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Correlation ratchets: Four current reversals and disjunct ‘‘windows’’

Romi Mankin,1 Risto Tammelo,2,* and Dmitri Martila2

1Department of Natural Sciences, Tallinn Pedagogical University, 25 Narva Road, 10120 Tallinn, Estonia
2Institute of Theoretical Physics, Tartu University, 4 Ta¨he Street, 51010 Tartu, Estonia

~Received 11 May 2001; published 25 October 2001!

Multinoise correlation ratchets with a simple sawtooth potential are considered. It is proved that in the case
of symmetricnonequilibrium three-level Markovian noise the direction and value of the induced current can be
controlled by thermal noise. Moreover, it is established that four current reversals~CRs! occur and that for the
CRs there exist characteristic disjunct ‘‘windows’’ in temperature and switching rate as control parameters.
The necessary and sufficient conditions for the existence of the above effects are given and can be used in
particle separation techniques.
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Directed motion of Brownian particles induced by no
equilibrium fluctuations, with no macroscopic driving a
plied, in spatially periodic structures called ratchets is c
rently being actively investigated~for a review, see@1#!. This
field of research was stimulated by cell biology, where
probable mechanism of vesicle transport inside eukary
cells was found to be the motion of motor proteins alo
microtubules modeled as ratchets@1,2#. Beyond that, it was
suggested that the ratchet mechanism be used for obta
efficient separation methods of nanoscale objects, e.g., D
molecules, proteins, viruses, cells, etc.@3,4#. To date, the
feasibility of particle transport by man-made devices h
been experimentally demonstrated for several ratchet ty
@3,5#.

It is of importance that two noises acting together c
generate a far more organized motion than either of th
alone@6#, even though the noise sources are statistically
dependent, and can cause intricate effects, e.g., multiple
rent reversals~CRs! and multipeaked characteristics@1,7–
11#. The fact that CRs lead to a more efficient fluctuatio
induced separation of particles makes the models with C
very promising. It has been shown that the CR effect is
tainable in various ways, including modification of the co
relation time of nonequilibrium fluctuations, the flatness p
rameter of the noise@12–15#, the power spectrum of the
noise source@16#, the number of interacting particles per un
cell @17#, the mass of the particles@18#, the temperature in
multinoise cases@7#, and the shape of the potential@8,10#.
Most of these effects having been established by nume
methods or at the limits of slow and fast noises, there are
many exact results available for correlation ratchets, wh
would enable one to quantitatively evaluate the values of
noise parameters corresponding to CRs in particular mo
or to obtain the sufficient and necessary conditions for
existence of CRs@1,10,13–16,19#. It is especially difficult to
treat the multinoise case analytically. The advantage of m
tinoise models involving a thermal noise is that the tempe
ture as the control parameter can be easily varied bot
experiments and in potential technological applications.

In this article we consider an overdamped multino
ratchet where particles move in a one-dimensional spati
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periodic piecewise linear potential which has one maxim
per period and is characterized by an asymmetry param
d. The applied noise is additive and consists of thermal no
with temperatureD, and a symmetric three-level telegrap
process~trichotomous noise! with amplitudea0 and switch-
ing raten. Considering the case when the telegraph nois
very flat, we establish on the basis of an exact expression
the currentJ5J(d,D,a0 ,n) a number of cooperation effects
~i! The direction of the current can be controlled by means
thermal noise also in the case when it is induced bysymmet-
ric trichotomous noise.~ii ! For certain system paramete
there occur four CRs. To our knowledge, more than two C
have never been reported for correlation ratchets with
simple sawtooth potential.~At the same time, in the case o
rocking ratchets, infinitely many CRs may occur@20#.! ~iii !
At large spatial asymmetries the current exhibits characte
tic disjunct ‘‘windows’’~DWs! ~see Fig. 1! of temperature
and switching rate where the direction of current is oppos
to that in the surroundings.~iv! In addition, the necessar
and sufficient conditions for the existence of the 4CR a
DW effects are given.

Overdamped motion of Brownian particles is describ
by the dimensionless Langevin equation

dX

dt
5h~X!1j~ t !1Z~ t !, h~x![2

dV~x!

dx
, ~1!

whereV(x)5Ṽ( x̃)/Ṽ0 , Ṽ( x̃) is a spatial potential with pe
riod L̃, and Ṽ05Ṽmax2Ṽmin is the barrier height. The usua
physical variables are indicated by tildes and the space
time coordinates readX5X̃/L̃ andt5 t̃ Ṽ0 /kL̃2 with k being
the friction coefficient.

The thermal noise satisfieŝj(t)&50 and ^j(t1)j(t2)&
52Dd(t12t2) with D5kBT/Ṽ0. For brevity, in what fol-
lows we shall callD just the temperature. As concerns th
random forceZ(t), we assume it to be a zero-mean trichot
mous Markovian stochastic process@14,15,21#, which con-
sists of jumps among three valuesz5$a0 ,0,2a0%,a0.0.
The jumps follow in time according to a Poisson proce
while the values occur with the stationary probabiliti
Ps(a0)5Ps(2a0)5q and Ps(0)5(122q). In a stationary
state the fluctuation process satisfies^Z(t)&50 and

^Z(t1t)Z(t)&52qa0
2exp(2nt), wherea05L̃ã0 /Ṽ0 and the
©2001 The American Physical Society14-1
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switching raten5kL̃2ñ/Ṽ0 is the reciprocal of the noise
correlation timetc51/n, i.e.,Z(t) is a symmetric zero-mea
exponentially correlated noise. The trichotomous process
particular case of the kangaroo process@13# with flatness
parameterw5^Z4(t)&/^Z2(t)&251/(2q).

The master equation corresponding to Eq.~1! reads

]

]t
Pn~x,t !52GPn~x,t !1(

m
UnmPm~x,t !, ~2!

whereG5]x@h(x)1zn2D]x# andPn(x,t) is the probability
density for the combined process (x,zn ,t); n,m51,2,3; z1
[2a0 , z2[0, z3[a0, and Uik5n@q1(123q)d i2(d1k
1d2k1d3k)2d ik#. The stationary currentJ5(nj n(x) is
then evaluated via the current densitiesj n(x)5@h(x)1zn

2Ddx#Pn
s(x), wherePn

s(x) is the stationary probability den
sity for the state (x,zn). To find the stationary probability
density in thex spaceP(x)5(nPn

s(x) and the stationary
particle currentJ5const, we can derive from Eq.~2! a fifth-
order ordinary differential equation, which has a unique
lution if we impose on it the conditions of periodicityP(x)
5P(x11) and normalization*0

1P(x)dx51 over the res-
caled period intervalL51 of the ratchet potentialV(x).

FIG. 1. ~a! The surface of CRsJ(D,a0 ,n)50 for a fixed asym-
metry parameterd50.005. ~b! The projection of the surface ont
the plane (D,n). The level curves correspond to the following va
ues of the noise amplitude:~0! a0514.356, ~1! a0523.000, ~2!

a0523.500, (2̃) a0523.875,~3! a0524.500, (3̃) a0524.750,~4!

a0525.500, (4̃) a0525.625,~5! a0526.500,~6! a0542.294.
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To derive an exact formula forJ, we assume that the
potentialV(x)5V(x21) in Eq.~1! is piecewise linear~saw-
toothlike! and its asymmetry is determined by a parame
dP(0,1), with V(x) being symmetric whend51/2. The
force corresponding to our potential ish(x)ª1/d for x
P(0,d) andh(x)ª21/(12d) for xP(d,1). Under these as
sumptions, a complex exact formula as a quotient of t
11th-order determinants can be derived for the probab
currentJ. To obtain a more manageable explicit formula, o
can assume that the flatness parameter is large,w@1, and
expand the current asJ5qJ(1)1q2J(2)1•••. An exact but
still complex formula for the leading order termqJ(1) was
derived by one of the present authors in Ref.@15# where its
asymptotic limits were also studied. As it is quite difficult
carry on the survey by analytic methods, we will here ap
numerical calculations to analyze the intermediate regim
~In what follows we shall writeJ for J(1).!

Next we will discuss the 4CR effect. Figure 1~b! exhibits
the zeros of the currentJ5J(D,n)50 for d50.005 at dif-
ferent values ofa0 where the level curvesa05const may be
considered as functionsD5D(n;d,a0) of n with d and a0
being parameters. Here two types of level curve are dis
guishable. These are, on the one hand, the connected
and, on the other, the ones comprising two components,
a closed curve and a two-branched ‘‘fork.’’ Both branches
the fork approach zero asn grows. Regarding the branch o
the right, if a0,d21(12d)21, thenD becomes zero only a
the limit n→`, whereas ifa0.d21(12d)21, thenD has a
zero at a finiten. In what follows we are concerned with th
branch of the fork on the left. The four CRs vsn effect exists
if and only if the functionD5D(n;d,a0) has a local mini-
mum. By gradually varyinga0 and d we will obtain the
surprising result that the region of existence of the 4CR
fect shrinks to a four-pointC, which has the following coor-
dinates:dC'0.044 75,aC'6.737 98,DC'0.169 21 andnC
'755. The valuesdC and DC are the upper values of th
parameters for the 4CR effect to occur whileaC is the rel-
evant lower value, i.e., the 4CR effect is possible ifd
P(0,dC), a0P(aC ,`), andDP(0,DC) ~see Fig. 2!.

The necessary conditions for the existence of the 4
effect are shown in Fig. 2~a! by the shaded regions in th
planes (d,D) and (d,a0), and in Fig. 2~b! by the slightly
shaded region in the plane (D,a0), while the intensely shad
owed narrow wedge-shaped areas in Fig. 2~b! fix the values
of d, D, and a0 that are necessary and sufficient for t
existence of the 4CR effect. To illustrate the geometri
meaning of the end points of the wedges in the phase sp
let us consider the cased50.005. The boundary pointsI 1
and I 2 of the necessary regions in Fig. 2 correspond to
values ofa0 at which the local minimum of the function
D(n;d,a0) disappears~see Fig. 1! and the currentJ has one
threefold and one single zero. Actual ascertaining of
4CRs is greatly simplified by the fact that a wedge-shap
object representing the necessary and sufficient conditio
situated in the vicinity of the line segment drawn through t
end points of the ‘‘wedge.’’ Let us note that at large spat
asymmetries (d,0.003) the slope of the line segments c
be obtained from the formulanD/na0'5d/8. In the region
4-2
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under consideration, at the lower end of the wedge-sha
objects, the values ofa0 and D being relatively small, the
last formula can equivalently be written as 8Dtc'5da0tc .
This is a remarkable formula that throws some light on
physics of the 4CR effect; namely, it relates the characteri
distances of thermal diffusionADtc, the asymmetry of the

FIG. 2. The four current reversals effect:~a! the necessary and
~b! the necessary and sufficient conditions. The dotted region in~a!
displays the possible range of the four zeros of the currentJ(n) at
different values ofd and demonstrates that the range has a lo
boundnmin5181.27,nC .

FIG. 3. Four current reversals vs switching rate. For cur
(1)2(3) d50.044 00,a056.794 00 and the temperatures a
(1) D5D150.167 717 420, ~2! D5D250.167 716 650, and
(3) D5D350.167 715 875. Curve 2 has four single zeros. Cur

1 and 3 have two single zeros and one twofold zero. Curve 4˜ is the
critical curve J5J(n;dC ,DC ,aC); it has a fourfold zero atn
5nC .
05111
ed

e
ic

deterministic potentiald, and the trichotomous noisea0tc ,
and demonstrates that all three agents mentioned act in
son to generate the 4CR effect.

Some curvesJ5J(n) illustrating the 4CR effect near th
critical point C are shown in Fig. 3.

Next we will examine the DWs. As already mentioned,
large spatial asymmetries the current exhibits character
disjunct zones of temperature and switching rate on the b
ders of which CRs occur. That is, for certain values
(d,a0) there exist closed curves in the plane (D,n) on which
CRs take place~see Fig. 1!. The closed curves encircle th
regions where the direction of the current is negati
whereas in the surrounding regions the current direction
positive ~see also Fig. 4!.

The DWs exist if and only if the surfaceJ(D,a0 ,n)50
~with a fixed asymmetry parameterd5const) has a loca
extremum and a saddle point@see Fig. 1~a!#. By varying a0
andd step by step, we will obtain all the values ofd anda0
for which the DWs exist: to every point within the shade
region in Fig. 5 corresponds one closed curve on wh
J(D,n)50. The region of existence of the DWs shrinks to
critical four-pointS, where the saddle and extremum poin

r

s

s

FIG. 4. Current vs temperature: two current reversals in
region of the disjunct ‘‘windows’’ on the plane (D,n).

FIG. 5. The necessary and sufficient condition for the existe
of the disjunct ‘‘windows’’ for current reversals.
4-3
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merge, and which has the following coordinates:dS
'0.009,aS'19.40,DS'0.250, and lnnS'5.25. The values
dS andaS are the upper and lower values of the parame
for the DWs to occur, i.e., the effect is possible ifd
P(0,dS) anda0P(aS ,`) ~see Fig. 5!. The upper and lower
boundaries of the shaded area in Fig. 5 can be approxima
respectively, by the polynomialsa051.1631028/d3

24.72531025/d210.087/d110.4 valid for d
P(0.0005,0.009) anda05210.333102d128.70 for d
P(0,0.009), which simplify the actual determination
DWs.

To illustrate the use of DWs, let us take the case of se
ration of particles with frictionk* . Having six free param-
etersL̃, Ṽ0 , ñ, ã0 , d, and T, let us first fix d50.005 and
a0523. By this we will obtain the closed curve 1 in Fig
1~b!, which determines an window nP(170,216) and aD
window DP(0.281,0.334). Within these windows we fin
the values ofn andD at which the absolute value of curre
is maximal, viz.,n* 5L̃ ñk* /Ṽ0'190 andD* '0.305. Us-
ing the limits of then window, we will finally find that only
the particles with frictionkP(0.895k* ,1.137k* ) move in
the negative direction; the rest move in the positive directi
The above range ofk can be made narrower by varyinga0
or d; however, this is accompanied by a decrease in the
solute value of the current. Let us digress to mention t
DWs exist at temperatures that are relevant for cell biolo
@2#. While one can realize particle separation by 2CRs w
out applying DWs, the DW method possesses certain ad
tages, e.g., it allows one to obtain a sharp extremum ofJ(n)
with a relatively large absolute value~see Fig. 4!.
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To comment on the formation of the hypersurface of CR
let us note that at large flatnessw>2 the trichotomous noise
Z(t) in Eq. ~1! can be presented as the sum of two stati
cally independent zero-mean asymmetric dichotom
noises, Z(t)5Z1(t)1Z2(t), where n15n25n, z1P$a0
2a2 ,2a2%, z2P$a22a0 ,a2%, and 0,a2,a0. In this case
the probabilityq5a2(a02a2)/a0

2, from which it follows that
in the limit of large flatnessq→0 the dichotomous noise
Zi(t) ( i 51,2) must be of large asymmetrya2!a0. Replac-
ing in Eq. ~1! Z(t) by the dichotomous noisesZi(t), we
obtain an equation that has been thoroughly studied in R
@7#. The asymmetry parameters of noiseQ and of potentialk
used therein can be expressed asQ1'a0 , Q2'2a0, and
k51/22d. Reference@7# shows that there exist ranges
temperature where the subsystemsi 51 and i 52 generate
currents with opposite signs. Since the absolute values
these currents depend heavily and nonmonotonically on
remaining parameters of the system, nonlinear addition
the currents results in the complicated structure of the hyp
surface of CRs in our model~see the current inversion ta
loring method in Ref.@1#!.

In conclusion, it is remarkable that at large asymmetr
of the spatial potential and at large flatness of the tricho
mous noise new cooperation effects occur between the
tistically independent white and colored noises, namely, f
current reversals and disjunct ‘‘windows’’ in the control p
rameters. We believe that the latter will be useful for parti
separation techniques.
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