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Granular flow down an inclined plane: Bagnold scaling and rheology
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We have performed a systematic, large-scale simulation study of granular media in two and three dimen-
sions, investigating the rheology of cohesionless granular particles in inclined plane geometries, i.e., chute
flows. We find that over a wide range of parameter space of interaction coefficients and inclination angles, a
steady-statdlow regime exists in which the energy input from gravity balances that dissipated from friction
and inelastic collisions. In this regime, the bulk packing fractiamay from the top free surface and the
bottom plate boundajyremains constant as a function of demhof the pile. The velocity profile in the
direction of flowv,(z) scales with height of the pilel, according tov,(z) «H*, with «=1.52+0.05. How-
ever, the behavior of the normal stresses indicates that existing simple theories of granular flow do not capture
all of the features evidenced in the simulations.
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I. INTRODUCTION predicated on a constant density profile. In practice, the pres-
ence of significant finite-size or wall effects often obscures
It is tempting to regard the behavior of granular materialsBagnold scaling. In this study, we report on a set of numeri-
as being a problem in engineering or applied science, inasal simulations of bulk granular flow down an inclined plane,
much as the fundamental laws governing their constituenthe so-called “chute flow,” in two and three dimensions.
particles are well known. Being comprised of macroscopi-The geometry is simple: a layer of bulk granular material is
cally large grains, granular materials obey classical mecharplaced on a flat plane of are@[or line of lengthL in two
ics, although the existence of friction and inelastic collisionsdimensiong2D)] on which grains have been glued, so as to
complicates matters. However, while it is true that the colli-form a rough base. The thickness of the layer is measured in
sion of two grains is analytically tractable, an aggregate oterms of the pile height parameter=Nd?/A (or Nd/L in
such grains is a many-body system, whose macroscopic beD), whereN and d are the total number of particles and
havior cannot be simply related to the laws controlling indi-their diameter, respectively. The plane is inclined at an angle
vidual constituents. 0 and the flow is observed. The parameters controlling the
For this reason, a continuum treatment is often adopted, iflow are the macroscopic variabl@sandH, as well as the
which the variables are averaged properties whose governingicroscopic variables determining the nature of interaction
equations are derivable, in principle, from the known micro-petween two grains, such as grain frictipnand coefficient
scopic laws. Among these averaged variables are the densigf restitutione.
p and the stresses,z, which obey the Cauchy equations  |n Ref.[2], we provided a summary of our simulations in
that enforce momentum conservati¢or force balance if two and three dimensions; in this paper we expand on these
there are no acceleratign$iowever, this set of equations is results both in depth and breadth for the case of steady-state
insufficient to solve for the stresses, since there are too feWow. The results obtained reveal the rich and surprising na-
equations: inD dimensions, there arB(D +1)/2 indepen- ture of the collective behavior of the system. For certain
dent components of ,; (Which is a symmetric tensprbut  values of the parameters, we observe Bagnold scaling in
only D equations of momentum conservation. Therefore, thatable steady-state flow, with a constant density profile inde-
Cauchy equations must be augmented by additional constpendent of depth. However, we also saw surprising examples
tutive relations, possibly history dependent, which tell howof self-organization, including the flow-induced crystalliza-
the material in question responds to the application of ajon of a disordered state into one with much lower dissipa-
force. Itis in these constitutive relations that the specifics otion. In this regime(systems flowing on moderately smooth
the material in question come into play. In the case ofbottom surfaceswe found re-entrant disordering as well,
steady-state flow, which we will consider in thiS paper, con-and even oscillations between ordered and disordered states.
stitutive equations would relate the strain ratgs, to the The effects of bottom surfaces are thoroughly discussed in a
stress. separate worK3]. In this paper, we concentrate on rough
In 1954, Bagnold[1] proposed that in inertial granular bottom surfaces for which the behavior is simpler.
flow, the shear stress is proportional to the square of the These simulations also allow us to investigate more subtle
strain rate: aspects of chute flow, such as hysteresis in the angle of re-
pose and normal stress inequalities not accounted for by any
TP, (1)  conventional continuum theory. Additionally, we were able
to look for surface and bulk instabilities to flow at the angle
His argument, applied to the case of bulk granular flow, isof repose. In particular, we found that although the Bagnold
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rheology of flow near the angle of repose is a bulk rheology,
the fundamental instability inducing the flow in three dimen-
sions appears to be an instability of the surface layers of the
granular medium.

Because granular materials are so common in nature, ex-
isting on many different length scales, there is a great
amount of experimental data on a wide range of dynamic
situations; shear flow and vibration experimefs-7], and
studies of geological debris flow8], to name just a few
[9,10.. There have been several moderately well-
characterized experimental studies of granular flow down an
inclined plane under laboratory conditioflkl-16. Yet for
all the intense activity in this field over the years, the rheol-
ogy of granular systems still remains a largely unsolved
problem.

There has been some work on continuum modeling of
chute flow; for a review of continuum based ideas see Sav-
age[17] and references therein. Other theoretical analyses
(sometimes combined with case-specific simulation verifica-
tion) specifically applied to chute flow geometries, attempt to

calculate density and velocity profilg$8—21], but a general FIG. 1. Typical 3D snapshot for chute flowt=24,000, with
consensus on the qualitative features of these profiles has yiedttom surface dimensions 2®0 diameters shown by the black
to be reached. particles fixed to the bottom plate; tilt angée=24 °, coefficient of

The state of the art of computer simulations of chute flowrestitution e=0.88, and friction coefficienj.=0.50. Flow is di-
is much less satisfactory because of the enormous equilibraected down the incline.
tion times needed to set up steady flow. In three dimensions,
simulations have been performed for rather thin piles, whictstate flows exist. A typical configuration snapshot in 3D,
provides insight into only a small region of phase spacedefining the computational geometry, is shown in Fig. 1.
[16,22,23. Simulations of two-dimensional flows also report  In our simulations, initiation of flow is achieved by tilting
on small systems, and it is unclear whether these studies af¢ a large angl€24-30°) to induce flow. This procedure
carried out in the steady-state regime or whether the dateemoves any configuration construction history effects. We
reported are transiefi4—27. The basics behind granular then reduce the inclination to a lower angle and allow the
simulations are available in Rdi28] for 2D and Ref[23]  simulation to run until we observe a steady-state flow regime
for 3D. (if one exist3. We define steady state as flow wherein the

Our simulations attempt a systematic 3D study of chuteenergy input from gravity balances that dissipated from fric-
flows. Unfortunately, we probe regions of phase space diffition and collisions, so that the total kinetic energy of the
cult to access in experiment. In a typical 3D experiment thesystem reaches a macroscopically constant value. In this
flow is induced through a hopper-feeder mechanism, whicl¢ase, the results are independent of sample history.
controls the flow rate of the system, but not the thickness of In Fig. 2, we draw phase boundaries for both two- and
the flowing sample, which is chosen spontaneously by théhree-dimensional flows as a function of the external control
system. Thus, much experimental data is for flowing pilesparameters: tilt angle and pile heightH. This should be
10-15 particles high, whereas most of our simulations focusompared to a similar experimental determination recently
on moderate to thick piles, greater than 30 particles. Simulagbtained by Pouliquef29]. The salient features are the ex-
tion results for systems smaller than 10—15 particles high déstence in both 2D and 3D of three principal regions, corre-
not show the same scaling as that for thicker systEhig  sponding tono flow stable flow and unstable flow For a
Also, 3D experiments are usually carried out in narrow chansystem of given thickness and fixed microscopic interaction
nels of the order of 10 particles wide or less, where side-walparameters, these three regions are separated by two angles:
effects may have a significant role in the observed behaviord, , the angle of repose, anél,.y, the maximum stability
Our simulations are periodic in the vorticity direction, and angle the largest angle for which stable flow is obtained,
we have yet to study wall effects. We suspect that mosshown by solid and dashed lines in Fig. 2, respectively.
discrepancies that may exist between different experimental For <6, , granular flow cannot be sustained. In the re-
and simulation studies are due to such differences in thgion 6,<6< 6,,., We obtain steady-state flow with packing
detailed nature of the systems studied. fraction independent of depth. The region of constant pack-

Because of the complexity of flowing granular systems, iting fraction in the flowing material for steady-state systems
is useful to first define the region of study. In order to deteris accompanied by a smoothly varying, nonlinear velocity
mine the phase boundaries of fully developed, steady-statgrofile. For 6> 6,,,,, the development of a shear thinning
flow, we have performed a series of simulations of inclinedlayer at the bottom of the pile results in lift-off and unstable
plane gravity driven flows in two and three dimensions in anacceleration of the entire pile. The exact locations of these
attempt to define the region of phase space for which steadyphase boundaries depend on the model parameters such as
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FIG. 2. Phase behavior of granular particles in chute flow geometry, characterized by pile Hheigtilt angle # for monodisperse
systems in@) 2D with «=0.50 ande=0.92(identified as Model L2 in Table)| and(b) 3D with «=0.50 ande=0.88 (identified as Model
L3). Both figures are for the spring dash-pot interaction model with rough bottom surface. Solid circles indicate the region of steady-state
flow, open symbols correspond to no flow or unstable flow. In 3D we have identified hysteretic flow as

ande. For instance, in 2D, it is reduced from 0.92 to 0.82, angle of repose. The one exception to this observation is the
the maximum angle of steady-state flow increases fronsurface stress in three dimensions, where the normal stress
~23° to 26°. Similarly, reducing: typically reduces the differences do become large as the angle of repose is ap-
range of stable flow. proached, suggesting that surface yield may control the fail-
It is well known that granular systems exhibit hysteresis.ure of the static state. In the bulk, however, we are left with
Such behavior is usually attributed to system preparation ang transition to a static state that appears continuous in the
associated history effec{80]. Although we observe three gnear rate, but is apparently discontinuous in normal stress.
distinct regimes, the behavior close to the phase boundari&ge do not believe that an understanding of chute flow rhe-
is sensitive to the procedure f_or _the initiation_of flow. Indeed,0|Ogy is possible without resolving this seeming paradox.
we have observed hysteresis in our 3D simulations when yye hresent the simulation scheme in Sec. I, detailing the

approachinger from either. Sid.e' particularly for thi.nner interparticle force laws. In Sec. Ill, we report our compre-
piles. The hysteresis was significantly reduced upon INCrea%ensive simulation analysis, including the behavior of the

Ir}Ige ﬂ'I%nhfﬁgh;::és(f:)ﬁiw@ggn rciJ:n:;ﬁ zrgsnzj?]r;?kﬂ':?sﬁﬁedensity and velocity profiles for our systems with varying
b P b yresp interaction parameters. In Sec. IV, we present a detailed dis-

large hystere5|s observeq in that case. . cussion of stress analysis and rheology of chute flow sys-
Besides the phase diagram, our most important resultts(,amS In Sec. V we summarize our findings

concern the detailed structure and rheology of the steady-" ™" ' '

state flowing regime. In this regime, we do see a constant

density profile with height, as well as the Bagnold scaling of

Eqg. (1). The amplitude of the strain rate goes to zero at the ll. SIMULATION METHODOLOGY

angle of repose; thus relations such as Eq.possess an We use the methods of molecular dynamics to perform
additional strong angular dependence. _ 2D and 3D simulations of granular particles. For this study
We also analyzed the normal stresses in the flowing stat§ye modelN monodisperse spheres of diameteand mass
and found a number of results, most notably that the norma}, supported on they plane by a rough bed. The computa-
stress perpendicular to the free surfacg is approximately,  tional geometry of the present 3D system consists of a rect-
but not exactly, equal to the normal stress parallel to the flowgngular box with periodic boundary conditions in the
Tyx - ) (flow) andy (vorticity) directions and constrained in the ver-
There are two fundamental puzzles in these results for thgca) 7 direction by a fixed rough, bottom wall and a free top
rheology of chute flow. The first and smaller puzzle is thegyrface, as in Fig. 1. Simulations in periodic cells attempt to

appearance of an anomalous normal stress difference stydy flow down infinitely long and wide chutes, while using
—oxx. We have been unable to define a simple, local, di finite number of particles.

mensionally consistent and rotationally invariant constitutive |5 3D, the fixed bottom is constructed from a random

relation connectingr to y? that recovers this behavior. conformation of spheres of the same diameters those in
The second, and deeper puzzle, is the relationship behe bulk by taking a slice with areal fraction very close to
tween the rheology and the Coulomb yield criterion. As therandom close packin@approximately 1.2 particle diameters
angle of repose is approached from above, the amplitude dhick) from a previously packed state. This simulates an ex-
the flow goes to zero, but the tensor structurerofemains  perimental procedure whereby glue is spread over the origi-
approximately liquidlike, instead of recovering the large nor-nal smooth chute surface and particles are then sprinkled
mal stress difference characteristic of the Coulomb vyield cri-onto this surface to construct a rough floor approximately
terion, which presumably applies to the static pile at theone particle layer thick. For 2D studies, the bottom wall is
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constructed from a regular array of spheres of diameter 2 ~ TABLE I. Parameter values used in our standard simulation set
and particle motion is restricted to tlx plane. for the 2D and 3D linear spring modelbodels L2 and L3,f(x)
We employed a contact force model that captures the ma= 11, and the 3D Hertzian modgModel H3,f(x) = Vx]. For Model
jor features of granular interactions. In 2D, interactions beH3, € is velocity dependent.
tween(projected spheres are modeled using a linear spring
model with velocity-dependent dampitithe spring-dashpot Model D f(x) ks 7 ki/ke wlva n €
interaction) and static friction In 3D, the spring-dashpot |» 5 1 ox1F 335 2/7 0 050 092
3
3

model and static friction are also used, as well as Hertzian 1 2x10° 50.0 2/7 0 050 0.88
contact forces with static friction. In the presentation of the X 2x10° 500 217 0 0.50
results, we will specify which model is employed, and dis-
cuss the differences.

The implementation of the contact forces, both the normaI:\/; for Hertzian contacts with viscoelastic damping be-
forces and the shediriction) tangential forces, is essentially tween spheres, denoted as Model H.
a reduced version of that employed by Walton and Braun oy results are given in nondimensional quantities by de-
[22], developed earlier by Cundall and Straf@8]. More  fining the following normalization parameters: distances,

recent versions of these models now exBt-33. We ig-  times, velocities, forces, elastic constants, and stresses are,

nore hysteretic effects between loading or unloading normqjespectively measured in units dft,= Jd/g,v,=gd,F
l o] Yo 110

contacts and we do not differentiate between frictional direc-_ mg,k,=mg/d, ando,=mg/d2. For a realistic simulation

wgﬁoit[tzh% same contact point at different time steps as dogy glass spheres with diametdre 100 wm, the appropriate
' elastic constankd'@%°=0(10'9 necessitates a very small

Static friction is implemented by keeping track of the time step for accurate simulation, prohibiting any large-scale
elastic shear displacement throughout the lifetime of a con- P P g anyarg

. P - study. In our simulations, we typically use a value fqr
tact. For two contacting particles,j}, at positions{r,r;}, =0(10) which we believe captures the general behavior of
with velocities{v;,v;} and angular velocitie$w; ,w;}, the

force on particleili,s ]computed as follows: the normal com- intermediatt_e-to-higrh@ systems, thus offe_ring a reasongble
ressions.  relative normal velocit rélative tangential representation of realistic granular materigle discuss this
P e Wnyj» 9 aspect further in Sec. Il BA complete list of model param-

velocity v, are given by eters used in our standard simulation set, which consists of
2D and 3D versions of Model (L2 and L3, and a 3D
gij=d—rj, 2 version of Model H(H3), are given in Table I.
B 3 In a gravitational fieldg, the translational and rotational
Vi, = (Vij - M 3 accelerations of particles are determined by Newton'’s second
. law, in terms of the total forces and torques on each particle
Vtij:Vij_Vnij_i(wi+wj)xrij ; (CONT
Where rij:ri_rj, nij:rij/rij, W|th I’ij=|l’ij|, and Vij tot
=v;—v;. The rate of change of the elastic tangential dis- F° :mig+§j: Fo, T Fy;0 ®
placementutij, set to zero at the initiation of a contact, is
given by 1
TI[Ot:—Ez rI]XFt” (9)
dUtij (utij'vij)rij
dt =V~ r2 ' ) The amount of energy lost in collisions is characterized

! by the inelasticity through the value of the coefficient of
The second term in Ed5) arises from the rigid body rota- restitution. For Model L, there are separate coefficieas,

tion around the contact point and insures thatalways lies and e, for the normal and tangential directions, which are

in the local tangent plane of contact. Normal and tangentiaf€lted to their respective damping coefficients; and
forces acting on particleare given by spring constant ;

Fnij = f(élJ /d)(kn5” nij - ’}/nmeﬁvnij), (6) €nt= exq - ’),n,ttCO|/2)1 (10)

where the collision time_,, is given by
Ftij:f(éij/d)(_ktutij_')’tmeﬁvtij)v (7
teoi= 7(2kn/m— y2/4) 12, (11)

where k,; and y,, are elastic and viscoelastic constants,
respectively, andngq=m;m; /(m; +m;) is the effective mass The value of the spring constant should be large enough to
of spheres with masses; andm; . The corresponding con- avoid grain interpenetration, yet not so large as to require an
tact force on particlg is simply given by Newton’s third unreasonably small simulation time stép, since an accu-
law, i.e.,Fjj=—F;; . For spheres of equal mass as is the rate simulation typically requiregt~t.,/50. For Model H,
case here,mg=m/2; f(x)=1 for the linear spring- the effective coefficients of restitution depend on the initial
dashpot model, denoted henceforth as Model L,fEx) velocity of the particles.
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The static yield criterion, characterized by a local particlemost of our simulations, though variations gnwill be dis-
friction coefficientu [34], is modeled by truncating the mag- cussed in Sec. Il B. Similarly, the value efis chosen to
hitude ofuy as necessary to SatiSWtij|<|MFnij|- Thus the  reflect the properties of a realistic granular particle.
contact surfaces are treated as “stuck” Whﬁq,-ij< LFn s The equations of motion for the translational and rota-

and as “slipping” while the yield criterion is satisfied. 'jl'his tional degrees of freedom are integrated with either a third-

“proportional loading” approximatio{35] is a simplifica- order Gear predictor-corrector or velocity-Verlet scheme
tion of the much more complicated and hysteretic behaviof39] with a time stepst=10"* for k,=2x 10°. All data was
of real contact§36]. To test the robustness of the propor- taken after the system had reached the steady state. To reach
tional loading assumption, we also carried out simulationghe steady state, simulations were required to run fer21
with Model L in whichu, is not truncated but the local yield x 10’6t when starting from a nonflowing state fax
criterion F,<uF,, is implemented. Note that we do not be- <10000, and the largest system in 2B+ 200) required a
lieve this to be a physically reasonable choice. Results forun time of 2—5< 10°t. On a 500-MHz DEC Alpha proces-
the two cases are similar, although the average kinetic ener@or, our code requires about 5 days to simulate 10 million
is somewhat smallefby approximately 18% for Model U2 time steps of a 3D 8000-particle granular system. We have
whenu, is truncated compared to those simulations when a|so created a parallel version of the 3D code using the stan-
is unbounded. . . dardized message-passing interface library. The parallel code
The components of the stress tensqy; within a given  partitions the simulation domain into small 3D sub-blocks
sampling volumeV are computed as the sum over all par- sing the methods described in REf0]. Even on a cluster
ticles I within that sampling volume of the contact stress qomnyter with relatively low interprocessor communication
(virial) and kinetic terms, bandwidth, the code runs at high parallel efficiencies as long

1 reEB as we simulate 1000 or so particles per processor. For ex-
Tap=y E 2 %jL mi(v¥—v®)(vP—0vP)|, (120 ample, on 8 processors of our Alpha/Myrinet cluster, we can
N simulate 15 million time steps/day of the same 8000-particle

system.

whereF{ = Ffij + Fﬁj , andv is the time-averaged velocity of  For the imposition of chute flows with varying tilt angles,
the particles within the sampling volum¥. The time-  we rotate the gravity vectain thexz plane by the tilt angle
averaged velocity must be subtracted since the kinetic pord away from the—z direction; the flow is from left to right
tion of the stress tensor is entirely due to fluctuations in thén this sense. This means that thexis is always normal to
velocity field. the free surface. In 3D the area of the bottomAisL,L,

For Hertzian contact37], the ratiok, /k, depends on the whereL, andL, are the dimensions of the simulation cell in
Poisson ratio of the material, and is about 2/3 for most mathe x andy directions, respectively. For the 3D simulations,
terials. For ease in our simulations, we use a valueve define a measure of the height of the pile by defirihg
k. /k,=2/7, which makes the period of normal and shear con=Nd?A as the pile height if it were sitting on a level plane
tact oscillations equal to each other for Model38]. How-  at rest in a simple cubic lattice. For example, fo+=8000
ever, the contact dynamics are not very sensitive to the preand L,=20d andL,=10d, H=40 (although due to the
cise value of this ratio. We have performed simulations withprecise configuration, the actual measured heigB7). This
different values ok, /k, to test how this ratio may affect our is a useful definition for comparing between different system
results; different values of this ratio yield nearly identical sizes. We study a range of system sizes, ¥0R6=20 000.
results. The only difference we observe is a slight increase ifror the largest systent =100. The influence of other wall
the total, averaged kinetic energE) of the system when dimensiond.,, L, was also studied. For the 2D runs, the
ki/k,>2/7, and a decrease fd¢g/k,<2/7. For example, dimension of the periodic side is fixed at ID(Q.e., 50-large
when we sek; /k,= 2/3 instead of 2/7, the total averaged KE particles long and the pile height &H=<200, i.e.,
increases by about 10%, whereas all other macroscopid=200-20 000.
quantities measured in the simulations, such as density and In 2D, the initial state was constructed by building a tri-
stress, remain essentially unchanged. angular lattice of particles. The tilt angle was then increased

Similarly, although all results reported here are foruntil flow occurred. The initial flow occurred only fof
v¢!/von=0 (i.e., no rotational velocity damping tejrwe have =23 °. This minimum value to induce flow depends on the
also carried out simulations to measure the effect of introsize and spacing of bottom plate particles. The initial failure
ducing rotational damping;y;/y,>0. When we sety;  occurred mostly at the bottom of the pile, followed by move-
=1v,, we observe a slight decrease, of about 8%, in the totainent of a dilation front toward the top of the pile as shown in
averaged KE, compared with those simulations that hgve Fig. 3. Once this initial steady state was achieved, the angle
=0. Making v,/v, nonzero quickens the approach to the # was adjusted to its desired value, and the system equili-
steady state by draining out more energy. However, all othebrated to its final steady state. In 3D, we started the system
guantities are, again, unchanged. We discuss reasons why rem a randomly diluted simple cubic lattice. The angle was
observe minimal changes with these interaction parametetten increased to a large angle=30° to induce disorder
in Sec. Il B. and settling of particles. The angtewas then decreased to

Typical values for the friction coefficientt range be- the desired value and flow allowed to continue until a steady
tween 0.4 and 0.6 for many materials. We chase0.50 for  state was reached, before measurements were taken.

051302-5



LEONARDO E. SILBERTEet al. PHYSICAL REVIEW E 64 051302

FIG. 3. Time sequence of a
typical configuration in 2D fol-
lowing an instantaneous change in
the inclination angled from O ° to
24°. Results are foN=10 000,
©=0.50, and €=0.82, and for
timest=(a)100,(b) 400, (c) 600,
and(d) 6000. Flow is left to right.
As the flow progresses, the dila-
tion front propagates upwards
through the system, destroying the
initial ordered array; the pile con-
sequently “fluffs” up.

In 3D, to test for hysteresis ned@ , # was reduced to IIl. RESULTS: VELOCITY AND DENSITY PROFILES
below 6, until the system settled down into a disordered state
and stopped flowingé was subsequently increasedaBOW
and the system began flowing. This angle of flow initiation ~We focus our main attention on the regime of steady-state
was sometimes different from the angle of cessation of flowflow for moderate to deep piles, for whigh is independent
65'°P when taking a flowing state and then loweridglown  of depth. In Fig. 4 we plot the density and velociip the
to Hf“)pto stop the flow. However, this small hysteretic be- direction of flow of z profiles over a range of inclination
havior, in 3D, On|y occurs for thin pi|es at low ang|es_ anglesa, for a series of simulations in 2D and 3D. Figure

In 2D the equivalent phase diagram can only be coné4(@ is for a 2D system(Model L2, cf. Table ) of N
structed by taking a flowing state at anglend then lower- =10000 particles, corresponding =100. In Fig. 4b),
ing to 6°'°P. Once the 2D state stops flowing the systemthe equivalent 3D model(Model L3 with N=8000,H
spontaneously crystallizes into a polycrystalline ordered=40) denoted by the open symbols, is compared to the 3D
state. To induce flow from this ordered state requires increaddertzian model(Model H3). The tilt angle was varied be-
ing @ to a much higher angle thagf'°P. tween 18%30° in all cases. In 2D the system becomes

A. Kinematics of steady-state systems

0.8 = ] 0.6

¢ 07 s ] ¢ 035 : e S ] FIG. 4. Packing fractios and
velocity v, profiles, as a function
of distance from bottonz, for (a)
2D spring-dash-pot modéModel
L2), with H=100, at tilt angles of
0=18, 19, 20, 21, 22, and 23 de-
grees.(b) 3D, H=40 systems at
#=20, 22, 24, and 26 degrees,
with Model L3 (open symbols
and Model H3(solid lines.
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FIG. 5. zcomponent of the mean-square displacement for three
angles,p=21°, 22°, and 23°, for Model L3, witli=40.

FIG. 6. Profiles of the kinetic portion of the diagonal elements
unstable to an accelerating flow above 23° and in 3D th&f the stress tensqr((dv)?), normalized by their maximum value
unstable flow regime is observed above 26 °. along the curve, for Model L3 inclined at 21°(—-), 23°

In both 2D and 3D, the packing fraction remains constanf ~ ~ 7)»and 25°¢ ).
over almost 40 layers in 3D, and 100 layers in 2D. For all
steady-state systems, as the tilt angle is increased, the valdepicts the diagonal components of the kinetic part of the
of the bulk packing fraction decreases. This decrease accorifess tensorp((év*)?), wherep is the mass density and
panies a growing dilated regidf lower packing fraction  sv“=v*—v*, at three different angles for Model L3. Indeed
near the free surface at the top. All the velocity profiles arewe do find that the velocity fluctuationgrequently termed
concave, and velocities increase in value with increasing tilt'granular temperature” in the literature of dilute granular
angles. Consequently, the total kinetic energy of the systerflows) are greatest at the bottom of the piwvay from the
rises with increasing anglet1]. actual plat¢ and decrease with height until the values appear
We monitor vertical mixing of the bulk by measuring the to level off at the top free surface.
bulk-averaged, mean-square displacement of particles over This behavior partially illustrates how the pile is able to
time. Figure 5 shows the mean-square displacement of pamaintain a constant density profile, even though the stresses
ticles normal to the surfacgz?) as a function of simulation increase towards the bottom, and the flowing pile has a finite
time for Model L3, over a range of tilt angles. The linear compressibility, as evidenced by the changing density as a
relationship demonstrates well-defined diffusive motion infunction of tilt angle#. Particles deeper into the pile experi-
the z direction, suggesting thorough mixing in the system.ence increasing compaction forces due to the load of the

Similar results are observed in 2D. At long timg) will particles above, yet a constant density is maintained through
reach a constant due to the finite height of the pile. the increased particle velocity fluctuations.
By observing a sequence of snapsHaotst shown hergeof The data sets shown in Fig. 4 are for one system size only.

tracer particles at various heights in the bulk, we also findn Fig. 7, density and velocity profiles for systems of varying
that diffusion is somewhat faster near the bottom of the pileheights are compared. The densities measured deep in the
This is indicative of the fact that fluctuations in the particle pile, as well as the density and strain rate profiles near the
velocities are greater closer to the bottom wall. Figure 6surface, are independent of the overall height of the pile.

0.9
0.8 § 4 - 06 ¢ : " ‘
0.7 ' \ i \ ' ) \‘
ot I '. 004 Lo
06 ': 02 lll | FIG. 7. Density and velocity
0.5 : ' ! '1‘ profiles for(a) 2D systemgModel
04 0 B L i L2) for #=20° with sizesH
%0 | =200, 100, 50, and 25, anth)
200 — H=200 3D systems(Model L3) for 6
v, ———H=100 {v@ °| =24° with sizesH=100, 60, 50,
100 -—-=- H= 50 40 and 40.
T e H= 25 20 |
0 i ) 0
0 100 200
@ z (0)
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0.9 - ' - values ofu=0.15, 0.25, 0.5, and 1.0. The data suggest that
0.8 | . there is minimal change in the bulk density over this range in
07 | p. In the bottom panels of Fig. 9, the shear ratg /dz
¢ 06 | scaled bydv )9z is plotted for the various values gf.
Similarly, Fig. 10 shows the profiles for the same systems
05t as described in Fig. 9, but with a fixed=0.5 and varying
04 ‘ ‘ ’ coefficients of restitutiore, i.e., varying the inelasticity of
4 . the system. Again we see that variationseiimave little ef-
3l ] fect on the flow behavior of these systems, particularly in
Vi ) 6=23" ] 3D, provided that the system is able to reach steady state.
[For low . (=~0.10) and highe (=~ 0.96 for 2D and 0.98
1 020" ] for 3D), the systems become unstable.
0 : : : Another microscopic parameter we have investigated is

the effective hardness of the particle, determined by the
value of the spring constark,. We vary k,, and keepe
FIG. 8. Density and velocity profiles for thin systerfidodel ~ constant by adjusting the value ¢f,. Simulations investi-
L2), with H=10, at 20 ° and 23 °. These profiles are very differentgating this parameter can be time consuming: increaksjng
from the thicker piles. by a factor of 100 requires a reduction in the time step by a
factor of 10. Fortunately, as Fig. Xineasured for Model L2

This suggests that the rheology of the system is local in thigvith 6=20°,H=50) indicates, the effect of variations kqy
regime; i.e., that constitutive relations locally relate stresgs minimal, providedk,, is sufficiently large.
and strain rate. For reasons alluded to in Sec. IV D, we have
been unable to identify these constitutive relations. C. Dependence on Tilt Angle

We note that the behavior observed in Figs. 4 and 7 is true
only for H=20. For smaller piles, the behavior is very dif-
ferent, as seen in Fig. 8, where a non-Bagnold velocity pro
file is observed. Recent experimental studies in heap flo
geometries, for thin surface flows, observe an exponenti
decay of the velocity with deptfil1,42. Similar results are
obtained in shear flow experimen#3].

Judging by the insensitivity of the macroscopic quantities
to the various interaction parameters for Modedhls showi,
as well as Model H, we see that to a good approximation,
ffects due to material properties and system size can be
eglected in the steady-state regime. As shown in Fig. 12,
the packing densities vary approximately linearly witland
approach the maximum values35*=0.815(5) and¢3s”
=0.590(5) até, ,p~17.8° andf, 3p~19.4° for 2D and
3D, respectively. In 3D, we obtain a static packing fraction
In this section, we investigate the sensitivity of these re-¢;p=0.595, when the tilt is reduced belofy. Experimen-
sults to the particle interaction parameters. We independentlial studies of fluidized granular beds also obtain a similar
vary the internal coefficient of frictiop, the coefficient of value as the gas flow is reduced to yield a static paclddg
restitution e, and the value of the spring constdgt. We  In 2D, upon lowering the tilt angle below,, we observe
observe that while the density of the bulk material does notompaction to a polycrystalline triangular lattice wighyp
depend sensitively on these interaction parameters, the ve=0.9.
locity profiles do. It is interesting to note that the asymptotic packing frac-
Figure 9 shows the sensitivity to the friction coefficignt  tions ¢35 and ¢35  are close to the values one would obtain
by depicting density, velocity, and strain rate profiles@r assuming the flow was the densest possible flow of l{ires
Model L2 with H=50 and #=20°, wherex=0.15, 0.25, 2D) or planes(3D) of close-packed particles parallel to the
0.50, and 1.0, antb) Model L3 withH=40 and§=22°, for  top surface. For the 2D case, the packing corresponds to a

B. Dependence on Interaction Parameters
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FIG. 9. Density, velocity, and
strain rate profiles for different
values of the particle friction co-
efficient for (a) Model L2 at 6
=20°H=50 for ©=0.15, 0.25,
0.50, and 1.0, anth) Model L3 at
#=22°,H=40 for w=0.15,
0.25, 0.50, and 1.0.
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08 1\ e 06 - »
L — e=0.58
¢ 07 —-- e=0.82 ®os | ——- e=078 |
06 L e @=0.92 ] ’ e e=0.88 FIG. 10. Density and velocity
--— e=0.96 \ - =098 profiles for different values of
: — 04 for (@ Model L2 at 6=20°H
81 =50 for e=0.72, 0.82, 0.92, and
6 0.96, and (b) Model L3 at @
v, v ol =22°, H=40 for e=0.58, 0.78,
0.88, and 0.98.
2 F
. 0
60
(a) z (b) z

square lattice with a packing fraction af/4=0.79. For the %
3D case, the sliding planes would be square lattices, stacked 0,42)=¢ COSGJ dzp(2), (19
to form triangular lattices in thg—z plane. This arrange- ‘
ment has a packing fraction ef/(3,/3)=0.60.

oy [(2)=0,4z)tané, (16
IV. RESULTS: STRESS ANALYSIS wherep is the number density of sphereg £ wpd®/2D for
A. Cauchy Equations Q|men5|onal|tyD:2 and 3. If, as in our case, the density
is constant,
The stress tensor is symmetriey; = o, with D(D

+1)/2 independent components D-dimensional space. o,42)=gp cosf(h—2z), (17

The Cauchyforce-balancgcondition provides onl{D equa-
tions, leaving the solution underdetermined. Thus, an addi- oxA2)=gpsind(h—2z), (18)

tional D(D—1)/2 constitutive relations are needed to close _ ) ) ] _ )
the equations and to solve for the transmission of stress in @hereh is the effective height of the flowing pile, which

granular system. appears as a constant of integration in Ey). oy, cannot
In 2D, the steady-state Cauchy equations are be determined from these considerations, since we lack a
constitutive relation that would determine it. Nevertheless,
02, important features of the behavior of the stress tensor can be
57~ P9cosd, (13 obtained by Mohr-Coulomb analysig5).
3 B. Mohr-Coulomb Analysis
0- .
f:pg siné. (14 The Mohr circle, shown in Fig. 18), is a geometrical

construction that enables visualization of rotational transfor-

For a given tilt angle, these give
N
0.8 '[ .
08 "':,_ 952D~17.8° \.~ oL
)
¢ 07 PY Ons
07 |
06 ¢
i 8. .,~194°
0.5 + ; - 73D
- 0.6
"’9‘*\_‘\_'
2} 8- a g
v, o
10} 0.5 = - : - -
18° 20° 22° 24° 26°
0
0

0 2 2 40 60 FIG. 12. Tilt dependence of the packing fraction in the region of
constant packing fraction, for Models Lolid circles, L3 (solid
FIG. 11. Density and velocity profiles for different values of the squares and H3 (open diamonds The dashed lines denote the

spring constank,,, for Model L2 at#=20° H=50. linear dependence on tilt angle near the angle of repose.
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30°
T 0
25
C A(o,,, 6,.)
/
9 20 20°
/O c
/
15°
B Gxx ’_ze)
10° .
0 10 20 30 40 50

() (b) z

FIG. 13. (a) The Mohr circle is a graphical tool that is used to determine transformations of a rank 2 (®ndoas stre$sinder rotation.
The stress components for a given coordinate system are represented byAgmid®, which form a diameter of the circle. The transformed
stress components upon a rotation of the coordinate system by @rggle be found by a rotation of these points by @round the circle.
The pointC, which has a tangent that passes through the origin, corresponds to the orientation of a shéat pfanaglep to thex axis)
with the largest ratio of shear to normal stre@®. The stress angle@ [COA in (a)] as a function of height fos=20° (O), 22° (O),
24° (0),and 26° (\). The results are for Model H3 with +40. The lines are fits that decay exponentially frog¥’ at the effective
heighth [cf. Eq. (17)] to 2¢°“ in the bulk, with a typical decay length of 1.3 to &,4ndicating a surface layer abouti%o 8d thick.

mations of the stress tensor. The circle is drawn in éhe (IYE) when 6= 6, , the pointsC and A coincide, and there-

— 7 plane, such that the pointd(o;,0y;) and B(owx,  fore ¢=0. On the other hand, if the flowing pile behaves like
—0y;) form a diameter of the circle, centered at po@t 3 flyid, o= o,,, and consequently sin2-tané.
Coordinates of the points on the circle represent the normal

(o) and shear £f) components of the stress tensor associated
with all possible shear planes. Upon a rotation of the coor- _ )
dinate system, i.e., the plane in which shear is specified, bg In all cases, the behavior ofas a function of depth can
an ang|e¢-, the representative points rotate by an angye 2 be fitted to an empirical form that starts at a “surface” value
around the circle. at the effective heighth and approaches a “bulk” value ex-
At a given tilt angle,o,, and o, are determined by the Ponentially[see Fig. 18&)]

Cauchy equations, which fixes the location of poifst o bulk surf__bulky a— (h—2)/5
(oy,/o,,=tand). However, o,4, and thus the location of 20(2)=2¢""+2(™" =™ e : (19
point B, is undetermined by the Cauchy equations, and de-

pends on the rheology. Figure 14 depicts the values for the fitting parametep&“?

The “stress angle” 2=COA, formed by the stress point and 2" as a function of tilt angle for the three main mod-
A, the origin of the Mohr CircleO, and pointC, whose els studied in this paper. The following observations can be
tangent passes through the origin of the ) plane, can be made:
used as a surrogate for any quantity that completes the de- (i) 2¢, and consequently all the ratios of stress tensor
scription of thex— z stress state, since it uniquely identifies components, becomes independent of depth below a transi-
the two-dimensional stress state of the flowing filer #  tional surface layer aboutdbto 8d in thickness.
>6,) by fixing the value ofo,,. For a pile with a uniform (i) In 2D [Model L2, see Fig. 14)], as @ is lowered to
Coulomb yield criterion that is at incipient yield everywhere 6, , the stress state at the surface moves even farther from

C. Stress Tensor Near the Surface

30°
25°

20" |

(a) 6 (b) 0

FIG. 14. The stress angle at the surface$¥ (circles, and in the bulk, 2" (square} for (a) Model L2 (open symbols connected by
dotted line$, and(b) Model L3 (open symbols connected by dotted linaad H3(solid symbols connected by dashed lingr Model L2,
the rheology at the surface£h) nearé, is even farther away from the IYE condition compared to the bulk. However, both 3D models
observe near-IYE conditions at the surface n@&arsuggesting that the arrest of flow may be initiated by the surface rather than the bulk.
The solid lines depict behavior expected without a normal stress anomaly, whep=siarty.
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100 | I :
o — o, @]
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........................... - - 0.02 |
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: |
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30 | =002 I @12 with e=0.82
Gy 20 ) . . .
L 5 22° 24° 26°

0

FIG. 16. Dependence of the normal stress anomalgn tilt
z angle ¢ for Models L2 and L3(closed symbols and Model H3

FIG. 15. Profiling the components of the stress tenso® at (open symbols Errors are of order symbol size.

=227 in () Model L2 for H=100, (b) Model L3 for H=40. We observe that for both the 2D and 3D systdarsd for

: . _both linear-spring and Hertz modglsalthough oy~ o,
IYE compared to the bulk. Independent observations Co.nﬂm%here are small but systematic deviations from perfect equal-

arrest and start of flow; this primarily occurs near the bottom%::[y 'that klecome independent of”depth in the bulk. Let us
define a “normal stress anomalyy as

surface.
(iii ) However, for both models in 30Fig. 14b)], asé is Oyy— Oy
lowered to 6,, the surface layer does approach incipient X=——. (20

yield (2¢=0) while the bulk remains far from it. It appears Tzz

that the stabilization of the surface layerat 6, is respon- s js simply an alternate parametrization of the stress angle

sible for the arrest and subsequent restart of flow in the entirg(P defined earlier, introduced as a convenience to emphasize
system, accompanied by a near elimination of flow hysterye gma| deviations around fluidiike behavior, for whigh

esis. ; . .
. : . =0. Thereforey is also independent of heightxcept near
(iv) -lr;h?] bulk It:ja?] nearly |dent|ca(lj ngrmal Sresegs and the top and bottom surfaces. With this in mind, we plot the

075, Which would have corresponded ta2 arcsin(tard) 1 yalue ofy vs 6 in Fig. 16, noting a strong angle depen-

depicted by the solid !lnes n Fig. 14.' In other words, th(.edence, in whichy is neither monotonic ir# nor of a specific
normal stress anomalies discussed in Sec.. IVD are qu'tgign. We have evaluated a class of homogeneous, polyno-
small compared to what one would have attributed to a plasr'nial, rotationally invariant constitutive stress-strain rate re-

tic maﬁ:lalt at 'r!;?'p'e?t y'ild' | _  directlv related t lations, but have not been able to satisfactorily describe these
(v) The transitional surface layer is not directly relate Orather peculiar normal stress anomalies.

the dilated Iayﬁr.; the rflo”“ef is rr}uch thiCke(; neb.# 6; and b The fact that the stress varies linearly with depth and our
penetrates well into the region of constant density, as can bgyjier ghservations of constant density suggests that the
seen by comparing Figs. 4 and(b In fact, upon approach-

) he width of th ‘ heoloaical lavai analysis relevant to our systems is that due to Bagfibld
ing 0, , the width of the surface rheological lay&increases  g,qn0\4's collisional-momentum transfer analysis for granu-

slightly whereas the width of the dilated layer decreases suja; qystems works under the assumption of a constant density
stantially. profile, resulting in stress profiles that vary linearly with
depth. The essence of Bagnold’s theory is a constitutive
D. Bulk Rheology equation whereby the shear stress is proportional to the

Having identified the behavior associated with the freesquare of the strain ratg?=[dv,(2)/3z]% wherev,(2) is
surface at the top, we can now investigate the stress tenste velocity in the direction of flow at heigtat[46]:
below this surface layer. For tilt angles sufficiently above .
6, , where the granular medium behaves roughly like a fluid, o= Abag?’. (21)
one might expect the normal stresses(, oy,, 0,,In

3D, 0, and o, in 2D) to be equal. In 3D, we find that,, Combined-with Eq(;8), and thgz no-sl_ip boundary condition
is smaller than th&x andzz components by 1520%, sug- atz=0, this results in a velocity profile of the form,

gesting that consolidation and compaction normal to the 5 he 7|32

shear plane is poorer. The normal stresses and the driving _ 320 Taanpll1 %

shear stress,,, for the 2D and 3D linear-spring model are 0:(2)=Agad (3 P9 sma) 1 ( h ) - (2
shown in Fig. 15. The components(;,oy,) are not shown, .

since they vanish due to the Symmetries in the geometryl’:rom Flg 17, we observe that for the bulk of the ﬂOW, the
they are indeed measured to be zero within the error banelationshipo,,=y? holds to a good approximation below
associated with the sample size and averaging time. the first 5-8 layers, and away from the bottom wall, for the
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FIG. 17. Rheology curves of
chute flow systems-shear strain vs
shear stress;)a2D, (Model L2,

N N

’5 ”f H=100) and b 3D (H=40):

® s Model L3 (symbolg and Model
H3 (solid lineg. Bagnold scaling
fits in the bulk are shown by
dashed lines for Model L and dot-
ted lines for Model H.

0.0 10 20 30
(a) G, (b) S,

2D and 3D systems. We have fitted the “Bagnold” scaling pute the average coordination numbk&r as a function of
with the dotted lines, the solid lines and symbols represeninclination angle. This data, for the 2D and 3D linear-spring
the simulation dat§47]. The tilt dependence of the overall systems, is shown in Fig. 20. In a system dominated by bi-
amplitude of the strain ratdg,4, is shown in Fig. 18. In 3D, nary collisions, one would exped.<1; this is clearly not
Agag continuously approaches zero at the angle of reposehe case for our system. The observed behavior is an increas-
whereas in 2D, there is a jump in this amplitude, consistening Z. as # approaches the angle of repose from above. Nor-
with the overall hysteretic behavior. malized this way for a static 2D triangular lattice with no
Another way to test this scaling is by plotting the averagefree patrticles, the value would be 3. Similarly, for 3D static
velocity (v?)¥? as a function oH (which is proportional to  packings, one might expect a value betweens4[48].
h). The scaling in Fig. 19 shows thé&s2)Y?cH¢, wherea Because of these observations, we reason that contribu-
=1.52+0.05. This result also agrees well with experimenttions to the kinetic term of the stress tensor do not play a
[29]. If we rescale the data from Fig. 7, we find good agree=significant role in determining the macroscopic quantities
ment apart from the region near the top surface where thmeasured. It might then be argued that for a densely packed
density is no longer constant. This suggests that Bagnold'pile of stiff objects in motion, the overall time evolution of
theory may provide an approximate description of the bulkthe system in the configurational phase space is primarily
motion of our systems. In fact, Bagnold scaling is a genericconstrained and controlled by aspects of geometrical pack-
dimensional result for the situation where the time scale ofng, rather than the specific form of the stiff force laws be-
the system is only set by the inverse of the shear rate, as teen particles or dissipation functions. This might be why
the case herg2]. the system is so insensitive to variations in the interaction
Bagnold’s original stress-strain rate relationship ariseparameters, as described in Sec. Il B.
from a momentum-transfer mechanism that is based on bi-
nary collisions. From the simulation data, we find that the V. CONCLUSIONS

dominant term in the stress is due to lasting contacts between
particles, and the ballistitkinetic) contribution to the stress _ We have concentrated on the steady-state nature of chute

is significantly smallefabout 1% of the total valyeThus,  flows, specifying first the region in phase space in which
the success of the Bagnold scaling is based on the dimesuch flows can be observed, and second the structure and
sional structure of the problem, rather than on the particulafn€ology of these flows.

momentum-transfer mechanism that he identified.

10°

Another method to test the nature of collisions is to com-
* 3D: p=0.50
0.4 T T T T T 100 £ O2D: pu=0.50
02D: p=0.25
03[ @L2 o
mL3 A 10"
Apg 02 | ©H3 v .
0
01} 10
0.0 .o 0) ‘o I0 .o 1()_1 L L
18 20 22 24 26 10° I 10 10°
) H

FIG. 18. Strain rate amplitud&g,= y/ Vo, associated with the FIG. 19. Scaling of velocity in the direction of flow(v2(2)
bulk Bagnold rheology for the three model systems. Whereas 3D>? with system height in; (a) 2D at 20 ° withe=0.92, for two
amplitudes extrapolate to zero @&t, there is a finite jump associ- different values ofu, (b) model H3 at 24 °. The slope of the lines
ated with the 2D amplitude &, . indicate that<v?>2scH*, with «=1.52+0.05.
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4.0 - - ‘ - Although the regime of Bagnold-like flow appears to
dominate the system, we have found that deviations from
this simple theory exist. The normal stress anomaly remains

30y a mystery, and our fits to the stress-strain rate curves apply

only away from the top and bottom surfaces. We have also

Z 5 found that the transmission of stress in such dense flows is

¢ dominated by contacts, as opposed to binary collisions in
Bagnold’s analysis of dilute flows.

ot Finally, we observe that the normal stresses in bulk flows

do not approach a Coulomb yield criterion structure at the

angle of repose, despite the continuous disappearance of the

00 L = - = = . shear rate at this threshold. The fact that Coulomb yield is
18 2 2 % 26 8 approached at the surface for 3D flows hints at a special role

9 for surface failure in this case.
FIG. 20. Averaged instantaneous coordination nunfgas a Our simulation code, both in its simple and parallelized
function of tilt angle for Model L2 withH=100, and Model L3 versions, enables us to study large systems for very long-
with H=40. time scales, and we continue to investigate some of the out-

standing issues in this area. We will report elsewhere the
A region of constant packing fraction is a generic featuredifferences between rough and smooth bottom surfggks
in our 2D and(two) 3D models, with only a small dilated We Wwill also go on to study 3D planar Couette flows, extend-
layer at the free surface. Analysis of the velocity profiles hadng Ref.[49], and will be reporting on this in the future.
revealed that to a good approximation, Bagnold scaling
holds: the Bagnold velocity profile;,<H*5 and rheology,

o2, is reasonably verified away from the surface. Thisis LES wishes to thank R. T. Wilcox for many useful con-
in contrast with earlier simulations on chute flows, whichversations. DL was supported by the Israel Science Founda-
indicated linear velocity profiles. We argue that although thistion under Grant No. 211/97. Sandia is a multiprogram labo-
latter may be the case for small systems, such as flowingatory operated by Sandia Corporation, a Lockheed Martin
layers less than 20-particles high, steady flows of moderatelompany, for the United States Department of Energy under
thick systems are well-approximated by Bagnold scaling. Contract No. DE-AC04-94AL85000.
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