattice$86,87 which

0% : : : 0‘% 33 0.39 0.45
0.03 013 T‘°'23 033 0. ’ N ) undergo a second order equilibrium phase transition the in-

I1l. DISCUSSION AND CONCLUSIONS

25

2.0

112 -
1.5

1.0

FIG. 17. (a) Temperature dependence of the positiag, (O)
and height,, (O) (multiplied by 10) of the orientational peak for That the underlying mechanism leading to an ideal glass transi-
g=4.7 and¢p=0.525 along patlD in Fig. 2. (b) Dependence on tion can be much more sophisticated, i.e., not only related to the

the packing fraction of the position,, (O) and heighth,, (OJ) increase of, e.g., one peak By(q), has been recently demon-
(multiplied by 10) of the orientational peak fay=4.7 and T} strated for a system of hard spheres with attractive interaciihs
=0.04 along pattA in Fig. 2. 83].
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crease of the critical fluctuations already led to an ideal glass 1.0
transition above the equilibrium transition temperature. The
increase of the critical fluctuations is accompanied by soft-
ening of the critical mode. 0.8 |

(i) SinceQ 11(q)«1/1/S;1(q) [cf. Eq.(42)] the increase of
S11(g~0) implies a softening of the orientational mode for
g~0 (see also Fig. B It is this softening of the orientational 06 |
mode withg~0 andl=1, m=1 that results in a frequency §F2
scale separation between this orientational mode and thc °
translational onel=0, m=0) with q~Qq,ax- Therefore 04
two peaks, the orientational and the hf peaks, become vis

ible. The connection oﬁ)op(q) with the (1,1) mode is also

supported by the fact thai,,(q)~Q73(q) (see Fig. 4

The narrowing of the peak i8,,(q) atq=0 also has an
interesting implication. Since Af is a measure of a corre- 0.0 _
lation length, the narrowing implies growth of orientational 10
order. Although 1Aq does not diverge, it may be signifi-
cantly larger than a few angstroms, i.e., there may exist a FiG, 18. ¢,(t) for the Bosse-Krieger model fofF=0.7, ¢
medium range orientational order. For instance, #r =3.9995 x=0.15, Q,=1, »,=10, »,=1, and different
=0.381 andT* =0.04 the correlation length is about six di- 0,=10""2 n=0,1,2,3,4 from left to rightf-2 denotes the criti-
ameterg(cf. Fig. 1). The fact that the increase &;(q~0) cal nonergodicity parameter of tie, model.
is accompanied by narrowing of the peakSp(q) atq=0

proves the existence of a correlation between the OCCUITeNGE. 1 ifferent values of).. For 0. = O we find the typical
of the orientational peak and medium range orientational oo step relaxation proéess fro%ﬁo(O(;:l to a plateau at
der. This is an interesting observation insofar as such a cor-

relation has already been predic{@8—-90,39,9], although fe=f_* and a final decay to zero. _W'th decreasifig we
this does not seem to be a universal feaf9@. We empha- observe that a shoulder occurs which finally develops into a
size that we do not consider this type of behavior as arsecond plateau abo&2. This can easily be understood. In
exceptional case which exists for dipolar hard spheres onlycase that(); becomes more and more soft with respect to
For example for a system of hard ellipsoids which may ex«},, the second term imy(t) [cf. Eq. (488] already varies
hibit medium ranged nematic ordésee Ref[93]) similar  more and more slowly on the microscopic time schle
results are expected. =Qal. Therefore the relaxation kerneiy(t) has a rather
That a soft mode will lead to an additional microscopic slowly varying part. It is this part that generates the second
peak in the spectra has already been sh@94j for a so-  plateau. Since the decay from a pronounced plateau produces
called schematic modél]. Qualitative features of the static a relaxation peak in the corresponding susceptibility spec-
and dynamical behavior of dipolar hard spheres can also bgum we expect, besides the high frequency peak related to
described by a schematic model. Details will be given else€), and thea peak, one more peak. This peak stems from the
where. The couplings shown in EqS88) and (39) suggest  decay from the upper plateau to thatfgt.

the use of two correlatorgy(t) and ¢4(t), only. ¢>0(t) and Figure 19, which showg () at rather “low” tempera-
¢1(t) corresponds to the center of mass and the dipolar cor-

relators, respectively, and their dynamics is described by the
Bosse-Krieger modd5]:

=
)

~z
<

02

ba(1)+ Q2ha(1) + vadpa() + 02 f tdt'maa—t’)éﬁa(t'):o,
0
(47)

a=0,1, with the memory kernels
Mo(t)=Fo( bo(t), p1(1)) = E145(1) + E,5(1), (48
My(D)=F1(o(t), $1(1)) = Eao(t) p1(1), (48D

and initial conditionsg,(0)=1, ¢,(t)=0. To mimic the
¢ andT dependence of the dipolar hard spheres we choose FIG. 19. x;(w) for Qo=1, Q,=1/10, vo=»,=0, x=0.15, and
T=0.2 along path A in Fig. 2 for ¢=(1+e)¢p., ¢
E=¢, &E=XIT, &=1MT. (499 =2.8931318, e=+e ", n=123 (solid lines, and ¢= ¢,
(dashed ling Becausey;(w) does not vary much witlp we have
In Fig. 18 we presentpy(t) for fixed frequencyQlu=1  not labeled the various curves with
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tures, confirms this observation. There is an additional mi<cillational type when crossing the glass transition from the
croscopic peak ab~{(),, i.e., at about the frequency of the liquid side. Since the orientational frequency has a gagp at
“soft mode.” Investigating¢.(w), we have found that this =0 the orientational excitation is an optical mode. These
additional peak does not occur in the liquid phase but deepégharacteristic features coincide with several explanations for
in the glass. Therefore, the nature of that peak changes frofi€ existence of the boson pefdl8,35,58,62,68 which may
relaxational in the ergodic phase to underdamped oscillastress the role of orientational degrees of freedom. It is also
tional in the nonergodic phase, quite like the orientationalM€resting that the intensity of the orientational peak in a

peak for dipolar hard spheres. certain temperature reginjef. Fig. 17a)] changes linearly

T o "
Besides the orientational peak, we have found inW|th T*, which is also true for the boson peak. In addition,

" " .. we have found an interesting correlation between the orien-
Xoo(d, w) and¢(g, w) above and below the glass transition __ . . :
: S . . tational peak phenomenon and a medium range orientational
a high frequency peak ai;(q). It exists in the investigated

: . order, as already suggested earlier for the boson 8@k
range 0.53.<q§_40 except In an mter\_/al centered arpund 90,39,913, although it has been shown that this does not seem
Omax, the position of the main peak i8y(q). wnh:(q) is

Lo . X to hold for all glass formerg92].
shown in Fig. 4 forg=<2. Despite an inaccuracy of about 10

. e . ; For dipolar hard spheres this order is of ferroelectric type
(due to the discretization its g dependence is in phase with 5 for hard ellipsoids it is related to a precursor of nematic

the g variation of the renormalized frequen€y,(q). These  order. For SiQ it can occur due to strong orientational bond
qualitative features are similar to those of the type of highinteractions. As demonstrated in the present paper this me-
frequency peak found for a system of hard sphd&4.  dium range orientational order may result in softening of a
Since the accuracy obp¢(q) becomes even worse far  |ocalized, optic orientational mode and may finally generate
—0 it is not possible to detect the expected lingatepen-  an additional microscopic peak about one decade below the
dence forq— 0. Accordingly, we cannot yet prove that the high frequency peak.

hf peak for dipolar hard spheres corresponds to high fre- |n general, it is not easy to separate the contribution from
quency sound, as found for the system of hard spH&®&s  the orientational motion from experimental spectra obtained
In [57] it was also shown that an additional peak, which wasfrom light or neutron scattering. But this is not true for a MD
called the anomalous oscillation peak, appears deep in th&mulation. Due to the availability of all the microscopic in-
glass phase. Its origin lies in the harmonic motion of theformation it would be desirable to explore in more detail by
particles in their cagef57]. Whether or not the hump be- MD simulations the role of the orientational degrees of free-
tween the orientational peak and the hf peaks that we obdom in the glass transition itself and also in the spectra in the
served ingg(q,») deep in the glasésee Figs. 10 and 15 microscopic regime, as has already been done for sound
corresponds to the AOP is not clear. Again, due to the repropagation in liquid watef99].

striction to 30 values fog and also a smaller number of Finally, we mention that the microscopic spectral features
discrete values fot compared to Ref[57] we cannot give we have found for dipolar hard spheres can be qualitatively
detailedquantitativeinformation on, e.g., the; dependence reproduced by use of a schematic model, the Bosse-Krieger
of the position and width of that hump. On the other hand,model.

the high frequency wing of the orientational peak may inter-

fere with the AOP, thus complicating the analysis of the
latter. ACKNOWLEDGMENTS

A well-pronounced two peak structure in the microscopic We are grateful to W. Gae for his careful reading of this

frequency regime can also oceur fRho(q,@) (cf. Fig. 9 manuscript and many valuable comments, to M. Sperl and
deep in the glass, whereas this does not happegifft, @)  Th. Voigtmann for their discussion with respect to the accu-
(cf. Fig. 7) which is directly related to the dielectric 10Ss racy of our numerical results, and to P. A. Madden for the
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Let us come back to the orientational peak. Figurédl7 nancial support by Sonderforschungsbereich 262 is also
shows that its intensity varies linearly with temperature begratefully acknowledged.

low aboutT* =0.13 and for¢pp=0.525, i.e., forT* smaller

thanT} (¢ép=0.525)=0.13. This fact, as well as the the lack

of sensitivity of its positionw,, to g and its location about APPENDIX: THE NUMERICALLY SOLVED MCT
one decade below the high frequency peak, is reminiscent of EQUATIONS

the boson peak. Additionally, the increase «f, with in- Using the continuity equation we get the first equation of

creasing packmg fraction is _S|m||ar to the shift of the bosonmotion for the generalized density-density correlation func-
peak to higher frequency on increasing the presg2fe 99. tions (in the q frame:

To conclude, we can say that we have found in the mi-
croscopic frequency regime of the compressibility spectrum
and the corresponding correlation spectrum an additional ori- . ) N I
entational low frequency peak. It originates from a localized Si'm(9,0)= _'a;” i (a) by /m(a:t) (A1)
and nonpropagating orientational mode coupled to longitudi- ’
nal acoustic sound wavedganslational modgslts dynami-
cal origin changes from a pure relaxational to a damped oswith
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MCT equations do not couple only altliscretizedl wave
ol l(at) ——<J r (Dpm(9,0)0mmw  (A2)  vectors, as in simple liquids, but also the indices T,R for
translation and rotation and the spherical indited., and
the density-current-density correlation functiorProjecting —!=<m=lI. The functionsb are auxiliary functions because
on the tensorial densitis] and the longitudinal transla- their introduction is just for numerical purposes. The integral
tional and rotational current densitif8] in one step leads to in Eq. (A3) transforms to

lco—m
'|'|,p =i 2 ar(a) 7l(q))I|2mS|2|’m(q=t) fdt Mi m(qt v )(I)' Hm(@ ) (A6)
lgo—m Now a time derivative is multiplied by the integration mea-

- E 2 f dt'Mj m(qt t’) suredt. As a consequence the time stAp cancels in a
12=0 o'=RT discretized form of Eq(A6). Using the decimation technique
[73] At becomes very large. In this case the calculation of
¢| H'm fn(at") (A3)  the integrals would become unstable\if did not cancel.
Since the auxiliary functions occur only as time deriva-
}Nith tlhe fCUéOff \(/gél)le' C‘égnl] [fordtlﬂipgw;_f h%fd Sghg)es_rit IS tives in the original equations the result is independent of the
co=1; cf. Egs. an andl, defined in Eq(9). To . .. % _ .
make use of the established numerical method to solve suc tial value§ Of Dy /,(q,t=0). When solving the molecular
equations[ 73], it is necessary to introduce auxiliary func- CT equations we have chosen
tions &:

Bl /,(0t=0) = Sor (01, (A7a)
(I)fl ’:n(q t)=q (q)¢||r (g,t). (A4)
ol (4,t=0)=0 (A7h)
As a consequence EGAL) reduces to
for all 1" and
Sirm(q,)=—i E @ (q,t) (A5) B .
@} /1(Q,t=0)= 5 S m(0), (ATC)

where (I)fla,pm(q,t) is determined only up to an integration

constant which does not influence the result $g¢,(q,t).

Making use of Eq(A4) and taking the time derivative of Eq. oy (q t=0)= S”/m(q)
(A3) leads to a set of equations of similar structure to the

MCT equations for simple liquid§l,2,4,3. The molecular for |>0 as initial values.

(A7d)
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