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Theory of asymmetric nonadditive binary hard-sphere mixtures
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It is shown that the formal procedure of integrating out the degrees of freedom of the small spheres in a
binary hard-sphere mixture works equally well for nonadditive as it does for additive mixtures. For highly
asymmetric mixtures~small size ratios! the resulting effective Hamiltonian of the one-component fluid of big
spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by
truncating after the term describing the effective pair interaction. Using a density functional treatment devel-
oped originally for additive hard-sphere mixtures the zero, one, and two-body contribution to the effective
Hamiltonian are determined. It is demonstrated that even small degrees of positive or negative nonadditivity
have significant effect on the shape of the depletion potential. The second virial coefficientB2, corresponding
to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of
nonadditivity. The variation ofB2 with the density of the small spheres shows significantly different behavior
for additive, slightly positive and slightly negative nonadditive mixtures. Possible repercussions of these results
for the phase behavior of binary hard-sphere mixtures are discussed and it is suggested that measurements of
B2 might provide a means of determining the degree of nonadditivity in real colloidal mixtures.
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I. INTRODUCTION

Mixtures of hard spheres play a pivotal role in the sta
tical mechanics of liquids. Not only do they provide a re
istic reference system for describing the structure and t
modynamics of simple atomic mixtures and mixtures
colloidal particles, they are also of considerable intrinsic
terest. In particular, investigating the properties of asymm
ric binary hard-sphere mixtures became a topic of much
tivity when it was recognized by Biben and Hansen@1# that
such athermal mixtures might afford important examples
pure entropy-driven fluid-fluid phase separation. The m
studied model is that ofadditive hard spheres, where th
cross diametersbs5(sbb1sss)/2 andsbb refers to the big-
big andsss to the small-small diameters. There is now co
pelling evidence to suggest that additive mixtures, with s
ficiently small size ratiossss/sbb , do undergo fluid-fluid
phase separation but this transition remains metastable
respect to the fluid-solid transition@2#. The other well stud-
ied model is the so-called Asakura-Oosawa~AO! model
@3,4# of a colloid-polymer mixture in which the colloid
colloid interaction is hard-sphere like, with diameterscc ,
and the colloid-polymer interaction is also hard-sphere l
with diameterscp , whereas the polymer-polymer interactio
is zero, i.e.,spp50, corresponding to ideal interpenetratin
coils. The cross diameterscp5(scc12Rg)/2, whereRg is
the radius of gyration of the polymer. Various approxima
theories@5–7# and some simulation studies for simplifie
versions of the AO model@7,8# showed that when the siz
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ratio 2Rg /scc is larger than about 0.35 fluid-fluid phas
separation is stable with respect to the fluid-solid transiti
The AO model can be regarded as an extremenonadditive
mixture with scp.(scc1spp)/2.

One can, of course, investigate mixtures with arbitra
nonadditivity and recent studies of binary hard-sphere m
tures have indicated that a small degree of positive nona
tivity in the cross diametersbs might be sufficient to induce
a fluid-fluid transition@9,10#. By employing an effective one
component treatment and a variety of liquid state pertur
tion theories, Louiset al. @11# have demonstrated that non
additivity should have a profound effect on both the flui
fluid and fluid-solid transition in highly asymmetric hard
sphere mixtures. However, their treatment is based on
empirical approximation@12# for the effective ~depletion!
potential between two big spheres rather than any system
derivation of an effective one-component Hamiltonian f
the nonadditive hard-sphere mixture. In this paper we
velop such an approach following the path that was trod
in the recent studies of the additive mixture@2# and in the
special case of the AO model@7#. We show that the same
formal technique of integrating out the degrees of freedom
the smaller species, used in Ref.@2#, applies equally well to
nonadditive mixtures~see Sec. II A!.

We were motivated toward such an approach by the
lowing considerations:~a! treating highly asymmetric mix-
tures by brute force simulation is beset by ergodicity pro
lems and slow equilibration when the packing fraction of t
small species is substantial,~b! for small size ratios three an
higher body potentials in the effective Hamiltonian do n
have a significant effect on the phase behavior of the addi
hard-sphere model@2# or of the AO@7,8# model, i.e., in both
models phase transitions are determined primarily by the
fective pairwise potential between the big particles and
expect the same to be true for small size ratios in syste
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with intermediate degrees of nonadditivity.~c! the effective
pairwise potential that arises in the formal development
the theory is the depletion potential, introduced into collo
science by Asakura and Oosawa, and now much studie
theory, simulation@13,14# and experiment. Indeed a varie
of experimental techniques@15# have been developed t
measure the depletion potential between a colloidal parti
immersed in a sea of small colloids or nonadsorbing po
mer, and a wall or another big colloid. Interpreting the
sults of such experiments requires a reliable theory. Rece
we have shown@16,17# that a density functional approac
~DFT! provides an accurate means of calculating the de
tion potential for additive hard spheres. In the present pa
we show~Sec. II B! that the same DFT approach remai
valid for the nonadditive case and can, therefore, be use
investigate a much wider class of depletion potentials t
one might have suspecteda priori. We find that even very
small degrees of nonadditivity can have a very pronoun
effect on the shape of the depletion potential, which lead
significant changes of the magnitude, and sometimes
sign, of the second virial coefficientB2 associated with the
total effective potential between two big spheres. Su
changes inB2 may, in turn, have repercussions for the pha
behavior, and may be directly accessible by experiments

We begin by defining what we mean by nonadditivity.
nonadditive binary hard-sphere mixture is characterized
the diameters~distances of closest approach of the centers
the spheres! sbb , sss, andsbs , where the subscriptsb and
s denote big and small. These diameters describe the~pair-
wise! interaction potentials between two spheres

F i j ~r !5H ` r ,s i j

0 otherwise,
~1!

with i , j P$s,b%. We follow the usual convention and intro
duce the nonadditivity parameterD via

sbs5
1
2 ~sbb1sss!~11D!, ~2!

and allowD to be positive or negative. Additive hard-sphe
mixtures haveD50.

In the following we consider two different routes to intro
ducing nonadditivity into a binary hard-sphere mixtures.
both routes we keep the diameter of the big spheressbb and
the number density of the small spheres in the reservoirs

r

fixed but allow for~i! changes in the diameter of the sma
spheressss while keeping the cross diametersbs constant or
~ii ! changes in the cross diametersbs while keeping the di-
ameter of the small spheressss constant. These two types o
changes are illustrated in Figs. 1 and 2, respectively.

In the first route~i!, which was introduced in an earlie
paper by two of us@18#, we can smoothly follow a path tha
connects the additive hard-sphere mixture to the Asak
Oosawa model@3,4#. As mentioned above, in the Asakur
Oosawa model, the small particles are modeled as ideal
particles with zero diametersss

AO[0 andD[DAO.0, keep-
ing the same cross diameter as in the additive case, i.e.
require
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sbs5
1
2 @sbb1sss~D!#~11D!5const5sbs

add[ 1
2 ~sbb

1sss
add!, ~3!

so that

sss~D!5
sss

add2sbb D

11D
. ~4!

The AO limit, defined by sss(D
AO)50, implies DAO

5sss
add/sbb[q, the~fixed! size ratio. Within route~i! choos-

ing D.DAO would give rise tosss(D),0, which is un-
physical, of course. For a given value of the nonadditiv
parameterD and a fixed number density of the small sphe
rs

r it follows that their packing fraction hs
r(D)

5psss
3 (D)rs

r /6 also varies withD,

hs
r~D!5hs

addS q2D

q~11D! D
3

, ~5!

wherehs
add[hs

r(0). Clearly hs
r(D) decreases with increas

ing D in the range 0,D,DAO5q. On the other hand, for
negative nonadditivity,D,0, hs

r(D) increases rapidly with
increasinguDu and for studies of the fluid phase we shou
restricths

r(D),hs
f reez50.494, the value of the packing frac

tion at the bulk freezing transition of hard spheres.

FIG. 1. The centers of the small spheres are excluded from
shaded depletion layer around each big sphere of diametersbb .
When changing the nonadditivityD by route~i!, the big-small di-
ametersbs is kept constant. For a fixedsbb this implies that the
depletion layer thicknessl 5sbs2sbb/2 is also held constant. The
small sphere diametersss(D) is decreased forD.0 and increased
for D,0, and since the number densityrs

r is fixed, the small sphere
packing fractionhs

r(D) also changes.

FIG. 2. When changingD by route~ii !, the big-small diameter
sbs changes. For a fixedsbb this implies that the depletion laye
thicknessl 5sbs2sbb/2 also changes. The small-particle diame
sss is kept constant, and sincers

r is fixed, the small sphere packin
fraction hs

r is also constant.
2-2
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If we consider route~ii !, the route used by most previou
authors@9–11#, bothsbb andsss are kept fixed and the cros
diametersbs becomes a function ofD through Eq.~2!. Note
that this case is very different from case~i! as the packing
fractionhs

r of the small spheres remains constant through
whole range of nonadditivity and the Asakura-Oosawa lim
can only be reached in the limit ofrs

r→0 in which the depth
of the depletion potential approaches zero as well.

Examples of depletion potentials and second virial co
ficients calculated from both routes are given in Sec. III. W
conclude in Sec. IV with a summary of our results and
discussion of their possible relevance for experiments.

II. MAPPING A BINARY MIXTURE ONTO AN EFFECTIVE
ONE-COMPONENT SYSTEM

In this section we map the binary mixture of nonadditi
hard spheres onto an effective one-component system o
particles. To this end we begin by formally integrating o
the degrees of freedom of the small spheres and determ
the form of the effective Hamiltonian of the one-compone
fluid. We demonstrate that each term of the effective Ham
tonian of the nonadditive system can be determined usin
theory for an additive mixture. In a second step we calcu
explicitly the leading contributions to the effective Ham
tonian for the binary mixture of nonadditive hard sphe
using a DFT designed for the additive hard-sphere mixtu

A. Formal mapping for additive and nonadditive mixtures

We follow the procedure developed by McMillan an
Mayer @19# to formally integrate out the degrees of freedo
of the small spheres in a homogeneous mixture ofNb big and
Ns small spheres in a macroscopic volumeV. The Hamil-
tonian of our mixture is given by

H5K1Hbb1Hss1Hbs , ~6!

with K the total kinetic energy of the mixture, leading to
trivial contribution to the free energy, and three potent
energy contributions

Hbb5(
i , j

Nb

Fbb~r i
b2r j

b!, Hss5(
i , j

Ns

Fss~r i
s2r j

s!,

Hbs5(
i 51

Nb

(
j 51

Ns

Fbs~r i
b2r j

s!, ~7!

where the pairwise hard-sphere interaction potentialsF i j are
defined in Eq.~1!. r i

b , r j
s denote the coordinates of big pa

ticle i and small particlej, respectively. The thermodynam
potential F(Nb ,zs ,V) of a general binary mixture in the
semigrandcanonical ensemble can be written in terms o
effective HamiltonianHe f f via the relation

exp~2bF !5Trbexp~2bHe f f!, ~8!

whereb51/kBT, andzs5Ls
23exp(bms) is the fugacity of the

~small! speciess, fixed by the reservoir. Trn is shorthand for
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1/Nn!Ln
3Nn times the volume integral over the coordinates

speciesn. In Eq. ~8! it denotes the classical trace over th
degrees of freedom of the~big! speciesb. The effective
HamiltonianHe f f is given, in the notation of Ref.@2#, by

He f f5Hbb1V, ~9!

with V5V(Nb ,zs ,V;$rb%), the grandcanonical potential o
the fluid of speciess subjected to the external potential of
fixed configuration$rb% of Nb particles of speciesb, defined
by

exp~2bV!5 (
Ns50

`

exp~bmsNs!Trsexp@2b~Hss1Hbs!#.

~10!

Using a Mayer cluster expansion it was shown@2# thatV can
be written as a sum of termsVn , which describe the simul-
taneous interaction ofn particles of speciesb with the ‘‘sea’’
of speciess, i.e.,

V5 (
n50

Nb

Vn . ~11!

This result is valid for arbitrary~integrable! pairwise poten-
tials. We emphasize that in Eq.~9! all direct interactions
between speciesb, the big particles, are contained inHbb
while V describes interactions between speciess, small
spheres, and between the big and small ones. It is prec
this separation into a term that contains just the big-big
teractions and those that contain small-small and big-sm
interactions that allows us to calculate the leading termsVn
for nonadditive hard-sphere mixtures using a theory for
additive mixture. More specifically, for a given fixed con
figuration of large particles,V is completely determined by
the parameterszs , sss, andsbs . In other words all the terms
Vn would have an identical form for an additive or a nona
ditive system. The only differences arise inHbb , wheresbb

constrains the possible positions of the big particles tour i
b

2r j
bu.sbb for all i , j . For the additive casesbb52sbs

2sss, while in the nonadditive casesbb can vary more
widely depending on the value ofD.

1. Zero-body termV0

The first term,V0, is the grandcanonical potential of a se
of small spheres with fugacityzs without any big sphere
present and it follows that@2#

V0~zs ,V!52ps~zs!V, ~12!

with ps(zs) the pressure of the reservoir of small spher
Since this term is intrinsic to the small-sphere fluid it is n
affected by introducing nonadditivity.

2. One-body termV1

For a homogeneous system the one-body termV1 is of
the form

V1~Nb ,zs!5Nbv1~zs!, ~13!
2-3
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with @2#

exp@2bv1~zs!#5^exp~2bHbs
(1)!&zs

, ~14!

whereHbs
(n) denotes the interaction betweenNs small spheres

and n>1 big spheres and the brackets^•••&zs
refer to an

ensemble average in the reservoir of small spheres.v1(zs)
can be identified as the difference in grandcanonical po
tial between a sea of small spheres at fugacityzs with and
without a single big sphere. By considering the potential d
tribution theorem and the definition of the one-body dire
correlation functioncb

(1)(rb) one can show@20,16# that this
difference in grandcanonical potential can be expressed

bv1~zs!52 lim
mb→2`

cb
(1)~`!, ~15!

wherecb
(1)(`) denotes the direct correlation function of a b

sphere evaluated in the bulk mixture. The limitmb→2`
implies that the chemical potentialmb of speciesb is made
sufficiently negative that only one big sphere is prese
cb

(1)(`) is proportional to the excess~over ideal! chemical
potential of speciesb, i.e., 2cb

(1)(`)5bmb
ex and, in general,

depends on the density of both species. However, in the l
mb→2`, cb

(1)(`) depends only on the fugacityzs . Since
only one big sphere is involved@this is explicit in Eq.~14!#
nonadditivity plays no role in determiningV1. One merely
specifiessss and thensbs describes the interaction betwee
small spheres and a fixed big one.

As noticed in Ref.@21#, the one-body termv1(zs) deter-
mines the Henry’s law constanth(zs) of the fluid. The latter
can be defined by@22#

h~zs!5 lim
rb→0

rb

zb~rb!
, ~16!

wherezb5Lb
23exp(bmb) is the fugacity of speciesb. It fol-

lows that

h~zs!5exp@2bv1~zs!#. ~17!

h(zs) does not depend onb-b interactions; deviations o
h(zs) from unity reflect the average effect ofb-s interactions
at a fixed fugacityzs of small spheres. Thus, given som
means of calculatingcb

(1)(`), in the limit rb→0, one can
determine the Henry’s law constant.

3. Two-body termV2

The two-body termV2 is given by

V2~Nb ,zs ;$rb%!5(
i , j

Nb

v2~zs ;ur i
b2r j

bu!, ~18!

where the pair potentialv2 is defined by@2#

exp@2bv2~zs ;r i j
b !#5

^exp~2bHbs
(2)!&zs

^exp~2bHbs
(1)!&zs

2
, ~19!
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with r i j
b [ur i

b2r j
bu the distance between the centers of the

spheres. Equivalently we can use the variableh[r i j
b 2sbb ,

i.e., the distance between the surfaces of two big sphe
v2(zs ;r i j

b )[W(h5r i j
b 2sbb) is the grand potential differ-

ence between a sea of small spheres, at fugacityzs , contain-
ing two big spheres at finite separationr i j

b and one in which
the separationr i j

b 5`. Although the positions of two big par
ticles are involved, the big-big interaction does not enter
plicitly into the calculation ofv2; the diametersbb merely
acts as an external parameter that restricts the minim
separation tor i j

b 5sbb . In other words, for a givenzs , sbs ,
andsss, the calculation ofv2 is the same for both additive
and nonadditive systems.

v2 can be identified with the well-known depletion pote
tial between the two big spheres@2,16# and expressed in
terms of the one-body direct correlation function

bv2~zs ;r !5 lim
mb→2`

@cb
(1)~`!2cb

(1)~r !#, ~20!

wherecb
(1)(r ) refers to an inhomogeneous situation in whi

a big sphere fixed at the origin exerts its field on the sm
spheres and a big~test! particle is inserted atr @16#.

4. Three-body and higher-order termsVnÐ3

The three-body termV3 can be written as a sum of three
body potentialsv3(zs ;r i , j ,k

b ), which can, in turn, be ex-
pressed in terms of ensemble averages^exp(2bHbs

(n))&zs
with

n51,2,3 @2#. Once again big-big interactions are not i
volved in the calculation andsbb simply specifies the physi
cally allowed configurations of the three big spheres. Clea
nonadditivity plays no role. The same argument applies
the higher-body (n.3) contributions toV, although the
specification of the allowed configurations of the big sphe
becomes increasingly complicated asn increases.

In practice, the calculation ofVn for n>3 is tedious and
determining the phase behavior for effective Hamiltonia
that include these and higher-body interactions would
very cumbersome. Contributions to the many-body ter
arise from two mechanisms:~1! Directly, if for a givensbb ,
sbs is large enough to allow the overlap of more than tw
depletion layers.~2! Indirectly, if correlations between the
small particles, present for all nonzerosss, induce interac-
tions between more than two particles. Contributions fro
mechanism~1! to Vn with n>3 are identically zero for
(2sbs2sbb)/sbb<2/A32150.1547 @7#, while for (2sbs

2sbb)/sbb<A3/22150.2247 the contributions toVn with
n>4 terms are zero@23#, etc, . . . Ifsss.0, then mechanism
~2! will induce additional contributions to the many-bod
terms at all values ofsbs andsbb .

For the extreme nonadditive AO model, wheresss50 but
sbs is nonzero, only mechanism~1! contributes to the many
body terms. An explicit form for the three-body term can
calculated@24#, but this is still very tedious to evaluate.

For additive binary hard-sphere mixtures withq
5sss/sbb<0.1, where only the indirect mechanism~2! con-
tributes, three-body contributions seem to be small@13#. Re-
cent DFT calculations@24,25# of the three-body potentials
2-4
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show that these are still much smaller than the two-bo
potentials forq50.2, where both mechanisms contribu
and that the indirect mechanism~2! can have an importan
effect on their shape.

There is strong evidence from direct simulation studies
the additive binary system that retaining only two-body co
tributions in the effective Hamiltonian provides a very go
account of the equilibrium phase behavior forq<0.2 @2#.
Similar conclusions were reached for a lattice version of
AO model @8#. In this study we shall focus on such high
asymmetric systems and neglect three and higher-body
tributions to the effective Hamiltonian. With this assumpti
it follows that the structure of the homogeneous fluid~equi-
librium correlation functions of the big spheres! is deter-
mined solely by the effective pairwise potential

Fe f f~zs ;r !5Fbb~r !1v2~zs ;r !, ~21!

sinceV0 andV1 do not depend on the coordinates of the b
particles @21#. It is also straightforward to show that th
phase equilibriaof the binary mixture do not depend on th
zero and one-body term@2#. However, these two terms d
influence the total pressure and compressibility of the m
ture @21#.

To complete this section it is necessary to explain how
convert fromrs

r , the number density of the small spheres
the reservoir tors , the actual value of the small sphere de
sity in the mixture. The average number of small sphere
the mixture is given by the thermodynamic relation

^Ns&zs
52

]F~Nb ,V,zs!

]ms
52K ]b (

n50

`

Vn

] ln zs

L
zs

. ~22!

In Ref. @2# it was shown that an accurate approximation
the conversion can be obtained for additive hard spheres
high asymmetry,q<0.1, by truncating the expansion aft
the one-body term so that the average number of sm
spheres can be evaluated approximately from the formu

^Ns&zs
'2S ]b~V01V1!

] ln zs
D

Nb ,V

. ~23!

The required densityrs5^Ns&zs
/V. We shall revisit this ap-

proximation in the next section.

B. Evaluation of V0 , V1, and V2 within DFT

1. Rosenfeld’s fundamental measure DFT

In order to make the mapping presented in Sec. II A
plicit for the model of interest, namely, the binary mixture
nonadditive hard spheres, we calculate the termsV0 , V1,
and V2 within the framework of Rosenfeld’s fundament
measure DFT@26#—a theory constructed for additive hard
sphere mixtures. As mentioned earlier, the reason why
can apply a theory constructed foradditivebinary mixtures is
that only the interaction potentialsFss, between two small
spheres, andFbs , between a big and a small sphere, en
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into the calculation ofVn . This argument substantiates fu
ther the intuitive picture presented in Ref.@18#.

What is required for calculatingV1 and V2 is some
means of determiningcb

(1) in the limit of vanishing density of
big spheres. DFT provides a suitable route since@27#

cb
(1)~r !52b

dFex@rb ,rs#

drb~r !
, ~24!

whereFex@rb ,rs# is the excess~over ideal! intrinsic Helm-
holtz free energy functional of the mixture@16#. Thus, given
some prescription for the mixture functional one can cal
late all the necessary ingredients. Rosenfeld’s fundame
measure theory@26# supplies an approximate functionalFex
for an additive mixture of hard spheres of the form

bFex@rb~r !,rs~r !#5E d3rC~$na%!, ~25!

with weighted densitiesna that depend on the fundament
geometrical measures of the spheres constituting the mixt
There are four scalar and two vector weight functions wa

i ,
with 1<a<6. Details can be found in Ref.@26#; the weights
depend on the radiiRi of each species. For a binary mixtur
the weighted densities are

na~r !5 (
i 5s,b

E d3r 8r i~r 8!wa
i ~r2r 8!. ~26!

It is important to realize that once the reduced free ene
densityC($na%) is specified the mapping described in Se
II A is completely determined within this~approximate! DFT
framework. We choose to apply theoriginal Rosenfeld func-
tional @26#

C~$na%!52n0ln~12n3!1
n1n22n1•n2

12n3
1

n2
323n2n2•n2

24p~12n3!2
.

~27!

Recall that the two-body direct correlation functionsci j
(2) ,

with i, j P b, s, obtained by taking two functional derivative
of this functional reduce to the Percus-Yevick~PY! ci j

(2)(ur
2r 8u) for a homogeneous hard-sphere mixture. The Ros
feld functional has proven to be extremely successful in
scribing the structure of the inhomogeneous fluid phase
hard-sphere mixtures. If solid phases are to be conside
modifications to the original Rosenfeld functional should
made@28#.

2. Calculating V0 from DFT

We begin the explicit mapping by noting that the equati
of state underlying the Rosenfeld functional@26# is pPY

c , the
Percus-Yevick compressibility equation of state for addit
hard-sphere mixtures. In order to calculate the zero-b
term, however, we need only the equation of state for a o
component fluid so we set
2-5
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bps~zs!5bpPY
c ~zs![rs

r
11hs

r1~hs
r !2

~12hs
r !3

, ~28!

with hs
r[psss

3 rs
r /6, the reservoir packing fraction of th

small spheres.V0 follows directly from Eq.~12!.

3. Calculating V1 from DFT

Using the Rosenfeld functional the direct one-body cor
lation functioncb

(1) can be written as@16#

cb
(1)~r !52(

a
E d3r 8S ]C~$na%!

]na
D

r8

wa
b~r2r 8!.

~29!

In the dilute limit in which the density of the big sphere
→0, the weighted densities depend only on the density p
file rs(r ) of the small spheres

na
dilute~r !5E d3r 8rs~r 8!wa

s ~r2r 8!. ~30!

Note thatrs(r ) then corresponds to a one-component fluid
speciess @16#. In bulk the density profile of the small sphere
rs(r ) is constant and equal tors

r , the vector weighted den
sitiesna vanish and scalar weight functions reduce to tho
of a one-component fluid, i.e.,n3→hs

r , n2→6hs
r /sss, n1

→3hs
r /(psss

2 ), andn0→6hs
r /(psss

3 ). cb
(1)(`) can be evalu-

ated explicitly and the result expressed as

bv1~zs!5 lim
mb→2`

2cb
(1)~`!5

4pRb
3

3
bps~zs!14pRb

2bg~zs!

1
Rb

sss

6hs
r

12hs
r
2 ln~12hs

r !, ~31!

where the first term corresponds to the partial derivat
]/]n3, the second to]/]n2, and so on. As the first term i
proportional to the pressure of the reservoir of small sphe
given by Eq.~28! and the second term is proportional to t
planar ‘‘surface tension’’

bg~zs!5
3hs

r~21hs
r !

2psss
2 ~12hs

r !2
, ~32!

these have a natural interpretation aspsDV andgDA terms,
respectively. Although it is more difficult to give a physic
interpretation of the last two terms in Eq.~31! they are im-
portant, for example, in obtaining the correct low dens
limit—see below. Since2b21cb

(1)(`) is the excess chemi
cal potential of speciesb in a uniform~bulk! mixture we can
also determine this quantity starting from the bulk exc
free energy density, differentiating with respect to the b
density rb and then taking the limitrb→0. The result is
identical to that in Eq.~31!.

Although we have derived this result starting from
theory developed for an additive mixture once we hav
taken the limitrb→0 the big-big interaction is not relevan
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It follows that for an arbitrary nonadditive mixture,Rb en-
tering Eq.~31! should be defined asRb[sbs2sss/2. In the
particular case of an additive mixtureRb reduces tosbb/2.

Note that theform of Eq. ~31! is the same as that given b
Henderson@20# in a scaled particle theory forcb

(1)(`). How-
ever, in Henderson’s treatmentcb

(1)(`) is expressed in pow-
ers of the variableR[sbs . If one converts his Eq.~54! to an
expression in terms ofRb5R2sss/2 one recoversprecisely
Eq. ~31!. In other words, his scaled particle analysis agre
completely with the present DFT approach, attesting furt
to the consistency of the latter. Note also that in the l
density limit rs

r→0, Eq. ~31! implies bv1(zs)→4psbs
3 rs

r /3
which is theexactlimiting value—see Appendix.

4. Converting from the reservoir packing fractionhs
r to the

packing fraction hs in the mixture

Given explicit formulas forV0 and V1 we can employ
Eq. ~23! to obtain an explicit conversion betweenhs , the
packing fraction of the small spheres in the system, andhs

r ,
the packing fraction in the reservoir. To this end we fi
determine the fugacityzs5rs

rexp(bms
ex) of the small spheres

within the framework of the Rosenfeld DFT approach.ms
ex ,

the excess chemical potential of the pure small sphere fl
is given by the Percus-Yevick~compressibility! result, so
that

zs5
6hs

r

psss
3 ~12hs

r !
expS 14hs

r213~hs
r !215~hs

r !3

2~12hs
r !3 D .

~33!

Using the expressions forV0 and V1 given in this section
together with Eqs.~23! and ~33! we obtain for the packing
fraction of small spheres in the systemhs5psss

3 rs/6,

hs5~12hb!hs
r23qe f fhbhs

r
12hs

r

112hs
r
23qe f f

2 hbhs
r

~12hs
r !2

~112hs
r !2

2qe f f
3 hbhs

r
~12hs

r !3

~112hs
r !2

, ~34!

whereqe f f[sss/2Rb is the effective size ratio. In the limi
hs

r→0 this result reduces to

hs /hs
r5@12hb~11qe f f!

3#, ~35!

which is the standard excluded volume expression, appro
ate to an ideal gas of small particles@2#. However, for non-
zero densities of small spheres Eq.~34! predicts a nonlinear
dependence ofhs on hs

r . This is illustrated in Fig. 3 where
we plot hs versushs

r for additivehard-sphere mixtures with
~a! q50.1 and~b! q50.05. Our results are compared wi
those of direct Monte-Carlo simulations of the binary mi
ture @2#. The agreement between theory and simulation
excellent, with a small deviation occurring athb50.74 and
0.10 for q50.1. Note that the free-volume theory of Lek
kerkerker and Stroobants@29#, which asserts thaths /hs

r

5a(zs50;hb), wherea(zs50;hb) is the free-volume frac-
2-6
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tion evaluated for zero fugacity of the small spheres, sign
cantly underestimateshs /hs

r at higher values ofhs
r @2#. We

conclude that retaining only the two leading termsV0 and
V1 and employing PY theory for these quantities provides
accurate approximation for the free volume fractionhs /hs

r ,
at least for small values ofq.

For completeness, we should mention that the theory
ployed in Ref.@2# to calculatehs /hs

r used the Carnahan
Starling result forzs and Henderson’s expression forcb

(1)(`)
but with an empirical modification of the leading (Rb

3) term.
It is now clear that there was no need to make such a m
fication; the confusion arose from the improper identificat
of the parameterR in Henderson’s theory. Fortunately th
numerical results presented in Fig. 13 of Ref.@2# are very
close to those given by the present, fully consistent the
For future applications we recommend that Eq.~34! should
be used.

5. Calculating V2 from DFT

The two-body contributionV2, given in Eq.~18!, requires
the calculation of the depletion potentialv2(zs ;r ) given by
Eq. ~20!. This can be carried out using the procedure
scribed in Ref.@16#. We first calculate the~inhomogeneous!
equilibrium density profilers(r ) of the small spheres near

FIG. 3. The small sphere packing fractionhs of an additive
binary hard-sphere mixture, with size ratio~a! 0.10 and~b! 0.05,
versus that of the reservoirhs

r for several big sphere packing frac
tions hb . The squares denote the direct simulation data of Ref.@2#
while the lines denote the results of Eq.~34!. Note the significant
deviations from linearity in both theory and simulations.
05120
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fixed big sphere of radiusRb . This is used in Eq.~30! to
determine the relevant weighted densities, which then de
mine cb

(1)(r ) via Eq. ~29!.
We emphasize that the mapping of a depletion potentia

a nonadditive system onto one in an additive mixture is ex
and has been applied in a recent study of generalized e
tive potentials@30#.

III. APPLICATIONS

A. Effect of nonadditivity on the shape of depletion potentials

1. Changes of type (i):sss varies, butsbs is fixed

Following the procedure of Ref.@18# we follow route~i!
and demonstrate that for a given~fixed! size ratio q and
packing fractionhs

add of the additive mixture the effects o
nonadditivity D on the shape of the depletion potential a
very strong.

Choosing a size ratioq50.1 and a fixed packing fraction
in the additive mixture ofhs

add50.2, we can vary the non
additivity parameterD betweenD520.031, corresponding
to the packing fractionhs

r(D) of the small spheres, given b
Eq. ~5!, reaching the freezing packing fractionh f reez

50.494, andD5DAO5q, in which casesss[0 and hence
hs

r(DAO)[0. Results for the depletion potentials are given
Fig. 4. Forq50.1 andhs

add50.2 the depletion potential ob
tained from DFT for additive hard spheres (D50) is in ex-
cellent agreement with the results of computer simulatio
@13#—see the comparison in Ref.@16#. Moreover, for D
5DAO50.1 we find that our calculated depletion potential
indistinguishable from the analytic AO result@18#.

For small degrees of positive nonadditivity the main e
fects observed in the depletion potential are a weakenin

FIG. 4. The depletion potentialW(h)[v2(zs ;sbb1h) between
two big hard spheres in a sea of small hard spheres calculated
size ratioq50.1 and a range of nonadditivitiesD treated according
to route~i!. The number density of the small spheres,rs

r , is fixed
with packing fractionhs

add[rs
rp(sss

add)3/650.2. D50 corresponds
to an additive hard-sphere mixture.h is the separation between th
surfaces of the big spheres andsss(0)5qsbb .
2-7
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the first repulsive potential barrier, due to a decreased p
ing fraction @given by Eq.~5!#, and an increase in the rang
of attraction, i.e., the maximum of the potential shifts
larger separationsh. Both effects tend to increase the n
attraction and this is reflected in the second virial coefficie
as we shall see later.

For negative values ofD the packing fractionhs
r(D) of

the small spheres increases rapidly and the contact valu
the depletion potential increases sharply—see Fig. 4.
sufficiently negative values ofD the depletion potential can
become positive at contact while the force near contact
mains attractive. If the densityrs

r of the small spheres is
small enough to permit a high degree of negative nona
tivity the depletion force near contact can even become
pulsive. This is illustrated in Fig. 5 for parametershs

add

50.1 and q50.1. Now D can take values as low as
20.060 whilsths

r(D) remains smaller thanhs
f reez. Depletion

potentials forq50.1 andhs
add50.3 were presented in Fig.

of Ref. @18# and forq50.2 andhs
add50.1 were presented in

Fig. 2 of Ref. @30#; these display similar trends withD as
those shown here.

2. Changes of type (ii):sbs varies, butsss is fixed

In Fig. 6 we show the effect of changingD according to
route ~ii !. Now the packing fraction in the reservoirhs

r is
fixed at 0.2 for all values ofD andsbs varies. The results are
very different from those in Fig. 4 that correspond to t
same size ratioq50.1 and the samehs

add . In the present
case increasingD shifts the depletion potential almost rigidl
along theh axis to larger separationsh leading to much
deeper and longer ranged attractive wells than forD50.
MakingD increasingly more negative corresponds to shift
the potential to smaller separations, thereby reducing the
traction and the height of the potential barrier. Depleti

FIG. 5. As in Fig. 4 but now the packing fractionhs
add is fixed

at 0.1. For these negative values of the nonadditivityD the deple-
tion potential is repulsive near contact and forD520.057 14 the
depletion force is repulsive near contact.
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potentials forq50.2, hs
r50.2 were presented in Fig. 3 o

Ref. @30#; these display similar trends withD as those shown
here.

B. Effect of nonadditivity on the second virial coefficient

1. Changes in B2 as a function ofD

In Sec. III A we demonstrated that introducing a rath
small degree of either positive or negative nonadditivity h
a profound effect on the shape of the depletion potent
Here we investigate the effect of nonadditivity on the seco
virial coefficientB2 that measures the net attraction betwe
two big particles in the sea of small ones.B2 corresponds to
the total effective pair potentialFe f f(zs ;r ) defined in Eq.
~21!. It follows that

B25B2
HS12pE

sbb

`

drr 2$12exp@2bv2~zs ;r !#%, ~36!

with B2
HS52psbb

3 /3, the second virial coefficient of the pur
hard-sphere system. If the depletion potentialv2(zs ;r ) gen-
erates enough attraction between the two big spheresB2 can
become negative@31#. Note thatB2 is a function ofD and
zs .

In Fig. 7 B2 is plotted as a function ofD for hs
add50.2

and q50.1. For an intermediate value ofDmin'0.0279 we
find that B2 takes its minimum value ofB2(Dmin)/B2

HS'
20.5. The variation ofB2 with D is similar to that ofW(h
50)5v2(zs ;sbb), the contact value of the depletion pote
tial, although the latter has its minimum at a slightly low
value D'0.016 – see inset of Fig. 7. Providedhs

r is suffi-
ciently high to generate significant packing effects the pr
ence of a minimum inB2 in the range 0.Dmin.DAO is

FIG. 6. The depletion potentialW(h)[v2(zs ;sbb1h) between
two big hard spheres in a sea of small hard spheres calculated
size ratioq50.1 and a range of nonadditivitiesD treated according
to route~ii !. The packing fraction in the reservoirhs

r50.2 remains
constant for all values ofD. D50 corresponds to an additive hard
sphere mixture.h is the separation between the surfaces of the
spheres andsss(0)5qsbb . These results should be contrasted w
those in Fig. 4—note the difference between the vertical scales
2-8
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THEORY OF ASYMMETRIC NONADDITIVE BINARY . . . PHYSICAL REVIEW E64 051202
easily understood@18#. For a given size ratioq and density of
small particlesrs

r.0 the Asakura-Oosawa depletion pote
tial given by

W~h![WAO~h!52pid~zs!DV~h!, ~37!

wherepid(zs)5rs
rkBT is the ideal gas pressure andDV(h) is

the overlap volume excluded to the centers of the sm
spheres.h denotes the separation between the surfaces o
two big spheres so thatDV(h)50 for h.sss(0)5qsbb .
WAO is purely attractive and should always generate m
net attraction than the depletion potential of an additive ha
sphere mixture—providedhs

r is large enough that packin
effects become significant. Then the depletion potential c
sists of an attractive part close to contact and an oscilla
tail for larger separation. Packing effects of the small sphe
reduce the range of the initial attractive part of the ha
sphere depletion potential compared to the Asakura-Oos
potential and for the same value ofq and rs

r we find B2
AO

,B2
add , at least for the parameters we studied. Very close

the Asakura-Oosawa limit, i.e.,D&DAO, where the packing
fraction of the small spheres, Eq.~5!, is small but nonzero
packing effects are minor and the depletion potential is s
determined by excluded volume considerations. For a n
zero packing fraction, however, the pressure of the sm
sphere fluid is higher than in an ideal gas so that to first or
in hs

r , the virial expansion of this pressure yields

WAO1~h!5@114hs
r~D!#WAO~h!. ~38!

In Ref. @18# we showed that this modified AO approximatio
is very accurate forhs

r(D),0.01. According to this approxi
mation the depletion potential, Eq.~38!, is more attractive
than in the Asakura-Oosawa limit so that we can conclu

FIG. 7. The reduced second virial coefficient of the big sphe
B2 in units of B2

HS[2psbb
3 /3 as a function of the nonadditivityD.

These results correspond to the depletion potentials of Fig. 4,
hs

add50.2 andq50.1, for which the maximum nonadditivity is
DAO50.1. The inset shows the contact valuebW(h50)
[bv2(zs ;sbb) of the depletion potential as a function ofD.
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that for an intermediate value ofD the second virial coeffi-
cient B2 must have a minimum. It is, however, surprisin
and striking that this minimum is found to be deep,@B2

HS

2B2(Dmin)#/@B2
HS2B2(DAO)#'1.26, and located at a

rather low degree of nonadditivity.
In the additive limitB2 is already positive for this particu

lar mixture and a very small degree of negative nonadditiv
is sufficient to makeB2 strongly positive.

2. Changes in B2 as a function ofhs
r and a criterion for fluid-

fluid phase separation

In an experimental situationD is not an easily control-
lable or tunable parameter and, therefore, it is most inter
ing from an experimental point of view to consider a fixe
value of D and investigate the depletion potential andB2

when the reservoir density of the small spheresrs
r , a quantity

that can be controlled easily in an experiment, is change
If one were to take any real~asymmetric! binary mixture

of hard-sphere like colloidal particles and have some me
of determining the three interparticle pairwise potentials o
could, in principle, assign three effective hard-sphere dia
eterssbb , sbs , andsss using standard liquid state theorie
@30#. In general, one would not expect these diameters to
perfectly additive although the magnitude and sign of
nonadditivity might be difficult to ascertain by any dire
measurement. In this section we demonstrate that a v
small degree of nonadditivity reveals itself very clearly in t
dependence ofB2 on the packing fraction of the sma
sphereshs

r .
To this end we start with an additive mixture and plot

Fig. 8B2 expressed in units of the second virial coefficient
a pure hard-sphere systemB2

HS as a function ofhs
r[hs

add for
various size ratiosq. The qualitative behavior ofB2 is the
same for all size ratios: for small values ofhs

r the reduced

s

.,

FIG. 8. The reduced second virial coefficient of the big sphe
in additive hard-sphere mixtures (D50) for various size ratiosq
versushs

add , the packing fraction of small spheres in the reservo
According to the criterion of Ref.@32#, ~metastable! fluid-fluid
phase separation can only occur ifB2 /B2

HS,21.5 ~horizontal line!.
2-9
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second virial coefficient decreases from unity in appro
mately linear fashion while for high packing fractions,hs

r

.0.3, the decreasing range of attraction and the increa
height of the repulsive potential barrier in the depletion p
tential hinder a further decrease ofB2 and we find a mini-
mum of the second virial coefficient at roughlyhs

r&0.4 and
an increase ofB2 upon further increase ofhs

r .
The quantitative behavior, however, depends v

strongly on the value ofq. For large size ratios,q.0.2 we
find that for all packing fractionshs

r the depletion potentia
cannot generate enough net attraction to makeB2 negative.
This observation helps us to understand, in terms of
depletion potential, the fact that in additive binary har
sphere mixtures with large size ratiosq even metastable
fluid-fluid phase separation does not occur@2#.

For smaller size ratios the minimum ofB2 becomes more
pronounced andB2 takes on negative values for a range
hs

r . At a size ratio 1:9 (q50.1111) the minimum value o
B2 falls below 21.5B2

HS . By analyzing a large series o
simulation results for a variety of~one component! model
fluids, Vliegenthart and Lekkerkerker@32# have shown re-
cently that the second virial coefficient evaluated at the g
liquid critical temperatureTc takes values that lie in a fairly
narrow range around21.5B2

HS . For the model fluids consid
ered in Ref.@32# gas-liquid coexistence can only occur
B2 /B2

HS,21.5. If we assume that this empirical criterion
applicable to the effective one-component system descr
by our pairwise potentialsFe f f it follows that only systems
with B2 /B2

HS lying below the horizontal line in Fig. 8 could
exhibit ~metastable! fluid-fluid coexistence. It is important to
emphasize that the criterion is empirical and that it was
veloped for model fluids in which the attractive part of t
pairwise potential is monotonically increasing with interpa
ticle separationr, unlike our present effective potential
Moreover, the criterion does not predict whether the g
liquid coexistence is stable or metastable with respec
fluid-solid coexistence. Recall that the shorter range of
attractive potential the more likely is the gas-liquid transiti
to become metastable@32#. In a simulation study of the ef
fective one-component Hamiltonian for an additive ha
sphere mixture, metastable fluid-fluid phase separation
found for q50.1 andq50.05 @2#. For q50.1 fluid-fluid co-
existence occurred forhs

r*0.29, whereas forq50.05 this
occurred forhs

r*0.165. These results are in keeping with t
predictions of the empirical criterion. Note that the seco
intersection ofB2 /B2

HS with the horizontal line forq50.1 in
Fig. 8 suggests a possible upper critical point nearhs

r

50.43 @30#.
If we introduce a very small degree ofpositivenonaddi-

tivity according to route~i!, i.e., we keepsbb andsbs con-
stant so thatsss(D) becomes smaller than for the additiv
case@see Eq.~4!#, we find a dramatically different situation
In order to be of relevance to an experimental situati
where it might be impossible to rule out a small degree
nonadditivity, we setD5q/20 for each choice ofq.

As expected, positive nonadditivity leads to a slight
crease in the width of the depletion layer and, therefo
morenet attraction than in the additive case. The behavio
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B2 as a function ofhs
r(D), however, changes qualitatively a

can be seen in Fig. 9. For all size ratios considered here
second virial coefficient becomes negative andB2 /B2

HS falls
below the21.5 line prior to freezing of the small particles
The smallerq, the smaller the value ofhs

r when this line is
crossed. There is no minimum inB2. Thus according to the
empirical criterion all the mixtures considered here sho
exhibit ~metastable! fluid-fluid coexistence. Once again, w
cannot say whether this transition is stable with respect to
fluid-solid transition.

Our results provide some understanding, in terms of
depletion potential description, of why only small degrees
positive nonadditivity might lead to fluid-fluid phase sepa
tion in asymmetric binary hard-sphere mixtures. We rec
that Biben and Hansen@9# found for q50.1, on the basis of
the Barboy-Gelbart@33# equation of state, that a valueD
50.01 was sufficient to produce a fluid-fluid transition at
total packing fraction,0.5. Later Dijkstra@10# carried out a
series of Gibbs ensemble Monte-Carlo simulations of
binary mixture forq50.1 and varying degrees of positiv
nonadditivity. She found that it was possible to have flu
fluid demixing for a total packing fraction,0.5, providedD
was sufficiently large.

On the other hand, introducing a small degree ofnegative
nonadditivity@again via route~i!# decreases the width of th
depletion layer compared to the additive case so that the
attraction should also decrease. We setD52q/20 for eachq
and find that these small negative values ofD are sufficient
to change significantly the shape ofB2 versushs

r(D) from
that of the additive case.

This is illustrated in Fig. 10 where we show that for si
ratios q*0.2 the second virial coefficient changes little
function of hs

r(D). For large values ofhs
r we even find that

FIG. 9. The reduced second virial coefficient of the big sphe
in hard-sphere mixtures with a smallpositive nonadditivity D5

1q/20 for various size ratiosq versushs
r(D), the packing fraction

of small spheres in the reservoir. In contrast to the additive c
Fig. 8, B2 /B2

HS always falls below21.5 indicating that~meta-
stable! fluid-fluid phase separation could occur for all size rati
shown here.
2-10
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B2.B2
HS . For a size ratio ofq50.1, which in the additive

case was sufficiently small forB2 to become strongly nega
tive, B2 remains positive for all packing fractions. Only fo
very smallq can the depletion potential in nonadditive mi
tures with negativeD generate sufficient net attraction
drive B2 negative.

We conclude this discussion by emphasizing how se
tive B2 is to changes in the depletion potential. In Fig. 11
show the depletion potentials calculated forq50.1 and fixed
hs

r(D)50.3 for three values ofD. Although the three poten

FIG. 10. The reduced second virial coefficient of the big sphe
in hard-sphere mixtures with a smallnegativenonadditivity D5

2q/20 for various size ratiosq versushs
r(D), the packing fraction

of small spheres in the reservoir. Note thatB2 /B2
HS falls below

21.5 only for the smallest ratio,q50.05, considered here.

FIG. 11. Depletion potentials forq50.1 and fixedhs
r(D)50.3

for D520.005, 0 and10.005. Although these potentials do n
differ drastically from each other the correspondingB2, see Figs.
8–10, take very different values:B2 /B2

HS50.36, 21.21, and,
29 for D520.005, 0, and10.005, respectively.
05120
i-

tials appear rather similar, they yield very different values
B2. From Figs. 8–10 we see thatB2 /B2

HS is about21.21 for
D50, is strongly negative (B2 /B2

HS,29) for D50.005
~the empirical criterion would predict fluid-fluid phase sep
ration! and is positive (B2 /B2

HS50.36) forD520.005.

IV. DISCUSSION

The main results of our study of the equilibrium statistic
mechanics of nonadditive binary hard-sphere mixtures m
be summarized as follows:

1. The formal technique of integrating out the degrees
freedom of the small spheres in order to obtain an effec
Hamiltonian He f f for the big spheres is equally valid fo
nonadditive as for additive mixtures, where it has prov
particularly useful@2# for determining the phase behavior o
asymmetric systems. We have provided expressions for z
V0, one,V1, and two-body contributions toHe f f, which can
be evaluated in simulations of the small sphere fluid~Sec.
II A !.

2. We showed that the same contributions are readily
culated using the fundamental measure DFT of Rosenfel
theory developed originally for additive hard spheres~Sec.
II B !. By calculatingV0 andV1 we were able to derive an
explicit approximation~34! for the packing fractionhs of
small spheres in the mixture at given reservoir fractionhs

r

and big-sphere fractionhb . Comparison with a previous
simulation study for additive mixtures with small size rati
q showed that the approximation is very accurate~Fig. 3!.

3. The two-body contribution toHe f f is a sum of effective
pairwise potentials Fe f f(zs ;r )5Fbb(r )1v2(zs ;r ). Our
DFT approach provides a powerful means of determining
depletion potentialv2(zs ;r ) for nonadditive mixtures. Pro-
vided three and higher body terms are small, as is expe
for smallq, it is solelyv2 that determines big-big correlatio
functions and the phase equilibria of the mixture.

4. We described two different routes to introducing no
additivity D and gave examples of the depletion potenti
and the second virial coefficientB2 associated with the cor
responding effective potentialFe f f obtained from both
routes ~Sec. III!. Although the depletion potential depend
upon only the bare potentials andrs

r , the pattern of the varia-
tion with D ~see Figs. 4–6! does depend on whether route~i!
sbs fixed, sss varies or route~ii ! sss fixed, sbs varies, is
employed.B2 is a sensitive indicator of the shape and ran
of the effective potential and exhibits considerable variat
with q, D andhs

r ~Figs. 7–10!.
5. On the basis of the empirical criterionB2 /B2

HS,
21.5 @32#, we showed that fluid-fluid phase separation
much more likely to occur for a small degree of positi
nonadditivity, D.0, than in additive mixtures,D50, with
the same size ratio. Our results provide a guide to wh
binary hard-sphere mixtures might exhibit fluid-fluid sepa
tion which is stable with respect to fluid-solid separation a
we hope that these might stimulate further computer simu
tion studies.

We conclude by turning to the question of whether t
strong effect of nonadditivity on the depletion potentials a
on the virial coefficients found in Secs. III A and III B ha

s
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any implications for experiments on colloidal systems.
One-component colloidal suspensions that mimic v

closely a hard-sphere system can be created because
small residual short-range interactions remaining after ref
tive index matching are very well approximated by ha
spheres with an effective hard-sphere diameter@34#. But cre-
ating a truly additive binary colloidal suspension is mu
more difficult, since this implies an additional constraint
the value of the effective hard-sphere diameters, namely,
2sbs5sbb1sss. The small residual interactions in an e
perimental system designed to mimic binary hard-sph
mixtures can easily introduce nonadditivity@30#; nonadditiv-
ity is probably the rule and perfect additivity the exceptio
For example, in an earlier paper@11#, one of us has shown b
a simple argument that for both sterically and electrost
cally stabilized asymmetric binary colloids, 2sbs is likely to
be smaller than (sbb1sss), which implies a small negative
nonadditivity. This in turn suggests that the well depth
contactW(h50) is smaller than what would be expected f
an additive system. For short-ranged depletion systems
location of a fluid-solid liquidus line can be roughly corr
lated toW(h50) @11,23#; one would, therefore, expect th
experimental liquidus line to occur at larger values ofhs
than what is predicted for a purely additive binary ha
sphere system. Experimental results do seem to follow
trend @35#. However, since the experimental phase bou
aries are typically plotted with the small-particle packi
fraction hs on they axis, it is not always clear whether dis
crepancies with the additive theory arise from nonadditiv
or from small errors in the measurement ofsss, which enters
hs assss

3 .
Instead of focusing on phase boundaries, we propose

direct measurements of the osmotic second virial coeffic
B2 as a function ofhs should be a much more sensitiv
measure of the existence of nonadditivity, and may even p
vide an independent way to ascertain the value ofsbs ,
which is otherwise very hard to determine. As illustrated
Figs. 8, 9, and 10, different degrees of nonadditivity indu
clear qualitative differences in the dependence ofB2 on hs ,
implying that one does not require a high level of quanti
tive accuracy in measurements ofB2 in order to distinguish
clearly between negative and positive nonadditivity.

For colloidal suspensionsB2 is typically extracted from
the low density limit of the osmotic equation of state, me
sured by static light scattering. This is nontrivial since
requires extracting the contribution from the big particles
the total scattering intensity. Such measurements were
carried out by de Hek and Vrij in 1982@36# for a colloid-
polymer mixture with a size ratio 2Rg /scc'1 ~hereRg is
the radius of gyration of the polymers!; they found a clear
trend towards negative values ofB2 upon increasing the
polymer concentration, which is consistent with the expec
positive nonadditivity in such colloid-polymer systems.
contrast, the results in Sec. III B imply that for an additi
binary colloid mixture, size ratios ofsss/sbb&0.2 are re-
quired to driveB2 negative. For negative nonadditivity eve
smaller size ratios are required. Such qualitative effe
should be visible in experiments.

We note in passing that the effect of increasing the po
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mer concentration on the second osmotic virial coefficien
a globular protein-polymer solution has been measured
cently @37#. However, these experiments are in the prot
limit 2Rg /scc@1, where the concepts of negative and po
tive nonadditivity are less useful.
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APPENDIX: LOW DENSITY LIMIT OF v1

Here we demonstrate that the one-body termbv1(zs),
given in Eq.~31!, reduces in the limitrs

r→0 to theexactlow
density limit, i.e.,

lim
rs

r→0

bv1~zs!5rs
rVb1s , ~A1!

with Vb1s54psbs
3 /3 the volume of a spherical cavity o

radius sbs , which is excluded to the centers of the sm
spheres. Recall thatv1(zs) is the excess chemical potenti
of a big hard sphere in a sea of small ones.

In order to take the low density limit we note that
leading order in powers ofrs

r the equation of state, Eq.~28!,
reduces to

lim
rs

r→0

bp5rs
r , ~A2!

the surface tension, Eq.~32!, to

lim
rs

r→0

bg5
sss

2
rs

r , ~A3!

the coefficient of the term inbv1 linear in Rb reduces to

lim
rs

r→0

6hs
r

sss~12hs
r !

5psss
2 rs

r , ~A4!

and, finally

lim
rs

r→0

2 ln~12hs
r !5

p

6
sss

3 rs
r . ~A5!

It follows that

lim
rs

r→0

bv15
4p

3
Rb

3rs
r14pRb

2 sss

2
rs

r14pRbS sss

2 D 2

rs
r

1
4p

3 S sss

2 D 3

rs
r . ~A6!

Recalling that Rb[sbs2sss/2 we find lim
rs

r→0
bv1

5(4p/3)sbs
3 rs

r , which is Eq.~A1!.
2-12
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