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Theory of asymmetric nonadditive binary hard-sphere mixtures

R. Roth and R. Evans
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

A. A. Louis
Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
(Received 25 May 2001; published 26 October 2001

It is shown that the formal procedure of integrating out the degrees of freedom of the small spheres in a
binary hard-sphere mixture works equally well for nonadditive as it does for additive mixtures. For highly
asymmetric mixturegssmall size ratiosthe resulting effective Hamiltonian of the one-component fluid of big
spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by
truncating after the term describing the effective pair interaction. Using a density functional treatment devel-
oped originally for additive hard-sphere mixtures the zero, one, and two-body contribution to the effective
Hamiltonian are determined. It is demonstrated that even small degrees of positive or negative nonadditivity
have significant effect on the shape of the depletion potential. The second virial coefigjeattrresponding
to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of
nonadditivity. The variation oB, with the density of the small spheres shows significantly different behavior
for additive, slightly positive and slightly negative nonadditive mixtures. Possible repercussions of these results
for the phase behavior of binary hard-sphere mixtures are discussed and it is suggested that measurements of
B, might provide a means of determining the degree of nonadditivity in real colloidal mixtures.
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[. INTRODUCTION ratio 2Ry/o . is larger than about 0.35 fluid-fluid phase
separation is stable with respect to the fluid-solid transition.
Mixtures of hard spheres play a pivotal role in the statis-The AO model can be regarded as an extreropadditive
tical mechanics of liquids. Not only do they provide a real- mixture with o¢p> (¢t 07p)/2.
istic reference system for describing the structure and ther- One can, of course, investigate mixtures with arbitrary
modynamics of simple atomic mixtures and mixtures ofnonadditivity and recent studies of binary hard-sphere mix-
colloidal particles, they are also of considerable intrinsic in-tures have indicated that a small degree of positive nonaddi-
terest. In particular, investigating the properties of asymmettivity in the cross diametew, s might be sufficient to induce
ric binary hard-sphere mixtures became a topic of much aca fluid-fluid transition(9,10]. By employing an effective one-
tivity when it was recognized by Biben and Handé@mthat  component treatment and a variety of liquid state perturba-
such athermal mixtures might afford important examples ofjon theories, Louist al. [11] have demonstrated that non-
pure entropy-driven fluid-fluid phase separation. The moshdditivity should have a profound effect on both the fluid-
studied model is that o&dditive hard spheres, where the fluid and fluid-solid transition in highly asymmetric hard-
cross diameteo,s= (opp+ 0sg)/2 andoy, refers to the big-  sphere mixtures. However, their treatment is based on an
big ando s to the small-small diameters. There is now com-empirical approximatio{12] for the effective (depletion
pelling evidence to suggest that additive mixtures, with sufpotential between two big spheres rather than any systematic
ficiently small size ratiosrss/opp, do undergo fluid-fluid — derivation of an effective one-component Hamiltonian for
phase separation but this transition remains metastable withe nonadditive hard-sphere mixture. In this paper we de-
respect to the fluid-solid transitidi2]. The other well stud- velop such an approach following the path that was trodden
ied model is the so-called Asakura-Oosaw®0D) model in the recent studies of the additive mixtur@] and in the
[3,4] of a colloid-polymer mixture in which the colloid- special case of the AO modgf]. We show that the same
colloid interaction is hard-sphere like, with diametet.,  formal technique of integrating out the degrees of freedom of
and the colloid-polymer interaction is also hard-sphere likethe smaller species, used in REZ], applies equally well to
with diametero,, whereas the polymer-polymer interaction nonadditive mixturegsee Sec. Il A
is zero, i.e.,op,=0, corresponding to ideal interpenetrating  We were motivated toward such an approach by the fol-
coils. The cross diameter.,= (o..+2Ry)/2, whereR, is  lowing considerations(a) treating highly asymmetric mix-
the radius of gyration of the polymer. Various approximatetures by brute force simulation is beset by ergodicity prob-
theories[5-7] and some simulation studies for simplified lems and slow equilibration when the packing fraction of the
versions of the AO modd]7,8] showed that when the size small species is substantiéth) for small size ratios three and
higher body potentials in the effective Hamiltonian do not
have a significant effect on the phase behavior of the additive
*Present address: Max-Planck Institutr fiMetallforschung,  hard-sphere modéR] or of the AO[7,8] model, i.e., in both
Heisenbergstrasse 1, D-70569 Stuttgart, Germany and ITAP, Unimodels phase transitions are determined primarily by the ef-
versity of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Ger-fective pairwise potential between the big particles and we
many. expect the same to be true for small size ratios in systems
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with intermediate degrees of nonadditivitg) the effective
pairwise potential that arises in the formal development of
the theory is the depletion potential, introduced into colloid
science by Asakura and Oosawa, and now much studied by
theory, simulatiorf13,14] and experiment. Indeed a variety
of experimental techniquegl5] have been developed to
measure the depletion potential between a colloidal particle,
immersed in a sea of small colloids or nonadsorbing poly-
mer, and a wall or another big colloid. Interpreting the re-
sults of such experiments requires a reliable theory. Recently FIG. 1. The centers of the small spheres are excluded from the
we have showrf16,17] that a density functional approach Shaded depletion layer around each big sphere of dianagjer
(DFT) provides an accurate means of calculating the deple?/hen changing the nonadditivity by route(i), the big-small di-
tion potential for additive hard spheres. In the present pape?Meterobs is kept constant. For a fixed, this implies that the
we show(Sec. Il B that the same DFT approach remainsdepletlon Iayer_thlcknesIF Obs™ opp/2 is also held con_stant. The
valid for the nonadditive case and can, therefore, be used all sphere diameter.{(A) is decreased foA>0 and increased
investigate a much wider class of depletion potentials thar A.<O’ ano! S'nfe the number densjtyis fixed, the small sphere
one might have suspectedpriori. We find that even very packing fractionz(4) also changes.
small degrees of nonadditivity can have a very pronounced ) add_ 1
effect on the shape of the depletion potential, which leads to ~ @bs= 2[Tbp 05 A)(1+A)=const ops "= 3 (Tpp
significant changes of the magnitude, and sometimes the + g2dd &)
sign, of the second virial coefficief, associated with the ss
total effective potential between two big spheres. Such
changes irB, may, in turn, have repercussions for the phases'0 that
behavior, and may be directly accessible by experiments. ad
We begin by defining what we mean by nonadditivity. A oo A)= Tss
nonadditive binary hard-sphere mixture is characterized by S 1+A
the diametergdistances of closest approach of the centers of
the spherésay,,, oss, ando,s, Where the subscriptsand  The AO limit, defined by os(A*°)=0, implies AA°

d_(Tbb A

4

s denote big and small. These diameters describehi- zoggd/abbzq, the (fixed) size ratio. Within routdi) choos-
wise) interaction potentials between two spheres ing A>A%% would give rise toosA)<0, which is un-
physical, of course. For a given value of the nonadditivity
® <oy paramete\ and a fixed number density of the small spheres
d.(r)= 1 roo ; : : r
(D=9 otherwise. @ pL |t3 follcr)ws that their packing fraction #74(A)
=moiA)p /6 also varies with,
with i,j e {s,b}. We follow the usual convention and intro- q—A |3
duce the nonadditivity parametdr via r(A) = padd _
0ps=3(0ppT 059 (1+A), 2

where 729%= 7{(0). Clearly 7L(A) decreases with increas-

and allowA to be positive or negative. Additive hard-sphere "9 A in the range 9:A<AAo:q' On the other hand, for
mixtures haveA =0. negative nonadditivityA <0, 7¢(A) increases rapidly with

In the following we consider two different routes to intro- increasing|A| and for studies of the fluid phase we should
ducing nonadditivity into a binary hard-sphere mixtures. Inrestrict 7g(A) < 7{"®**=0.494, the value of the packing frac-
both routes we keep the diameter of the big sphesgsand  tion at the bulk freezing transition of hard spheres.
the number density of the small spheres in the reseplpir
fixed but allow for(i) changes in the diameter of the small
spheresrgs While keeping the cross diametey,s constant or
(i) changes in the cross diametegs while keeping the di-
ameter of the small spheres constant. These two types of
changes are illustrated in Figs. 1 and 2, respectively.

In the first route(i), which was introduced in an earlier
paper by two of u$18], we can smoothly follow a path that
connects the additive hard-sphere mixture to the Asakura- T
Oosawa model3,4]. As mentioned above, in the Asakura- £y, 2. when changing by route(ii), the big-small diameter
Oosawa model, the small particles are modeled as ideal ga3 _ changes. For a fixed,, this implies that the depletion layer
particles with zero diameter,O=0 andA=A"°>0, keep-  thickness = opc— op,/2 also changes. The small-particle diameter
ing the same cross diameter as in the additive case, i.e., W is kept constant, and sing& is fixed, the small sphere packing
require fraction 7 is also constant.

AOQ T
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If we consider routdii), the route used by most previous 1/N,! A *"* times the volume integral over the coordinates of
authorg9-11], botho,, andoss are kept fixed and the cross gpeciesy. In Eq. (8) it denotes the classical trace over the

that this case is very different from ca@¢ as the packing HamiltonianHe" is given, in the notation of Ref2], by
fraction » of the small spheres remains constant through the

whole range of nonadditivity and the Asakura-Oosawa limit HeT=H,,+Q, 9
can only be reached in the limit of— 0 in which the depth

of the depletion potential approaches zero as well. with 0=Q(Ny,z,,Vi{r’}), the grandcanonical potential of

Examples of depletion potentials and second virial coef-t_he fluid O_f spe(_:ies bsubjected to_the external_ potenti_al of a
ficients calculated from both routes are given in Sec. Ill. wefx€d configurationr®} of N, particles of specieb, defined
conclude in Sec. IV with a summary of our results and a®Y

discussion of their possible relevance for experiments. o
exp(— Q)= X, exp(BusNo) Treexil — B(HsstHpd .
Il. MAPPING A BINARY MIXTURE ONTO AN EFFECTIVE Ns=0
ONE-COMPONENT SYSTEM (10

In this section we map the binary mixture of nonadditive Using a Mayer cluster expansion it was sho@hthat() can
hard spheres onto an effective one-component system of bg Written as a sum of ternd3,,, which describe the simul-
particles. To this end we begin by formally integrating outtaneous interaction af particles of specieb with the “sea”
the degrees of freedom of the small spheres and determirf speciess, i.e.,

the form of the effective Hamiltonian of the one-component Ny
fluid. We demonstrate that each term of the effective Hamil- _

: ° ; . Q=> Q,. (11)
tonian of the nonadditive system can be determined using a n=0

theory for an additive mixture. In a second step we calculate
explicitly the leading contributions to the effective Hamil- This result is valid for arbitraryintegrablg pairwise poten-
tonian for the binary mixture of nonadditive hard spherestials. We emphasize that in E¢9) all direct interactions
using a DFT designed for the additive hard-sphere mixture between specieb, the big particles, are contained Hy,
while Q) describes interactions between specgssmall
A. Formal mapping for additive and nonadditive mixtures spheres, and between the big and small ones. It is precisely
) this separation into a term that contains just the big-big in-
We follow the procedure developed by McMillan and teractions and those that contain small-small and big-small
Mayer[19] to formally integrate out the degrees of freedomneractions that allows us to calculate the leading tefins

of the small spheres in a homogeneous mixturipobig and oy nonadditive hard-sphere mixtures using a theory for an
Ns small spheres in a macroscopic volutde The Hamil-  4qditive mixture. More specifically, for a given fixed con-
tonian of our mixture is given by figuration of large particles) is completely determined by
©6) the parameters;, o5, andos. In other words all the terms
Q,, would have an identical form for an additive or a nonad-
with K the total kinetic energy of the mixture, leading to a ditive system. The only differences arisehiy,, whereoy,
trivial contribution to the free energy, and three potentialconstrains the possible positions of the big particlegr fo

H:K+be+HSS+Hb31

energy contributions —r]-b|>0'bb for all I,] For the additive Caserbb=2crbs
— o0, While in the nonadditive casey,, can vary more
Np N widely depending on the value of.

S
Hop= > @op(rP—1D),  Hge= X dedri—r),
1< <] 1. Zero-body term€2,
N, Ng The first term ), is the grandcanonical potential of a sea
Hys= 2 >, q)bs(rib_rjs)- (7)  of small spheres with fugacitys without any big sphere
i=1j=1 present and it follows thd2]

where the pairwisebhard—sphere interaction potentigjsare Oo(z5,V)=—ps(Z5)V, (12
defined in Eq.(2). r{, rjS denote the coordinates of big par- .
ticle i and small particlg, respectively. The thermodynamic With ps(zs) the pressure of the reservoir of small spheres.
potential F(Ny,zs,V) of a general binary mixture in the Since this term is intrinsic to the small-sphere fluid it is not
semigrandcanonical ensemble can be written in terms of a@ffected by introducing nonadditivity.
effective HamiltoniarH® via the relation
2. One-body ternf}
exp(— BF)=Tryexp( — gHe'), (8 For a homogeneous system the one-body térmis of

the form
whereB=1/kgT, andz,= As‘sexp(B,us) is the fugacity of the

(smal) speciess, fixed by the reservoir. Tris shorthand for Q1(Np,zs) =Npw4(zg), (13
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with [2]
exff — Bwi(zs)]=(exp(— BHEY))., (14)

whereH("Y denotes the interaction betwelig small spheres
andn=1 big spheres and the brackets ~>Zs refer to an

ensemble average in the reservoir of small sphapgéz)

PHYSICAL REVIEW E54 051202

with r =|rP— rb| the distance between the centers of the big
spheres Equwalently we can use the vana‘rhler — Opp»

, the distance between the surfaces of two b|g spheres.
wz(Zs, IJ) W(h=r;;—oyp) is the grand potential differ-
ence between a sea of small spheres, at fugagitgontain-
ing two big spheres at finite separath‘h and one in which
the separatlorn =oo, Although the positions of two big par-

can be identified as the difference in grandcanonical potenicles are |nvoIved the big-big interaction does not enter ex-

tial between a sea of small spheres at fugazityith and

plicitly into the calculation ofw,; the diameterr,,, merely

without a single big sphere. By considering the potential disacts as an external parameter that restricts the minimum
tribution theorem and the definition of the one- bOdy d|rectseparat|on tal] =0pp- In other Words for a g|Vezs’ Obs

correlation functionc{"(r°) one can show20,16 that this

and o, the calculation ofw, is the same for both additive

difference in grandcanonical potential can be expressed asand nonadditive systems.

Bwy(z)=— lim c{P(e),

©

(19

Hp——

wherec(l)(oc) denotes the direct correlation function of a big
sphere evaluated in the bulk mixture. The limi— —
implies that the chemical potential,, of speciesh is made

w5 can be identified with the well-known depletion poten-
tial between the two big spherg®,16] and expressed in
terms of the one-body direct correlation function

Bws(zg;r)=lim [ciP()—c{M(r)],
Mp— —*®

(20

suffrcrently negative that only one big sphere is presentwherec{!(r) refers to an inhomogeneous situation in which

(00) is proportional to the exced®ver ideal chemical
potentlal of specieb, i.e., —c{() = Bu* and, in general,

a big sphere fixed at the origin exerts its field on the small
spheres and a bi@es) particle is inserted at [16].

depends on the density of both species. However, in the limit

wp— —, ciY(=) depends only on the fugacitg,. Since
only one big sphere is involvedhis is explicit in Eq.(14)]
nonadditivity plays no role in determinin@,. One merely
specifiesoss and theno, describes the interaction between
small spheres and a fixed big one.

As noticed in Ref[21], the one-body ternw,(z) deter-
mines the Henry’s law constah(zs) of the fluid. The latter
can be defined bj22]

h(zg)= lim Po

pbﬂozb(P )’ (1

wherez,=Ay 3exp(ﬁ,ub) is the fugacity of specieb. It fol-
lows that

h(zo) =exd — Bw1(zy)]. 7

h(zs) does not depend ob-b interactions; deviations of
h(zs) from unity reflect the average effect bfs interactions
at a fixed fugacityzg of small spheres. Thus, given some
means of calculating{)(=), in the limit p,—0, one can
determine the Henry’s law constant.

3. Two-body term€2,
The two-body term(}, is given by

Np
QN z5i {1 = 2 walzsi [P =1, (18
where the pair potentiab, is defined by[ 2]
L {exp(—BH(),,
exfd — Bwy(zs:1ij) 1= (19

(exp(—BHEN)?

4. Three-body and higher-order term€ -5

The three-body ternﬁl3 can be written as a sum of three-
body potentialsw;(zg;r Ijk) which can, in turn, be ex-
pressed in terms of ensemble averagmg(— ,BH(“))>ZS with
n=1,2,3 [2]. Once again big-big interactions are not in-
volved in the calculation and,;, simply specifies the physi-
cally allowed configurations of the three big spheres. Clearly
nonadditivity plays no role. The same argument applies for
the higher-body 16>3) contributions to(}, although the
specification of the allowed configurations of the big spheres
becomes increasingly complicated rafcreases.

In practice, the calculation df,, for n=3 is tedious and
determining the phase behavior for effective Hamiltonians
that include these and higher-body interactions would be
very cumbersome. Contributions to the many-body terms
arise from two mechanismégl) Directly, if for a givenoyy,,
ops IS large enough to allow the overlap of more than two
depletion layers(2) Indirectly, if correlations between the
small particles, present for all nonzeogg, induce interac-
tions between more than two particles. Contributions from
mechanism(1) to €, with n=3 are identically zero for
(20hs— Tpp) Tpp=< 2/\/§ 1=0.1547[7], while for (20
— 0pp) Tpp=+/3/2—1=0.2247 the contributions t&, with
n=4 terms are zerf23], etc, . .. Ifoss>0, then mechanlsm
(2) will induce additional contributions to the many-body
terms at all values ofr,s and oy, .

For the extreme nonadditive AO model, wherg=0 but
ops IS NONzero, only mechanisf) contributes to the many-
body terms. An explicit form for the three-body term can be
calculated 24], but this is still very tedious to evaluate.

For additive binary hard-sphere mixtures withg
=0/ opp=0.1, where only the indirect mechanig@) con-
tributes, three-body contributions seem to be sifid8l. Re-
cent DFT calculation$24,25 of the three-body potentials
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show that these are still much smaller than the two-bodynto the calculation of,,. This argument substantiates fur-

potentials forg=0.2, where both mechanisms contribute, ther the intuitive picture presented in REL8].

and that the indirect mechanis(@) can have an important What is required for calculating); and Q, is some

effect on their shape. means of determininggl) in the limit of vanishing density of
There is strong evidence from direct simulation studies ohig spheres. DFT provides a suitable route sifdg

the additive binary system that retaining only two-body con-

tributions in the effective Hamiltonian provides a very good 8F o] Pty +ps]

account of the equilibrium phase behavior fp=0.2 [2]. Cf)l)(r)z—ﬁé—,

Similar conclusions were reached for a lattice version of the Po(r)

AO model[8]. In this study we shall focus on such highly

asymmetric systems and neglect three and higher-body co

tributions to the effective Hamiltonian. With this assumption

it follows that the structure of the homogeneous fl(edui-

librium correlation functions of the big sphejeis deter-

mined solely by the effective pairwise potential

(24)

Where e, py . ps] is the excesgover idea) intrinsic Helm-
holtz free energy functional of the mixtuf&6]. Thus, given
some prescription for the mixture functional one can calcu-
late all the necessary ingredients. Rosenfeld’s fundamental
measure theor{26] supplies an approximate functional,

for an additive mixture of hard spheres of the form

Doi(Zg;1) =D pp(r) + wo(Zs31), (22)

since(), and(); do not depend on the coordinates of the big BFedpp(r),ps(r)]= j d’rw({n.}), (25)
particles[21]. It is also straightforward to show that the
phase equilibriaof the binary mixture do not depend on the
zero and one-body terii2]. However, these two terms do

influence the total pressure and compressibility of the miX'There are four scalar and two vector weight functiorls, w

ture [21]. I : . ) )
To complete this section it is necessary to explain how toWlth 1=a=6. Details can be found in R4R26]; the weights

. .—depend on the radR; of each species. For a binary mixture
convert frompy, the number density of the small spheres in P ! P y

X the weighted densities are
the reservoir tgp, the actual value of the small sphere den-
sity in the mixture. The average number of small spheres in

with weighted densities, that depend on the fundamental
geometrical measures of the spheres constituting the mixture.

the mixture is given by the thermodynamic relation na(r):i:sz f d3r pi(r )W (r—r"). (26)
JF(Ny ,V,Z.) 3,320 Q, It is important to realize that once the reduced free energy
(Ng), =— br 70787 _ _ . (220  density¥({n,}) is specified the mapping described in Sec.

E AUES Il A'is completely determined within thi@pproximate DFT

framework. We choose to apply tleeiginal Rosenfeld func-
In Ref.[2] it was shown that an accurate approximation fortional [26]

the conversion can be obtained for additive hard spheres with
high asymmetryq=0.1, by truncating the expansion after

3
UE n5—3n,n,-n
the one-body term so that the average number of smalkp({na}):_n0|n(1_n3)+nln2 NNz N27 2Nl e

spheres can be evaluated approximately from the formula 1-ng 247(1-ng)?
(27)
IB(Qo+Q9)
D T 23 Recall that the two-body di | icaf?)
s < y direct correlation functmﬁﬁ ,

Np.V o . . ) e
b with i, j e b, s, obtained by taking two functional derivatives

The required densitps=(Ns),_/V. We shall revisit this ap- Of this functional reduce to the Percus-YevitkY) cP(Ir
proximation in the next section. —r'|) for'a homogeneous hard-sphere mixture. The Rosen-
feld functional has proven to be extremely successful in de-
scribing the structure of the inhomogeneous fluid phases of
hard-sphere mixtures. If solid phases are to be considered,
1. Rosenfeld’s fundamental measure DFT modifications to the original Rosenfeld functional should be

In order to make the mapping presented in Sec. Il A ex_made[28]_

plicit for the model of interest, namely, the binary mixture of
nonadditive hard spheres, we calculate the tefigs Q4,
and Q, within the framework of Rosenfeld’'s fundamental = We begin the explicit mapping by noting that the equation
measure DFT26]—a theory constructed for additive hard- of state underlying the Rosenfeld functiofa6] is pgy, the
sphere mixtures. As mentioned earlier, the reason why weercus-Yevick compressibility equation of state for additive
can apply a theory constructed fadditivebinary mixtures is  hard-sphere mixtures. In order to calculate the zero-body
that only the interaction potentiatbss, between two small term, however, we need only the equation of state for a one-
spheres, and,g, between a big and a small sphere, entercomponent fluid so we set

B. Evaluation of Qg, Q4, and Q, within DFT

2. Calculating Q from DFT

051202-5
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(752 It follows that for an arbitrary nonadditive mixtur®, en-
BPs(Zs) = BPpy(Zs) = ps 35 , (29 terir!g Eq.(31) should be glgfineo_l aRy=0,s— 0s42. In the
(=79 particular case of an additive mixtuR, reduces tary/2.

Note that theorm of Eg. (31) is the same as that given by
Hendersorj20] in a scaled particle theory fa{')(s). How-
ever, in Henderson’s treatmec@l)(oo) is expressed in pow-
ers of the variabl&®= o,5. If one converts his Eq54) to an
expression in terms dR,=R— 0542 one recoverprecisely
Usmg the Rosenfeld functional the direct one- bOdy CorrEEq (31). In other words, his scaled part|c|e ana|y5|5 agrees

with 7i=mo3pl6, the reservoir packing fraction of the
small spheres(), follows directly from Eq.(12).

3. Calculating Q; from DFT

lation functioncf® can be written a$16] completely with the present DFT approach, attesting further
to the consistency of the latter. Note also that in the low
()= - 2 f & ( a}>> Wo(r—r'), density limit p{—0, Eq.(31) implies By (z;) —4moipl/3
oo which is theexactlimiting value—see Appendix.

(29)
4. Converting from the reservoir packing fractiomy to the

In the dilute limit in which the density of the big spheres packing fraction », in the mixture
—0, the weighted densities depend only on the density pro-

file po(r) of the small spheres Given explicit formulas for(), and (0; we can employ

Eqg. (23) to obtain an explicit conversion betweep, the

dilute 5 . packing fraction of the small spheres in the system, apd
Ne (V)ZJ dor"ps(r )wo(r—r’). (300 the packing fraction in the reservoir. To this end we first
determine the fugacitgs= piexp(Bus) of the small spheres

Note thatps(r) then corresponds to a one-component fluid ofwithin the framework of the Rosenfeld DFT approagtf,

species[16]. In bulkthe density profile of the small spheres the excess chemical potential of the pure small sphere fluid,

ps(r) is constant and equal taf, the vector weighted den- is given by the Percus-Yevickcompressibility result, so

sitiesn,, vanish and scalar weight functions reduce to thosghat

of a one-component fluid, i.ens— 75, N,—67doss, Ny

— 3754 (wo?), andng— 675 (mal). ciP(») can be evalu- 6 147 13(7%)%+5(75)°

ated explicitly and the result expressed as N mfgs(l— 70 ex 2(1-75)3

477R3 (33

— i _ @
Bwa(zg)= lim —cp7(ee)= ﬂpS(ZSHA'WRb'By(ZS) Using the expressions fd, and Q); given in this section

o together with Eqs(23) and (33) we obtain for the packing
R, 67 fraction of small spheres in the system= mgsos/a,
o), (3D)
ss1— 17 P 3 1- 75 5 (1—7ny)?
where the first term corresponds to the partial derivative’® )75~ qeff7lb7751+2773 qufnbns(lJrZ AR
dlang, the second t@/dn,, and so on. As the first term is -
proportional to the pressure of the reservoir of small spheres, 3  (I=79)
i i i “QettMls . 4 12 (34

given by Eq.(28) and the second term is proportional to the e S(1+27,g)2

planar “surface tension”

whereqeq1i=0s42R, is the effective size ratio. In the limit

r r
375(2+ 75) 7.—0 this result reduces to

By(zs) = (32

2mal(1—nh)?’
i 7! 5= [1= (1 + desr) ], (35)
these have a natural interpretationmgaV and yAA terms,
respectively. Although it is more difficult to give a physical Which is the standard excluded volume expression, appropri-
interpretation of the last two terms in E(1) they are im-  ate to an ideal gas of small particlgg]. However, for non-
portant, for example, in obtaining the correct low densityzero densities of small spheres K84) predicts a nonlinear
limit—see below. Since- 8~ c{"(x) is the excess chemi- dependence ofjs on 7. This is illustrated in Fig. 3 where
cal potential of speciels in a uniform (bulk) mixture we can ~ We plot 75 versusz; for additive hard-sphere mixtures with
also determine this quantity starting from the bulk exces€a) q=0.1 and(b) g=0.05. Our results are compared with
free energy density, differentiating with respect to the bulkthose of direct Monte-Carlo simulations of the binary mix-
density p, and then taking the limip,—0. The result is ture [2]. The agreement between theory and simulation is
identical to that in Eq(31). excellent, with a small deviation occurring @t=0.74 and
Although we have derived this result starting from a0.10 for q=0.1. Note that the free-volume theory of Lek-
theory developed for an additive mixture once we have &erkerker and Stroobant29], which asserts thatys/ 7
taken the limitp,— 0 the big-big interaction is not relevant. = a(zs=0;7,), wherea(zs=0;7,) is the free-volume frac-
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0.3 +
n, = 0.10
M, = 0.20
02 ¢ n,=0.30 ¢+
= 1 = 0.50 RN
—_— / \
o1 1 < d ,,
= o N 7
_ e Serr
n, =0.74 [y s :
. /= A=-002222
4] + + p—t————t i T A =-0.01
0.1 0.2 0.3 04 — A=00
n --- A=0012
—= A=0.03125
0.1 PPy . == A=0.05769
008 4 N,=0411 0 0.5 1 1.5 2 2.5
1, = 0.51 h/o6.(0
0.06 } * 1 =(0)
& m, = 0.61 FIG. 4. The depletion potenti&V(h)= w,(zs; o, +h) between
004 1 1 two big hard spheres in a sea of small hard spheres calculated for a
n,=0.74 size ratiog=0.1 and a range of nonadditivities treated according
0.02 1 T to route(i). The number density of the small spherg§, is fixed
o it : _ _ with packing fraction;2%%= pL(o29%3/6=0.2. A=0 corresponds
0 0'65 0:1 o.'1 5 02 to an additive hard-sphere mixtuteis the separation between the

. surfaces of the big spheres and(0)=qoyy, -

N,
fixed big sphere of radiu®,. This is used in Eq(30) to
determine the relevant weighted densities, which then deter-
mine c{(r) via Eq. (29).

We emphasize that the mapping of a depletion potential in
a nonadditive system onto one in an additive mixture is exact
and has been applied in a recent study of generalized effec-
tive potentialg 30].

FIG. 3. The small sphere packing fractiop of an additive
binary hard-sphere mixture, with size raii@ 0.10 and(b) 0.05,
versus that of the reservoiyg for several big sphere packing frac-
tions 7, . The squares denote the direct simulation data of 2éf.
while the lines denote the results of EH84). Note the significant
deviations from linearity in both theory and simulations.

tion evaluated fpr Zero fugacity.of the small spheres, signifi- Ill. APPLICATIONS

cantly underestimates/ »5 at higher values ofy; [2]. We

conclude that retaining only the two leading terfdg and A. Effect of nonadditivity on the shape of depletion potentials
Q, and employing PY theory for these quantities provides an 1. Changes of type (i) varies, bute,, is fixed
accurate approximation for the free volume fractiggf %,
at least for small values dj.

For completeness, we should mention that the theory e
ployed in Ref.[2] to calculatens/7¢ used the Carnahan-
Starling result forzg and Henderson's expression fcff) (=)
Ik,)[uit vxltr\:var: eTﬁ}'”tC?rl] TO(ivn‘|ca|t1|onnof :jh? l?ﬁd"(n@b t;:-rmr.n dic Choosing a size ratig=0.1 and a fixed packing fraction

s now clear that there was no need to make such a mo add_0 5 e can vary the non-

S 2 . . . .~ In the additive mixture ofzg
fication; the confusion arose from the improper |dent|f|cat|onadd.t. ity parametert betweenA — —0.031. correspondin
of the parameteR in Henderson’s theory. Fortunately the ivity p e ponding

; oD .
numerical results presented in Fig. 13 of R are very © the packing fraction;y(A) of the small spheres, given by

. . . . f
close to those given by the present, fully consistent theoryEd: (5), reaching the freezing packing fractiony™***

i —_ AAO_ H H —
For future applications we recommend that E8¢) should _0'4/?3" andA =A""=q, in which casess:=0 and hence
be used. 75(A"°)=0. Results for the depletion potentials are given in

Fig. 4. Forg=0.1 and;29%=0.2 the depletion potential ob-
tained from DFT for additive hard sphere&A €0) is in ex-
cellent agreement with the results of computer simulations
The two-body contributiof),, given in Eq.(18), requires  [13]—see the comparison in Refl6]. Moreover, for A

Following the procedure of Ref18] we follow route (i)
m’:_md demonstrate that for a givdfixed) size ratioq and
packing fractions2%% of the additive mixture the effects of
nonadditivity A on the shape of the depletion potential are
very strong.

5. Calculating Q, from DFT

the calculation of the depletion potentiah(zs;r) given by  =A”%=0.1 we find that our calculated depletion potential is
Eqg. (20). This can be carried out using the procedure dedindistinguishable from the analytic AO resyiit8].
scribed in Ref[16]. We first calculate théinhomogeneoys For small degrees of positive nonadditivity the main ef-

equilibrium density profileps(r) of the small spheres near a fects observed in the depletion potential are a weakening of

051202-7



R. ROTH, R. EVANS, AND A. A. LOUIS PHYSICAL REVIEW B54 051202

4 -
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= . 8 ¥ /, ....... A=-0.01
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N ; --= A=0.012
ey —— A=0.03125
/ —-= A=0.05769
4] -14
: 0 0.5 1 15 2 25
0 1 2 8 4 °
h/6,(0)

h/6,(0)
. . add e . FIG. 6. The depletion potenti&l/(h)= w»(zs; opp+ h) between
FIG. 5. As in Fig. 4 but now the packing fraCt.'(?Vg is fixed  two big hard spheres in a sea of small hard spheres calculated for a
at 0.1. For these negative values of the nonadditiditthe deple-  gjze ratiog=0.1 and a range of nonadditivities treated according

tion potential is repulsive near contact and for- —0.057 14 the 4 youte(ii). The packing fraction in the reservoif,=0.2 remains
depletion force is repulsive near contact. constant for all values ak. A=0 corresponds to an additive hard-
sphere mixtureh is the separation between the surfaces of the big

the first repulsive potential barrier, due to a decreased paclépheres and{0)=qoy,. These results should be contrasted with
ing fraction [given by Eq(5)], and an increase in the range those in Fig. 4—note the difference between the vertical scales.
of attraction, i.e., the maximum of the potential shifts to
larger separations. Both effects tend to increase the net
attraction and this is reflected in the second virial coefficient
as we shall see later.

For negative values oA the packing fractionpg(A) of
the small spheres increases rapidly and the contact value of
the depletion potential increases sharply—see Fig. 4. For 1. Changes in B as a function ofA
sufficiently ne_gative values af t'he depletion potential can In Sec. Ill A we demonstrated that introducing a rather
become positive at contact while the force near contact resmg|| degree of either positive or negative nonadditivity has
mains attractive. If the densityg of the small spheres is a profound effect on the shape of the depletion potential.
small enough to permit a high degree of negative nonaddiHere we investigate the effect of nonadditivity on the second
tivity the depletion force near contact can even become reyjria| coefficientB, that measures the net attraction between
pulsive. This is illustrated in Fig. 5 for parameter§"  two big particles in the sea of small on@, corresponds to
=0.1 andg=0.1. Now A can take values as low as the total effective pair potentiab.s{(zs:r) defined in Eq.
—0.060 whilsty5(A) remains smaller thap'®®?. Depletion  (21). It follows that
potentials forg=0.1 and»29=0.3 were presented in Fig. 3 )
of Ref.[18] and forg=0.2 and»2=0.1 were presented in B,=B}S+ Zqu drr?{1—exd — Bw,(zs;1)]}, (36)
Fig. 2 of Ref.[30]; these display similar trends with as Thb
those shown here.

potentials forq=0.2, »=0.2 were presented in Fig. 3 of
Ref.[30]; these display similar trends with as those shown
here.

B. Effect of nonadditivity on the second virial coefficient

with BYS=2703,/3, the second virial coefficient of the pure
hard-sphere system. If the depletion potendia(z;r) gen-
erates enough attraction between the two big sph@sesan

In Fig. 6 we show the effect of changiny according to  become negativg31]. Note thatB, is a function ofA and
route (ii). Now the packing fraction in the reservoiy is Zs.
fixed at 0.2 for all values oA andoy, varies. The results are In Fig. 7 B, is plotted as a function oA for 7299=0.2
very different from those in Fig. 4 that correspond to theandq=0.1. For an intermediate value df.,;,;=~0.0279 we
same size rati=0.1 and the same;29%. In the present find that B, takes its minimum value 0B(A y;n)/B5 S~
case increasing shifts the depletion potential almost rigidly —0.5. The variation oB, with A is similar to that ofwW(h
along theh axis to larger separations leading to much =0)=w,(zs;0pp), the contact value of the depletion poten-
deeper and longer ranged attractive wells than fe¢0. tial, although the latter has its minimum at a slightly lower
Making A increasingly more negative corresponds to shiftingvalue A~0.016 — see inset of Fig. 7. Provided is suffi-
the potential to smaller separations, thereby reducing the atiently high to generate significant packing effects the pres-
traction and the height of the potential barrier. Depletionence of a minimum inB, in the range G A,,;,;>A”° is

2. Changes of type (ii)oy,s varies, buto g is fixed
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FIG. 7. The reduced second virial coefficient of the big spheres FIG. 8. The reduced second virial coefficient of the big spheres
B, in units of BYS=27¢3,/3 as a function of the nonadditivitx.  in additive hard-sphere mixturesA(=0) for various size ratios
These results correspond to the depletion potentials of Fig. 4, i.eversus;29%, the packing fraction of small spheres in the reservoir.
72%9=0.2 andq=0.1, for which the maximum nonadditivity is According to the criterion of Ref[32], (metastablg fluid-fluid
AA®=0.1. The inset shows the contact valuBW(h=0)  phase separation can only occuBif/B} < — 1.5 (horizontal ling.
= Bw,(zs;0pp) Of the depletion potential as a function Af

. . ) . . that for an intermediate value @f the second virial coeffi-
easily understoofil8]. For a given size ratig and density of  jent B, must have a minimum. It is, however, surprising

s_maII_ particlespi>0 the Asakura-Oosawa depletion poten- gng striking that this minimum is found to be de¢@y®
tial given by —By(Amin) //[BYS—B,(AA)]~1.26, and located at a
—\WAO Y rather low degree of nonadditivity.
W(h)=W(h) == pig(z9) AV(h), 37 In the additive limitB, is already positive for this particu-
lar mixture and a very small degree of negative nonadditivity

_ _ . . :
wherep;q(zs) = pskpT is the ideal gas pressure and/(h) is ‘s sufficient to makeB, strongly positive.

the overlap volume excluded to the centers of the smal
spheresh denotes the separation between the surfaces of th
two big spheres so thakV(h)=0 for h>o,{0)=qopy,-
WAC is purely attractive and should always generate more
net attraction than the depletion potential of an additive hard- In an experimental situatioA is not an easily control-
sphere mixture—providedy,, is large enough that packing lable or tunable parameter and, therefore, it is most interest-
effects become significant. Then the depletion potential coning from an experimental point of view to consider a fixed
sists of an attractive part close to contact and an oscillatoryalue of A and investigate the depletion potential aBg

tail for larger separation. Packing effects of the small spherewhen the reservoir density of the small sphesgsa quantity
reduce the range of the initial attractive part of the hard-that can be controlled easily in an experiment, is changed.
sphere depletion potential compared to the Asakura-Oosawa If one were to take any reghsymmetri¢ binary mixture
potential and for the same value gfand p; we find Béo of hard-sphere like colloidal particles and have some means
<B3%, at least for the parameters we studied. Very close t®f determining the three interparticle pairwise potentials one
the Asakura-Oosawa limit, i.eA <A, where the packing could, in principle, assign three effective hard-sphere diam-
fraction of the small spheres, E¢f), is small but nonzero, ©€t€rsap,, 0, andoss using standard liquid state theories
packing effects are minor and the depletion potential is stil[30]- In general, one would not expect these diameters to be
determined by excluded volume considerations. For a nonPerfectly additive although the magnitude and sign of the
zero packing fraction, however, the pressure of the smalfonadditivity might be difficult to ascertain by any direct
sphere fluid is higher than in an ideal gas so that to first ordef’asurement. In this section we demonstrate that a very

ei. Changes in B as a function of g and a criterion for fluid-
fluid phase separation

in 7., the virial expansion of this pressure yields small degree of nonadditivity reveals itself very clearly in the
s dependence oB, on the packing fraction of the small
WAC1(h)=[1+47}(A)JWAC(h). (38)  spheresy.

To this end we start with an additive mixture and plot in
In Ref.[18] we showed that this modified AO approximation Fig. 8 B, expressed in units of the second virial coefficient of
is very accurate fory (A)<0.01. According to this approxi- a pure hard-sphere systéBl® as a function ofy.= 29 for
mation the depletion potential, E¢38), is more attractive various size ratiog]. The qualitative behavior 0B, is the
than in the Asakura-Oosawa limit so that we can concludesame for all size ratios: for small values gf the reduced
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second virial coefficient decreases from unity in approxi-
mately linear fashion while for high packing fractions,
>0.3, the decreasing range of attraction and the increasing
height of the repulsive potential barrier in the depletion po-
tential hinder a further decrease B and we find a mini-
mum of the second virial coefficient at roughh;<0.4 and
an increase oB, upon further increase ofy.

The quantitative behavior, however, depends very
strongly on the value of. For large size ratiogy>0.2 we
find that for all packing fractions;g the depletion potential
cannot generate enough net attraction to mBkeegative.
This observation helps us to understand, in terms of the
depletion potential, the fact that in additive binary hard-
sphere mixtures with large size rati@g even metastable
fluid-fluid phase separation does not ocf2if. + + + ¢

For smaller size ratios the minimum Bf, becomes more 0 0.1 0.2 0.3 04 0.5
pronounced and, takes on negative values for a range of nYA)
7s. At a size ratio 1:9 ¢=0.1111) the minimum value of
B, falls below _1_53';5_ By analyzing a large series of FIG. 9. The reduced second virial coefficient of the big spheres
simulation results for a variety ofone componeptmodel in hard-spherg mixt_ures \_Nith a smalbsitive nonadd_itivity A_:
fluids, Vliegenthart and LekkerkerkéB2] have shown re- +q/20 for various size ratiog ve_rsusn;(A), the packing frfa_ctlon
cently that the second virial coefficient evaluated at the gas2f Small spheres in the reservoir. In contrast to the additive case,
liquid critical temperaturd, takes values that lie in a fairly 19 8. B2/B;™ always falls below—1.5 indicating that(meta-

As . . stable fluid-fluid phase separation could occur for all size ratios
narrow range arounet 1.585 . For the model fluids consid-
. S . .. shown here

ered in Ref.[32] gas-liquid coexistence can only occur if

BZ/B';S< —1.5. If we assume that this empirical criterion is B, as a function ofpg(A), however, changes qualitatively as
applicable to the effective one-component system describegan be seen in Fig. 9. For all size ratios considered here the
by our pairwise potential® it follows that only systems second virial coefficient becomes negative &dB'S falls
with B,/BY*® lying below the horizontal line in Fig. 8 could below the— 1.5 line prior to freezing of the small particles.
exhibit (metastablefluid-fluid coexistence. It is important to  The smallerg, the smaller the value ofi. when this line is
emphasize that the criterion is empirical and that it was degrgssed. There is no minimum By,. Thus according to the
veloped for model fluids in which the attractive part of the empirical criterion all the mixtures considered here should
pairwise potential is monotonically increasing with interpar- exhibit (metastablg fluid-fluid coexistence. Once again, we
ticle separationr, unlike our present effective potentials. cannot say whether this transition is stable with respect to the
Moreover, the criterion does not predict whether the gasf|yid-solid transition.

liquid coexistence is stable or metastable with respect to Oyr results provide some understanding, in terms of the
fluid-solid coexistence. Recall that the shorter I’ange of th@ep|eti0n potentia' description, of Why Only small degrees of
attraCtive pOtential the more I|ke|y iS the gas-liquid transition positive nonadditivity m|ght |ead to f|u|d_f|u|d phase Separa_
to become metastab[82]. In a simulation study of the ef- tjon in asymmetric binary hard-sphere mixtures. We recall
fective one-component Hamiltonian for an additive hard-that Biben and Hansei®] found forg=0.1, on the basis of
sphere mixture, metastable fluid-fluid phase separation wage Barboy-Gelbarf33] equation of state, that a valu
found forq=0.1 andq=0.05[2]. Forq=0.1 fluid-fluid co-  —0,01 was sufficient to produce a fluid-fluid transition at a
existence occurred for=0.29, whereas fog=0.05 this  total packing fraction<0.5. Later Dijkstrg[10] carried out a
occurred forpg=0.165. These results are in keeping with theseries of Gibbs ensemble Monte-Carlo simulations of the
predictions of the empirical criterion. Note that the secondbinary mixture forq=0.1 and varying degrees of positive
intersection 0B, /B with the horizontal line foq=0.1in  nonadditivity. She found that it was possible to have fluid-
Fig. 8 suggests a possible upper critical point near fluid demixing for a total packing fractior: 0.5, providedA
=0.43[30]. was sufficiently large.

If we introduce a very small degree pbsitive nonaddi- On the other hand, introducing a small degre@edative
tivity according to routei), i.e., we keepoy,, and o, con-  nonadditivity[again via routdi)] decreases the width of the
stant so thar,(A) becomes smaller than for the additive depletion layer compared to the additive case so that the net
case[see Eq(4)], we find a dramatically different situation. attraction should also decrease. We/set—q/20 for eachg
In order to be of relevance to an experimental situationand find that these small negative valuesioéire sufficient
where it might be impossible to rule out a small degree ofto change significantly the shape Bf versusyg(A) from
nonadditivity, we setA =q/20 for each choice ofy. that of the additive case.

As expected, positive nonadditivity leads to a slight in- This is illustrated in Fig. 10 where we show that for size
crease in the width of the depletion layer and, thereforeratios q=0.2 the second virial coefficient changes little as
morenet attraction than in the additive case. The behavior ofunction of #5(A). For large values ofy; we even find that

q=0.05
q=0.1
q=0.2
q=0.3333
q=04

HS
2

B,/B
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tials appear rather similar, they yield very different values of
B,. From Figs. 8—10 we see thBs /B''S is about—1.21 for
A=0, is strongly negative E(Z/B;'S< —9) for A=0.005
(the empirical criterion would predict fluid-fluid phase sepa-
ration) and is positive B, /B4 5=0.36) for A=—0.005.

IV. DISCUSSION

The main results of our study of the equilibrium statistical
mechanics of nonadditive binary hard-sphere mixtures may
be summarized as follows:

1. The formal technique of integrating out the degrees of
freedom of the small spheres in order to obtain an effective
Hamiltonian He'" for the big spheres is equally valid for

nonadditive as for additive mixtures, where it has proved
particularly useful2] for determining the phase behavior of
asymmetric systems. We have provided expressions for zero,
Q,, one,Q4, and two-body contributions te¢'', which can
be evaluated in simulations of the small sphere fl(8ec.

FIG. 10. The reduced second virial coefficient of the big sphere 1A)
2. We showed that the same contributions are readily cal-

in hard-sphere mixtures with a smalkgativenonadditivity A=

culated using the fundamental measure DFT of Rosenfeld, a

—q/20 for various size ratiog versuszni(A), the packing fraction
theory developed originally for additive hard sphef&gc.

of small spheres in the reservoir. Note thit/Bh'* falls below

—1.5 only for the smallest ratiaj=0.05, considered here.

B,> BE'S. For a size ratio ofj=0.1, which in the additive

II B). By calculatingQ), and; we were able to derive an
explicit approximation(34) for the packing fractionzg of
small spheres in the mixture at given reservoir fractigh

case was sufficiently small fds, to become strongly nega- anq big-sphere fractiony,. Comparison with a previous

tive, B, remains positive for all packing fractions. Only for gimylation study for additive mixtures with small size ratios
very smallg can the depletion potential in nonadditive mix- 4 showed that the approximation is very accuréi. 3.
3. The two-body contribution tbl®'" is a sum of effective

tures with negativeA generate sufficient net attraction to
pairwise potentials @q41(z5;r) =Ppp(r) + wo(zg;r).

Our

drive B, negative.
_ We conclude this discussion by emphasizing how SensiprT approach provides a powerful means of determining the
tive B is to changes in the depletion potential. In Fig. 11 wedepletion potentiaks,(zs;r) for nonadditive mixtures. Pro-

show the depletion potentials calculated §er 0.1 and fixed

vided three and higher body terms are small, as is expected

functions and the phase equilibria of the mixture.

75(A)=0.3 for three values oh. Although the three poten-  for smallq, it is solely w, that determines big-big correlation

4. We described two different routes to introducing non-
additivity A and gave examples of the depletion potentials
and the second virial coefficiel®, associated with the cor-
responding effective potentiadb.¢; obtained from both
routes(Sec. ll)). Although the depletion potential depends
upon only the bare potentials apf, the pattern of the varia-
tion with A (see Figs. 4-6does depend on whether route
ops fixed, ogg varies or routelii) o fixed, o varies, is
employed.B, is a sensitive indicator of the shape and range
of the effective potential and exhibits considerable variation

with g, A and 7 (Figs. 7-10.
5. On the basis of the empirical criterioB, /B4 <

2 4
0 4
1
I}
1]
— 4
s i
i
H p— = -
> i A =-0.005
P e A=0.0
4 1l --- A=0.005
:
]
]
)
ol
0 05 1 1.5 2
h/6.(0)

FIG. 11. Depletion potentials fay=0.1 and fixedny(A)=0.3

25

—1.5[32], we showed that fluid-fluid phase separation is
much more likely to occur for a small degree of positive
nonadditivity, A>0, than in additive mixturesA =0, with

the same size ratio. Our results provide a guide to which
binary hard-sphere mixtures might exhibit fluid-fluid separa-
tion which is stable with respect to fluid-solid separation and
we hope that these might stimulate further computer simula-

We conclude by turning to the question of whether the

for A=—0.005, 0 and+0.005. Although these potentials do not tion studies.

differ drastically from each other the correspondiBg see Figs.
8-10, take very different value®,/B}5=0.36, —1.21, and<

—9 for A=—0.005, 0, and+0.005, respectively.

strong effect of nonadditivity on the depletion potentials and
on the virial coefficients found in Secs. Ill A and Ill B has
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any implications for experiments on colloidal systems. mer concentration on the second osmotic virial coefficient of
One-component colloidal suspensions that mimic verya globular protein-polymer solution has been measured re-

closely a hard-sphere system can be created because argntly [37]. However, these experiments are in the protein

small residual short-range interactions remaining after refracimit 2Ry/o..>1, where the concepts of negative and posi-

tive index matching are very well approximated by hardtive nonadditivity are less useful.

spheres with an effective hard-sphere diamg2ét. But cre-

ating a truly additive binary colloidal suspension is much ACKNOWLEDGMENTS

more difficult, since this implies an additional constraint on - -
the value of the effective hard-sphere diameters, namely, th?{ VX:;QZ:‘;'X' |_[|) IJESSQ?; ‘Jé Vf,‘gan'gi}eﬂgt’é .-\Ijl.iel_g;aerrﬁﬁgétl

20hs= oppt 0gs. The small residual interactions in an ex- . S . .
bs U bb T~ ss %or illuminating discussions. R.R. acknowledges support

perimental system designed to mimic binary hard-spher i
mixtures can easily introduce nonadditivi§0J; nonadditiv- | o the EPSRC under Grant No. GR/LBI013, A.AL. ac
knowledges support from the Isaac Newton Trust, Cam-

ity is probably the rule and perfect additivity the exception.brid o
For example, in an earlier papgdrl], one of us has shown by ge.
a simple _qrgument that f_or k_)oth sterigally an_d t_alectrostati- APPENDIX: LOW DENSITY LIMIT OF e,

cally stabilized asymmetric binary colloidsggs is likely to

be smaller than ¢,,+ osg, which implies a small negative Here we demonstrate that the one-body teBm,(zs),
nonadditivity. This in turn suggests that the well depth atgiven in Eq.(31), reduces in the limipgz— 0 to theexactlow
contactW(h=0) is smaller than what would be expected for density limit, i.e.,

an additive system. For short-ranged depletion systems the ) )

location of a fluid-solid liquidus line can be roughly corre- lim Bw1(zs)=psVh+s, (A1)
lated toW(h=0) [11,23; one would, therefore, expect the P50

experimental liquidus line to occur at larger values mpf with Vb+s=4wﬁs/3 the volume of a spherical cavity of

than what is predicted for a purely additive binary hard_Eadius ops, Which is excluded to the centers of the small

sphere system. Experimental results do seem to follow thi . . .
trend [35]. However, since the experimental phase bound—Spheres' Recall thai,(z,) is the excess chemical potential

aries are typically plotted with the small-particle packing of a big hard sphere in a sea of s.malll ones.

fraction »s on they axis, it is not always clear whether dis- In. order to. take the onv density .“m't we note that to

crepancies with the additive theory arise from nonadditivity, €2ding order in powers gfs the equation of state, E(8),

or from small errors in the measurementoaf,, which enters ~ reduces to

7s @S oo lim Bp=pL, (A2)
Instead of focusing on phase boundaries, we propose that

direct measurements of the osmotic second virial coefficient

B, as a function ofns should be a much more sensitive the surface tension, E¢32), to

measure of the existence of nonadditivity, and may even pro-

vide an independent way to ascertain the valueogf, lim By= U_SSPr (A3)

which is otherwise very hard to determine. As illustrated in 278

Figs. 8, 9, and 10, different degrees of nonadditivity induce

clear qualitative differences in the dependenc&bn 55,  the coefficient of the term ifBw, linear inR,, reduces to

implying that one does not require a high level of quantita-

tive accuracy in measurements B§ in order to distinguish . 675 5

clearly between negative and positive nonadditivity. lim m: TOsPs (A4)
For colloidal suspensionB, is typically extracted from pe—0"S s

the low density limit of the osmotic equation of state, mea-

sured by static light scattering. This is nontrivial since it

ps—0

pe—0

and, finally

requires extracting the contribution from the big particles to ) W T
the total scattering intensity. Such measurements were first lim —=In(1=7g)= & oses. (A5)
carried out by de Hek and Vrij in 198@36] for a colloid- ps—0

polymer mixture with a size ratioRy/o..~1 (hereRy is
the radius of gyration of the polymerghey found a clear
trend towards negative values &), upon increasing the . 4 ,0ss Oss|?
polymer concentration, which is consistent with the expected ~ lim ﬁwl:?Rbp;+4WRb7p;+ 477Rb<7> Ps
positive nonadditivity in such colloid-polymer systems. In pe—0
contrast, the results in Sec. Il B imply that for an additive
binary colloid mixture, size ratios ofss/0,,<0.2 are re- +4_7T
quired to driveB, negative. For negative nonadditivity even 3
smaller size ratios are required. Such qualitative effect
should be visible in experiments.

We note in passing that the effect of increasing the poly-=(4w/3)aﬁsp;, which is Eq.(Al).

It follows that

2

3
g
—) Ps- (AB)

T:{ecalling that Ry=0ps— 042 we find Iimprﬁoﬂwl
S
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