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We describe a method for obtaining the intermediate scattering furi€t@) from a computer simulation:
it is an extension of our earlier calculatipBalacuse, Denton, and Egelstaff, Phys. Re§3F2382(1996] for
the t—0 limit. We use this approach to obtalfQ,t) for low Q andt from molecular dynamicsMD)
simulations of a model krypton fluid whose atoms interact via a truncated Aziz pair potential, and the results
are compared over their range of validityl{@,t) determined by the standard MD method and also by a time
expansion approach. In its range of validity our approach is much more efficient than the standard MD method;
however, it covers a restricted rangetafue to the movement of density fluctuatidis®und wavesthrough
the simulated fluid which produces an anomaly in the time behavié(@ft). By analyzingl (Q=0t) the
velocity of sound in the simulation is determined, and the results compare favorably with published experi-
mental results for the sound velocity of liquid krypton.
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[. INTRODUCTION a range ofQ values, includingQ=0, from MD simulations
for a dense krypton fluid. For comparison we calculate
The intermediate scattering functiogQ,t) plays a sig- [1(Q,t) from simulation data using both the standard ap-
nificant role in describing fluid structure since it is the spaceproach and the time expansion approach. The effects of
transform(transform variabl&)) of the Van Hove correlation sound waves limit the time interval over which the scalar
function G(r,t), which describes the structure of a fluid in method and the vector method accurately di¢®,t). We
both spacer) and time(t). It is also the frequencfw) trans- ~ USe this_fact to estimate the velocity of §ound in our si_m_u-
form of the experimentally accessible dynamic structure faclated fluid and suggest a general technique of determining
tor S(Q, ). Moreoverl (Q,t) can be obtained from molecu- the Velocity of sound in a simulation.

lar dynamics(MD) simulations; but the standard methidd S Thﬁ remaindetrhof th|i§ ptafpert is org?ntizca? tﬁs foIIolvvs. lnd
of obtaining!1(Q,t) from simulation data is limited by the ec. 1l we give the salient features ol bo € scalar an

restriction thatQ=2#/L, whereL is the edge length of the vector approaches to calculatigQ) and|(Q.t), and the

simulation cube: a restriction that applies also to the calcu'Elme expansion method of determining,t). In Sec. Ill we

. . a describe the MD simulations. The results of 1{€,t) cal-
Iat|9n of the static structure_ fact®(Q) =1(Q.,0). An qlter- culations are given and commented upon in Sec. IV. Then in
native approach to calculatirg(Q) and|(Q,t) from simu-

, : ) , - Sec. V, we present our method of obtaining the velocity of
lation data was presented in a previous publicaffnit has  sond in a simulation and compare our estimate with experi-

the advantage that bo®(Q) and1(Q,t) can be calculated mental results. In Sec. VI we summarize our results. We
(under appropriate conditionsor all wave vector magni- conclude the paper with two Appendixes. In Appendix A we
tudesQ, includingQ—0. It was necessary that certain crite- describe the analysis required to obt&{®,t) by both the
ria involving the radial distribution functiog(r) [in the case  scalar and vector methods from simulation data. In Appendix
of S(Q)] and the Van Hove correlation functigd(r,t) [in B we consider how many-body forces and the simember
the case of (Q,t)] were satisfied. Here we refer to the stan- of particles of a MD simulation affect the velocity of sound.
dard method of calculatin§(Q) and! (Q,t) from simulation
results as the “vector method,” and the approach presented
in Ref.[2] as the “scalar method.” In a subsequent paj&r Il. METHODS OF CALCULATING  1(Q.t)
the scalar method was applied to the calculatiorS6®), The intermediate scattering functiofQ,t) is related to
and the results were compared to data obtained from calcyne van Hove functiorG(r,t) by [4,5]
lations using the modified hypernetted chéHNC) inte-
gral equation. The results of the two methods agreed nicely
for the states chosen. In the present work, as well as in pre- I(Q’t):f drexp(iQ-n)[G(r,t)—p], )
vious publicationg2,3], we are concerned only with uni-
form, isotropic fluids.

In this paper we apply the scalar method to the time dowherep is the density of the fluid an&(r,t)dr is propor-
main, and show that it can be used to obtain short time datdonal to the probability of finding a particle within a volume
onl(Q,t) at low values ofQ. Then we determing(Q,t) for  elementdr at positionr and timet, given that there was an
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arbitrary reference particle a=0 andt=0. [(Q,t) is re- 2 )
lated to the experimental dynamic structure fac%Q, ) @
by [4,5] e -
< o
1 [+ Loy o o
SQo)=5- [ dteioni@u, @ z
27 ) —» 3
o]
wheref Q and%zw are the momentum and energy transferred I
in a radiation scattering experiment a8@Q,w) is propor- 0 °

tional to the scattering intensity. In terms of an equilibrium
ensemble, denoted Ky), 1(Q,t) is given ag4,5]

1 N N
Q)= N<j21 2 epiQ[r(-r(0l}), @ RS ®
[ ° °
wherer;(t), j=1, ... N, is the position of thgth particle at cv‘;z [ SO - Teplpen e eayt 0 f T
time t. 0.996
The vector(standard method of calculatind (Q,t) [or ' e
S(Q)] is described in Refl1]. Here we note that the vector 02 s s a5 4 45 5 85
method is restricted to calculating Q,t) at wave vector r (units of o)
magnitudes Q that satisfy the condition QL/2m
=1,/2,/3,/4, ..., so thaninimumQ value accessible by the FIG. 1. Reduced\-particle Van Hove correlation function at

vector method is 2/L. We shall refer taQ values that sat- timet=0, Gy(r,0)/p vs radial distance in units of o, (distance of
isfy the above restriction as “allowable” values & There Aziz pair pott_anti_al_minimumfor N=706. The dotted_ Iing denotes
is a method that can be used to approxinid@®,t) at values the asymptotic limif1—S(0)/N]. Panels@ and (b) highlight the
of Q>2#/L which are not allowabl® values; however, as rst and third peaks, respectively.

will be shown in Sec. 1V, this can lead to significant errors.

The equations that describe the calculation @,t) by S(0)
the scalar method have been developed in a previous publi- GN(r't):P[l_ N
cation [2]. In this section we present three equations that
characterize the scalar method and give a brief description
the use and limitations of these equations in calculatin
(Q,t). The intermediate scattering function is calculated in
the scalar method by Eq.(&, whereu(QR) is defined in
Ref. [2]:

for R(H)<r<L/2.  (5)

QIthus Eqgs(4) and(5) summarize the scalar method of calcu-
ating 1 (Q,t) and the notatiofR(t) in Eq. (5) emphasizes the
time dependence of the asymptotic regi®g(r,t).
The restriction orR given by Eq.(5) has a major conse-
quence for the calculation d{Q,t). Figures 1 and 2 show
S(0) 4 plots of G(r,t)/p att=0, 3.01, and 5.01 ps obtained from a
1(Q,1)=In(Q,t,R) + TgﬂpR%(QR) for large R, 706-particle simulation, and details of the MD simulations
(43 will be given in the next section. Figurda shows the gen-
eral behavior of Gy(r,t)/p and Fig. 1b) indicates that
where Gp(r,t)/p att=0 attains its asymptotic limit  S(0)/N for
the range 4.6,<r<5.3%,, where in our caseo,
sin(Qr) =4.012 A and 5.38, is the maximunr value accessible to
Qr Gn(r,t) a 706-particle simulation. Figure 2 demonstrates that as time
increases the asymptotic region®f(r,t) recedes to larger
values ofr. For example, Fig. @ shows the asymptotic
region beginning at =50, for t=3.01 ps and Fig. ®) for
t=>5.01ps indicates that the asymptotic region@&§(r,t)
The quantityl (Q,t,R) is the finite systen{N-particle in-  cannot be accessed by a 706-particle simulation. As a result,
termediate scattering function and, as will be seen in Appenat the thermodynamic state of the simulation, we expect the
dix A, may be calculated from MD simulation results. In the scalar method applied to data from a 706-particle simulation
calculation ofl(Q,t,R), R represents the distance from a to accurately givel(Q,t) at smaller values ofQ, Q
central particle and places a limit on the extent of the calcu=2=/L, for t no larger than(roughly) 5 ps, since Eq(5)
lation. The second term on the right hand side of E@ cannot be satisfied far>5 ps. For a 2048-particle system in
correctsl y(Q,t,R) for finite size effects. The larg@ restric-  the same thermodynamic state, an estimate of the maximum
tion on Eq.(48 requires that thé\-particle Van Hove cor- time at which the scalar approach will accurately gi(@®,t)
relation functionGy(r,t) attains its asymptotic limit for for Q=2#/L is obtained as follows. We scale the 706-
>R [Eq. (31, Ref.[2]]. Hence the restriction oR in Eq.  particle system result="5 ps by the ratio of the simulation
(4a) can be restated by definirig(t) such that cube edge lengths for the 2048-particle systein,

R
IN(Q,t,R)=4ﬂ-JO drrz(

4
- §7rpR3u(QR). (4b)
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1.008 conditions. However, this restriction on time associated with
. @ the vector method is much less severe than the time restric-
L Tee tion of the scalar method for smallér values. ForQ values
§ 1002 1° ° that are large relative to72/L the scalar approach, like the
i , ° e° oo . vector approach, will accurately givéQ,t) with t limited
& e e e 2 e only by the reappearance of sound waves. At such I§ge
© o0 ° values, the factor sigfr)/Qr which appears in the definition

0996 of 1(Q.,t), 1(Q,t,R), andIy(Q,t,R) [Egs.(25) and(27) of

Ref.[2]] will minimize the effect onl (Q,t) produced by the
0t s s 35 4 45 5 55 structure ofGy(r,t) at larger. Thus!(Q,t) will be unaf-
fected as the asymptotic region &fy(r,t) changes with

1.006 time.

1004 L o i) A time expansion of (Q,t) will allow 1(Q,t) to be de-
N termined from simulation results for any value @fover a
- 1 limited range int. We refer the reader to Reff4,6] for a
;'l: | ISR oy e e o general account of this method of calculatin@,t). Here
520998 Y X NSRS we note that our calculation ¢{Q,t) by this approach omits

' terms that contain three- and higher-particle distribution

0.996 ] functions. The static structure fact8(Q) is required by the

0004 time expansion method to calculdtg,t), while the scalar

25 3 35 4 45 5 55 approach require$(0) for the calculation ofl (Q,t). For
r (units of ,,) small Q, S(Q) must be obtained from an integral equation

theory such as the MHNC or from the scalar approach, since
FIG. 2. Same as Fig.(h) exceptt=3.01 and 5.01 in panel®)  the vector method of determinir§(Q) is inappropriate be-
and (b), respectively. cause of theQ=2m/L restriction. In this work the infinite
systemS(Q) is obtained from the scalar method as described
=15.3%,, and 706-particle systent,=10.78&,, to find in Refs.[2,3].
the new limit t=7ps. Thus at roughlyt=7 ps the
asymptotic region of5y(r,t) will recede beyond the range IIl. MOLECULAR DYNAMICS SIMULATIONS
accessible to the 2048-particle simulation; hence the scalar
method will accurately givé(Q,t) at smaller values of for We carried out a series of MD simulations for a dense
t no larger than approximately 7 ps. krypton fluid in which the particles interacted via the Aziz
Perhaps a better physical understanding of the limitatiorpair potential [7], characterized by the parameters
imposed by Eq(5) on the scalar method is obtained by not- =3.579 A (atomic diameterso thato,,=4.012 A (distance
ing that, when the asymptotic region &f(r,t) recedes to of potential minimum and T/kg=200 K (well depth, with
r>L/2 [i.e., outside the range of validity of E¢da)], it is  the potential truncated at a cutoff distance4o. The simu-
possible that some structure would be forming in a lafger lation program is based on the fifth-order Gears predictor-
infinite) system over the region>L/2. Butly(Q,t,R) can-  corrector algorithn8] that solves the classical equations of
not account properly for this structure and thus @@ is no  motion for particle trajectories in the microcanonical en-
longer valid. Hence, when the sphere of radRusve assume semble with periodic boundary conditions. The simulations
R is roughly equal toL/2) associated with the calculation were performed for two system sizBls=706 and 2048 in a
begins to “leak structure,” the scalar calculation begins tothermodynamic state defined by the reduced temperature
fail. As illustrated above, increasing the sige., number of T*=kgT/e=1.508 and reduced density* =po>=0.40.
particleg in the simulation will allow access to largewval-  (For comparison, the critical point of krypton occursTat
ues and thus allow access to the asymptotic region of 1.05,p* =0.3) The system state closely approximates the
Gn(r,t) for greater values of time; this in turn will extend state used in a previous publicatifd] in which S(Q) was
the time for which Eq(4a) is valid. We note, however, that calculated. The relatively large compressibility associated
Eq. (4@ will give spurious results only for thos@ values  with this thermodynamic state makes it ideal to illustrate the
associated with structure in the region>R, or for Q  scalar approach to calculating b&tQ) andl(Q,t). For the
<2x/L. In addition, for this range of) values, errors in  706- and 2048-particle systems nine independent simulations
1(Q,t) will occur at smaller values dfasQ decreases. The were performed with each simulation consisting of 20°
opposite case wher® is larger than Z/L is discussed be- time steps.
low. The 706-particle simulation has an edge lendth
The vector method will givé(Q,t) accurately for allow- =10.78r,,, and the allowabl&) values associated with the
able values ofQ and over time intervals less than the time vector method of calculatind(Q,t) are given byQa,
required for a sound wave to travie| the edge length of the =0.583, 0.823, 1.01, and 1.166,. ., with the number of
simulation cube. Simulations over longer time intervals will noncolinear vector€) associated with each allowable value
produce errors il (Q,t) that arise from the spurious reap- being 3, 6, 4, and 3, respectively. Please note that for a given
pearance of sound waves as a result of periodic boundamyalue of Q there are essentially an infinite number of non-
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collinear vectorsQ for which |Q|=Q. However, the use of
periodic boundary conditions in the simulation requires that
the Q vectors satisfy the restrictio = (2#/L)(kq,k»,K3),
where k;=0,+1,=2,..., with i=1,2,3. This restriction
gives rise to the relatively small number of noncollinear vec-
tors Q associated with the allowable values@fin the vec-

tor calculation. To obtainl (Q,t) for Q>0 by the scalar
method,R values of 4.5, and 5.@r,, were used in the right
hand sidg(RHS) of Eq. (48 and the results were then aver-
aged to obtairn (Q,t). The technique of averaging over val-
ues ofRwas employed to obtain a representative value of the
quantityl (Q,t,R) of Eq. (4) for Rin the asymptotic region

of Gy(r,t). Averaging ovelR values produces a modest de-
crease in the fluctuations df(Q,t). Finally, S(0)=0.91
+0.06 was calculated via Ed23) of Ref. [2] for the N
=706 case.

In the 2048-particle simulatioh =15.3%,,, the allow-
able Q values are given bo,,=0.409, 0.578, 0.708, and
0.816 ..., and thenumber of noncolinear vecto@ are 3,

6, 4, and 3, respectively. In the scalar methBdvalues of
7.00, and 7.5, were used in the RHS of E¢4a and the
results averaged to giv€Q,t). Use of Eq.(23) of Ref.[2]
gave a value 05(0)=0.90+0.08. Note that the values ob-
tained forS(0) agree with the results of our previous work
with colleagueqd3]. Obtainingl(Q,t) by averagingR may
average out fluctuations i Q,t), which suggests that one
should use a singIR value in the velocity of sound calcula-
tions. This is because anomaligkictuations in 1 (Q,t) will

be used in Sec. V to determine the velocity of sound in our
simulations. Therefore in calculating ti@=0 data,l(Q,t)
was obtained by the scalar method using a siiylalue of
5.38r, in theN=706 case and a singRvalue of 7.5, in
the N=2048 case.

During the simulation, configuration§particle coordi-
nateg were periodically saved and subsequently analyzed to
determinel (Q,t). In Appendix A we describe the scalar
method and the vector method of obtaini{®,t). For both
the 706- and 2048-particle simulations, coordinates were
stored every 1.0023 ps, implying tHqQ,t) can be obtained
fort=1.0023 ps,n=1,2,3 ... . Thequantityl \(Q,t,R) is
a measure of the degree of correlation between particle con-
figurations separated by timeas noted in Ref[3]. This
property ofl (Q,t,R) is used to ensure the independence of
the estimatesX,(Q,t) used in Eq.(A2) below to obtain

Qb

Q.

Qb
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FIG. 3. Intermediate scattering functid(Q,t) determined by
scalar methodshaded circlesand vector methoddiamonds$

applied to 706-particle MD data vs time Qo (@ 1.01, (b)

0.823,(c) 0.583. The vertical lines in panelb) and(c) at selected
values oft represent error bars.

X(Q,t,M). Separating successive reference coordinate sefg,
used in the calculation oX,(Q,t) by a time interval large
enough to ensure tha(Q,t,R)=0 implies that the refer-
ence coordinate sets are uncorrelated and hencelsaare
independent. Note that independence ofXis is necessary

for oy, or the error in Eq(A4), to be calculated by Eq. ps. The time separating successive reference coordinates

(A3). In calculatingl (Q,t) from the 706-particle simulation contained a random component to further ensure the inde-
data, reference coordinates were separated by a fixed tinfandence of the estimat¥g(Q,t).

interval of 30 ps plus a random interval between 0 and 10 ps
giving an average separation of 35 ps. The quantity
In(Q,t,R) decays more slowly as the system size increases;
hence the 2048-particle system required a separation consist-
ing of a fixed interval of 50 ps plus a random interval of  Figure 3 illustrated (Q,t) obtained by the scalar method
between 0 and 20 ps implying an average separation of 6®ircles and the vector metho¢diamonds from the 706-

IV. RESULTS AND ANALYSIS
OF 1(Q,T) CALCULATIONS
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time t (ps) FIG. 5. Intermediate scattering functiofQ,t) determined by

the scalar methodcircles applied to 706-particle MD data and

FIG. 4. Intermediate scattering functio(Q,t) determined by  vector methoddiamonds$ applied to 2048-particle MD data vs time
the scalar methodcircles applied to 706-particle MD data and t for Qo,,=0.409. Also shown id(Q,t) determined by the time
vector method(diamond$ applied to 2048-particle MD data for expansion approacfuotted ling.
Qo ,,=0.708. Also shown isl(Q,t) obtained from the vector
method applied to 706-particle MD data by averaging over “allow- Which suggests the reappearance of a sound wave in the 706-
able” Q values(stars. particle system at approximately 11 ps.

Figure 5 compare$(Q,t) for Qo,,=0.409 obtained by
. . . . the scalar method using the 706-particle simulation results
particle simulation results f@am._ 1.01, 0.823, and 0'5.83' (circles, by the vector method using the 2048-particle simu-
At selected values of, vertlcaI~I|nes centered on a circle lation results(diamonds, and by the time expansion ap-
(diamond of total length 5 (26y) represent the error as- proach(dashed ling We note that the vector method could
sociated with the SCﬂIdK/eCtOl) method. Note that bOtHM not have been app“ed to the 706_partic|e MD data for
and 8, are modestly time dependent with the uncertaintyQo,,<0.583. Fort>6 ps the results of the scalar and vector
slightly larger at smaller values of time. FigicBshows that methods begin to disagree because of errors in the scalar
for Qo ,=0.583 the results of the scalar and vector methodspproach caused by the deterioration of the asymptotic re-
begin to diverge fot>6 ps. As noted above, this divergence gion of Gy(r,t) contained within the 706-particle system.
is due to spurious results of the scalar method caused by thiEhe shape of the dashed line indicates that the time expan-
deterioration of the asymptotic region @&y(r,t). This  sion results are in error fdr>5 ps. Qo ,,<0.409 the vector
should be compared to our estimate that the 706-particle scaiethod cannot be applied to the 2048-particle MD results.
lar result would be valid fott no larger than 5 ps. AQ  Comparisons between the 2048-particle scalar results
increases, the effect ol(Q,t) caused by the structure of (circles, 706-particle scalar resul{starg, and time expan-
Gy (r,t), for larger, decreases and thus fQto,,=0.823 and  sion results(dashed ling are illustrated in Fig. 6 foQo,
1.01 the scalar and vector methods agree nicely. Note, how=0.30. All results shown agree to within error bars tor
ever, that there is a modest disagreement between these4 ps. The time expansion results are in errortfei7 ps as
methods forQo,,=0.823 att=11 and 12 ps, which we feel evidenced by the shape of the curve depicting these results.
is due to the greater effect of sound waves as a result ofhe 706-particle scalar results disagree with the 2048-
periodic boundary conditions. We discuss this matter furtheparticle scalar results and the expansion results=d ps,

in Sec. V. suggesting that the 706-particle scalar results are in error for
Figure 4 comparelQ,t) for Qo,,=0.708 obtained from timest>5 ps.
the 2048-particle vector calculatigdiamond$, 706-particle The following scaling argument suggests that the 2048-

scalar calculatior(circles, and 706-particle vector calcula- particle scalar results are correct te£9 ps in theQ=0.30
tion (starg. The 706 scalar results and the 2048 vector resultsase. We recall that the scalar method accurately gives
start to disagree far= 12 ps due to the effect of sound waves 1 (Q,t), with Qo,,,=0.409, fort<6 ps in the 706-particle

in the smaller system, hence the scalar result is in error focase(see Fig. 5. But Qo ,,=0.409 relative to a 706-particle
t=12 ps. Note thaQo,,=0.708 is not an allowabl® value  system implies a smaller quantity th@w,,= 0.3 relative to
associated with a 706-particle vector calculation, and thex 2048-particle systerfsince the quantityQL is smaller for
1(Q,t) shown in Fig. 4(starg was obtained as an average Qo,,=0.409 and. = 10.78&,, (706-particle systeithan for
overl (Q,t) for Qo ,,=0.583 and 0.823. This averaging tech- Qo ,,=0.30 andL = 15.37%,, (2048-patrticle systephimply-
nique is a standard approach used to obté,t) for non- ing that the 2048-particle scalar results are correct for
allowable Q values by the vector method and, as shown int<9 ps.

Fig. 4, can lead to significant errors. Finally, note the modest Figure 7 illustratesl (Q,t) (circles and S(Q) (dashed
“hump” in the 706 vector results forbetween 11 and 14 ps, line) for Q=0 with both quantities obtained by the scalar
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FIG. 6. Intermediate scattering functid(Q,t) determined by
the scalar method applied to MD data from a 706-particle system
(starg, 2048-particle systenfcircles, and the time expansion ap-
proach(dotted ling vs timet for Qo ,=0.30.

method[S(0) determined by Eq(23) of Ref. [2]]. For Q R °
=0.0, 1(Q,t)=5(Q) for all values oft. Also, as shown in °
Fig. 7(a), the 706-particle results fol(Q,t) are correct 06
(within the fluctuations for t<3 ps and, as shown in Fig. e
7(b), the 2048-particle results are correct fet5 ps. 0 4 8 12 16 20
We now consider the accuracy and efficiency of the scalar time t (ps)

and vector methods for calculatimn¢Q,t). The uncertainties

(standard deviationin | (Q,t) associated with the scalar cal-  FIG. 7. Intermediate scattering functio(Q,t) (circles and the
culation and the vector calculation are denoted&w and static structure faCtCﬁ(Q) (dotted Ilné for QZOO obtained by the

~ . -, . calar method. Pandh) shows results associated with the 706-

Om » regpectlvely, and both Of.these quantities are _mversel article MD data, and panégb) illustrates the 2048-particle results.

proportional to\M, whereM is the number of estimates

used to obtain(Q,t). Also, for a given value 0@, M had a

common value in the scalar and vector calculations reportegcalar calculation required 2 h. However, as previously

in this work. We shall compare the conditions under whichnoted, to reduce the uncertainty of the vector results to those

the uncertainties in these methods are equal. of the scalar results would necessitate quadrupling the data
In the N=706,Qo,,=1.01 casdFig. 3a)] dy/5y>2 at set, an effort that would require approximately 2280 h of

computer time. Thus overall the scalar calculation is more

all values of time with the time averaged values&yf and - o :
) . efficient, requiring roughly 572 h of computing compared to
Sy being 0.016 and 0.007, respectively. Hence the numb 280 h required for the vector calculation.

of estimates in the vector calculation must be increased by a The scalar method has a similar advantage in calculating
factor of (at least 4 in order to reduce the uncertainty of the 1(Q,1) for N=706 in the Qo,,=0.823 andQo,,=0.583

vector approach to that of the scalar approach. This in turn o~ o
would require extending the length of the MD simulations by¢@S€s Withdy /8y > 1.5 for all values of time in each case.

a factor of 4. The scalar calculation of an estimaté(@,t)  The time averaged values 6f; and oy are 0.015 and 0.010
requires the evaluation of a sum containiNg terms[Eq.  in the Qo =0.823 case and 0.026 and 0.018 in Qe,
(Ala) below], while the vector calculation of an estimate =0.583 case. A relatively large uncertainty in the vector
requires the evaluation of four summations, each containingalculation results from the small number@fvectors which

N terms[Eq. (A5)], therefore the vector approach is the morecan be used in Eq(A5) below to obtain an estimate of
efficient method of calculating a single estimatel 6®,t). 1(Q,t). For example, as noted in Sec. Il there are a total of
However, because of the increased number of estimates réhreeQ vectors that can be used to obta{{Q,t) for Qo,
quired by the vector approach, the scalar approach is a much0.409. Increasing the value @ generally increases the
more efficient method of calculatingQ,t) for Qo,=1.01  number ofQ vectors available for calculating Q,t) by the

at a given uncertainty. In particular, the 706-particle MD vector method. In th&®o,=3.14 case there is a total of 36
simulations were run on an IBM RS/6000 computer work-suchQ vectors. Use of all 36 vectors yields an average un-
station and required a total of 570 h to complete. Analyzingcertainty inl (Q,t) of 0.003; however, using only four of the
the data to obtaih(Q,t) for Qo,,=1.01 required roughly 4 36 Q vectors increases the average uncertainty to a value of
min of computer time in the vector calculation, while the 0.01. The scalar method of calculatingQ,t) for Qo

o
™

Q=01
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figure to the right end of the cube and, due to periodic
boundary conditions, appears at the left end of the cube at
time t,. The crest will continue to move to the right and at
some point in time overlap with its initial position at tinhg
hence the wave will have traversed the whole simulation
cube. The circle represents the cross section of the sphere of
radiusR used in Eq(A1) below to calculateX,(Q,t), where
the ith particle associated with EqAla) is assumed for
simplicity to be at the cube’s center. In terms of the notation
of Eq. (Ala), to=t, and the position of théth particle is
denoted as;(ty). Figure 8 indicates that as the wave moves
toward the right end of the cube the sphere contains less of
the crest or dense part of the wave and hence the number of
particles contained in the sphere decreases. The sphere will
continue to lose particles until the crest, due to periodic
boundary conditions, reenters the left end of the sphere. At
this point the number of particles within the sphere will start
to increase and will reach a maximum when the wave'’s crest
) ) , , . reaches its initial position—when the wave has traveled the
FIG. 8. Cross section qf the primary simulation _cube. '_I'he C'rdelength of the simulation cube.
represents the cross section of the sphere of_ radiused in Eq. For Q=0 the sum ovej in Eq. (Ala) counts the number
(A1) below to calculateX,(Q,t). The dotted lines represent the - - . .

%f particles contained in the sphere of radRsat timet,

crest of a sound wave as it moves through the simulation cube an+t . that th isted ticle at th here’ t
is initially positioned at the cube’s center at tirgg moves to the - 9""*?‘ a gre existed a particie at the sphere s center
(ith particle at time t,. Hence the values o, (0,),

right end of the cube dt, and, due to the effect of periodic bound- ”
ary conditions, occupies the left end of the cubetatwheret,  |n(OLR), andl(0t) [Egs.(Ala) and(4)] will be affected by
<t;<t,. the position of the sound wave, and in particuléd,t) will

register an increase in value and exhibit a local maximum at

=3.14 produces an average uncertainty of 0.001. Hencdhe timet required for a sound wave to travel the length of
even in a case where the vector method has access to a refge simulation cube. In the above discussion we have fo-
tively large number ofQ vectors, the scalar method is the cused on one centralth) particle contained within the crest
more efficient method of calculatingQ,t) at a given un- of a sound wave traveling in the direction. However, it
certainty. should be noted that each particle contained within the

The source of the difference in efficiency of the scalar andvave’s crest at time, (Fig. 8, when used as thigh particle
vector calculations can be understood by noting that(®5).  in Eq. (Ala), will effect an increase in(0t) at the timet
of Ref. [2], a basic equation of the scalar method, can bgequired for the wave to travel the length of the simulation
obtained by averagingntegrating Eq. (1) over allQ vec-  Cube.
tors with a fixed magnitude of. Consequently, the scalar ~ Figure 7a) shows the averaggQ,t) obtained from nine
method averages over an essentially infinite numbe®of independent simulations. The local maximum that occurs in
vectors and the vector method averages over a finite numbé#he vicinity of 11.5 ps indicates that a sound wave requires
of Q vectors. As a result the scalar calculation ¢®,t) has roughly 11.5 ps to traverse the length of the simulation cube.

a smaller uncertainty than the vector calculation. We have analyzed the results of the independent simulations
used to obtain Fig. (8 and have obtained the location in
V. VELOCITY OF SOUND time of the maximum value df(Q,t) in the vicinity of 11.5

ps for each of the nine simulations. This analysis yields nine

We begin by reviewing the behavior 6(Q=0;). As't values ranging from 11.02 to 14.03 ps with an average value
—0,1(Q=0,t) becomesS(Q=0) which as a value of 0.91 and standard deviation of 11.8 and 1.0 ps, respectively.
in the N=706 case. At highet Fig. 7(a) shows thatl (Q Hence we have determined that a sound wave requires 11.8
=0,) has a local maximum dtoughly) 11.5 ps. We recall *1.0 ps to traverse the simulation cube, and this corresponds
that other anomalies in the behavior IqfQ,t) were illus- to a velocity of sound in the 706-particle simulation of 366
trated in Figs. &) and 4, occurring at approximately 11 and =34 m/s. In the 2048-particle case, analyzing each of the
12 ps, respectively, and were attributed to the effect of soundine simulations associated with Fig(by indicates that a
waves. Similarly, we shall attribute the aforementioned besound wave requires 178.9 ps to travel the length of the
havior of I (0,t) to the effect of sound waves, an effect which simulation cube, and this corresponds to a velocity of sound
we now discuss in some detail. of 35058 m/s. These are finite system results, which are

Figure 8 shows the cross section of the primary simulasize dependent. When going to an infinite system we expect
tion cube and the dashed lines denote the crest of a sourhde velocity of sound to have a modestly smaller value since
wave at various points in time as the wave moves inxhe the compressibility will be larger for the infinite system.
direction through the cube. As time increases through values Experimental result§9] give the velocity of sound in
to<t,<t, the crest of the wave moves from the center of thekrypton at 300 K for densities of 7.94 and 8.96 atoms/am
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TABLE I. Velocity of sound(m/s) for krypton gas ap==8.725 atoms/nthand T=301.6 K.

Experimental results

With many-body forcegobserveg 335.5

Subtracting calculated effect of many-body forces 317
Scalar MD simulation results

N=706 case 366 34

N=2048 case 35058

307.41 and 343.15 m/s, respectively. Linearly interpolatinghe asymptotic region o6y(r,t) recedes to larger ast
between these results yields an estimate of the velocity of,creases.
sound in bulk krypton of 335.5 m/s at the simulation density Also, we compared MD results obtained by the vector and
of 8.725 atoms/nrt{p* =0.40) and the simulation tempera- scajar methods, and showed how the range of time over
ture of T=301.6 K (T* =1.508). The velocity of sound data which the two sets of data agreed varies with the value of
are listed in Table I. . ~_ Qoy,. Then we compared scalar results for a 706-particle
When comparing the experimental sound velocity withsystem with vector method results for a larger 2048- particle
the results obtained from the 706- and 2048-particle MDsystem. These results showed the complementarity of the
simulations, many-body forces and size effects must be conyo methods. We also compared these results to those ob-
sidered. In Appendix B we obtain a value of 317 m/s as &ajned by a short collision time expansitFigs. 5 and $and
rough estimate of the velocity of sound in bulk krypton at thegemonstrated the usefulness and the limits to this expansion.
simulation density and pressure with many-body effects reThe fact that the scalar method described here gives valid
moved. We stress that, because our simulations do not agasyits for lowt in the limit Q—0 was illustrated by the data
count for many-body effects, these effects must be subtracteglasented in Fig. 7. In addition, we compared the efficiency
from the experimental results to obtain a valid comparison ohf the scalar and vector approaches and found that for the
experimental and simulation results of the velocity of sound¢gses in which (Q,t) was calculated by both methods the
Table | shows that the experimental velocity of sound resultcajar method was significantly more efficient at a given
with many-body effects removed falls within the lower limit |oye| of uncertainty. Finally, we deduced the velocity of
of the 2048-particle simulation result and is slightly below g5,,nd in our system from the anomalous behaviot (63
the lower limit of the 706-particle simulation result. How- =04) ast was increased. It compared well to the value de-

ever, as we argue in Appendix B, the sound velocity in anyyceq from experimental data on real krypton after correct-
N-particle simulation decreases Asincreases. Because of ing for the three-body potential term.

this, our 706-and 2048-simulation results for the velocity of “th,s we have tested the scalar method in a number of
sound must be reduced before comparing them to EXPeliyays and a variety of conditions. Its usefulness in extending
mental results that refer to bulk kryptdmfinite-N casg. An MD data on finite systems to smaller values @fover a

estimate of the magnitude of the reduction that must be aprgiricted range of has been demonstrated. We hope this
plied to theN-particle simulation results was not obtained ;| |ead to its use in a variety of calculations.

since this would have required a substantial amount of com-
puter time. Here we simply note that reducing the simulation
results by roughly 10% brings the simulation and experimen-

tal results into essentially perfect agreement. APPENDIX A CALCULATION OF - 1(Q.1)

IN'A MD SIMULATION

We first describe how to obtaih(Q,t) via the scalar
method. Consider a pair of coordinate sets separated in time
We have applied a method for obtaining low momentumby time intervalt. One coordinate set, referred to as the ref-

transfer data on fluids from a computer simulation. Whileerence set, contains particle positiongt,), i=1,... N,

our earlier work with colleagueg2,3] concentrated on the and the other coordinate set, referred to as the correlation set,
equal time correlation functions at low momentum transfercontains positiong(t,+t), j=1,... N. From the refer-

we have extended these methods to the finite time correlatioence set a particleis arbitrarily selected and all particlgsf
functions. Data were obtained for a kryptonlike fluid pair the correlation set contained within a sphere of radweth
potential at a state above the critical point, and good agreesenterr;(t,) are determined. The factgsin(Qr;)/Qr;], rj;

ment between this method and other data was obtained. Ipeing the distance between particieandj, is summed over
particular, we have concentrated on the intermediate scatteall j. Next another particlé is chosen, the same sum is cal-
ing functionl (Q,t) at lowt and on the velocity of sound for culated, and the process is repeated until every reference
this state. We have shown how data obtained with existingarticle has served as a central particle. The average over all
MD methods may be extended using our method. Both thé=1, ... N of the calculated sums represents a single esti-
most useful procedures and the limitations of our approacimate of the integral in Eq4b) that defined \(Q,t,R). This
have been investigated. For example, we have shown howstimate, which we denote ¥3(Q,t), is expressed analyti-
the calculation of (Q,t) at smaller values o is affected as cally as

VI. SUMMARY AND CONCLUSIONS

051201-8



FINITE-SIZE EFFECTS IN... . ll. .. PHYSICAL REVIEW E 64 051201

classical fluids. The vecto® has magnitudéQ|=Q, and

N
}Aijk(t,R), averaging over a set oh such vectors yields a single esti-

1 i Qrj;(ty,t
Qo= 3, 3, | Tt

=oAL Qe mate of1(Q,t) given by Eq.(A5). Then theY,(Q,t) ob-
(Ala) tained from M independent(uncorrelatedl reference sets
where yields the following approximation for(Q,t):
LT nleb=R QU-1F vaQu=3 (A6)
B R=1o it >R (Ath) =T

andr;; (t,t) =|ri(t) — ri(t+ 1) is defined as the minimum - \here3,, is the standard deviation associated with the aver-
distance between particlesit timet, and either particl¢ or  age of theY,’s [see Eq(A3)].

its nearest periodic image at tinhgt+t.
Averaging M independent estimateX,(Q,t) obtained APPENDIX B: VELOCITY OF SOUND: MANY-BODY
from M independent reference sets gives the following ap- FORCES AND SIZE EFFEéTS
proximation to the integral in Eq4b):
We first consider how many-body forces influence the

M
1 velocity of sound. Figure 5 of Refl10] compares plots of
X(Q.tLM)= M,Zfl Xd(Q.1). (A2) P/pkT vs p for T=297 K obtained from Monte Carlo simu-
lations using pair interactions and obtained from experimen-
The variance inX(Q,t,M) may be approximated by tal results. At the simulation density=8.725 atoms/nr

the simulation pressure is significantly below the experimen-
, 1 M ) tal pressure. A decrease in pressure produces a decrease in
5M:szl [Xk(Q,1) = X(Q,t,M)] (A3)  density, which in turn implies a decrease in the velocity of
sound in bulk krypton as seen by comparing the velocity of
and the standard deviatiof), represents the uncertainty in Sound results of Re{9] that were given in Sec. V. Hence
X(Q,t,M). Hence the integral in Eq4b) may be approxi- removing” many-body effects reduces the speed of sound

mated byX(Q,t,M) =+ 8, and at the state point of interest.
It follows that the estimate of the velocity of sound in

4 bulk krypton of 335.5 m/s must be reducédany-body ef-
IN(Q,t,R)=X(Q,t,M)— §7TPR3U(QR)i5M- (A4)  fects removel before comparing it to the MD simulation
results. It is difficult to precisely estimate the size of the
Equation(A4) is used to obtainy(Q,t,R) from simulation  reduction. However, a rough estimate can be obtained by
data, which when substituted into Eg) at sufficiently large ~ calculating the sound velocity in bulk krypton at the simula-
R leads to the scalar approximationl¢f),t) for arbitraryQ.  tion pressure, which as noted above will correspond to a
The vector method of calculating(Q,t) requires the reduced density. The MD simulations produced a pressure of
evaluation of the ensemble average of E3).which is ob- 263 atm, which the results of Ref9] show to be approxi-
tained from a MD simulation as follows. A reference set of mately 10% below the pressure of bulk krypton at the simu-

coordinates and a correlation set of coordinates gj¢g),  lation temperature and density. Linearly interpolating be-
j=1,... N, andr;(t+t), j=1,... N, respectively, from tween the experimental results in RéB] shows_ that a
which an estimate of(Q,t), denoted byY,(Q,t), is deter- Pressure of 263 atm corresponds to a density of 8.18
mined via atoms/nm and a sound velocity of 317 m/s. Note that 317
m/s is our estimate of the velocity of sound in bulk krypton
1M1 N at the simulation density and temperature with the many-
Yi(Q,t)= EE N[ [ ( > codQ; rj(tk)]) body effects removed.
=1 N We now consider the influence of size effects on the ve-
N locity of sound obtained from our simulation results. Here
x| Y, codQ- ri(tet+1)] we give a qualitative argument that the velocity of sound will
= decrease as the system size become infinite. The isothermal

N compressibilityK+; is related to the static structure factor

> sir[Qi-rj(tk)]) S(Q) atQ=0 by [4,5]

=1

+

Kr=S(0)KY, (B1)

zZ

X

2 SiNQ;-rj(te+t)]

=1

] : (AS) whereK$ is the ideal gas compressibility. Consider the sys-
tem depicted in Fig. 8: a primary simulation cube containing
The quantity in the brackets--} represents an estimate of a sphere of radiuR with N representing the total number of
[(Q,t) and follows from Eq.(3) by factoring the complex patrticles in the cube and representing the number of par-
exponential, expressing each factor in its equivalent sineticles contained within the sphere. Ldt—infinite, while R
cosine form, and noting thdtf(Q,t) is a real function for remains constant; hence the walls of the simulation cube in
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Fig. 8 will recede to infinity. In the infiniteN case,S(0) is  correlated motion reduces the fluctuations in the number of
equal to the fluctuations per particle of the particles conparticles contained in the sphere as compared to the
tained in the spherg4,5]; thus infinite-N case. Hence, for a finite system, periodic boundary

) 5 conditions somewhat reduce the size of the right hand side of
(NR) —(Ng) (B2) Eq. (B2). Therefore if we assume that E¢B1) and(B2) can
(Ng) be used to define the finite system isothermal compressibility
KY, thenK¥ will be an increasing function df.. The ratio of

S(0)=

The validity of Eq.(B2) requires thaR be large enough so . : . . .
that the average number of particles contained within the adiabatic compressibility to K+ is equal to the ratio of

sphere of radiu®, (N), be statistically well defined. In our a%he isobaric and isometric heat capacities, and, assuming this

calculation the value oR ranged between 4c5, and 7.5,  &Pplies to the finite system ga_slég‘ is also an increasing
which corresponds to a value (flg) between 215 and 996. functlorj qf N. Also, in the. infiniteN case, the velocity of
Now consider the finitéd case and imagine a particle Sound is inversely proportional to the square rookgf[8].
contained within the sphere near the right boundary of théf we assume that this relationship holds in the firitease,
simulation cube(see Fig. 8 Assume the particle moves to then the velocity of sound will be inversely proportional to
the right and exits the sphere and simulation cube and,<'s\' and the velocity of sound will decrease ldsincreases.
because of periodic boundary conditions, the particle’s imHence our simulation results for the velocity of sound must
age reenters the left boundary of the sphere. This type dfe reduced before comparing them to experimental results.
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