
PHYSICAL REVIEW E, VOLUME 64, 051113
Rotational Brownian motion of axisymmetric particles in a Maxwell fluid

V. S. Volkov* and A. I. Leonov†
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A theory of non-Markovian rotational Brownian motion is developed for axisymmetric particles moving in
a Maxwell fluid in the presence of an external field. Both the inertial and viscoelastic effects are taken into
account. A kinetic equation for the joint probability distribution of orientation, angular velocity, and accelera-
tion of a particle without spin is derived starting from the rotational Langevin equation with relaxed hydrody-
namic and random torques. A third-order stochastic differential equation for the particle orientation vector is
also derived. Directly from this equation, the set of nonlinear evolution equations for one-time moments is
derived in a noninertial approximation. The expressions for a linear response to a time-dependent external field
and dynamic susceptibility of particle are obtained by direct averaging of particle orientation equation. Ap-
pendices derive the rotational mobility of axisymmetric particles in a general linear viscoelastic fluid, and the
evolution equations for one-time moments of the orientation vector for axisymmetric particles moving in a
Maxwell fluid in the presence of an external field.
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I. INTRODUCTION

The theory of Brownian motion plays an important role
many parts of modern physics. It also has a wide variety
applications. Debye@1# who first analyzed the rotationa
Brownian motion of a sphere in viscous fluid adopted E
stein’s approach to the translational Brownian motion,
glecting the effects of the fluid’s inertia and elasticity. Se
eral statistical approaches developed recently for study
the rotational Brownian motion in viscous liquids~see re-
views @2–5#!. An interest emerged recently in Brownian m
tion in viscoelastic fluids@6–12#. Evidently, viscoelastic
properties of a carrier fluid may significantly affect the s
tistical characteristics of Brownian motion. The simple
Maxwell model of viscoelastic fluid is characterized by tw
parameters: a single relaxation time and viscosity. Due
memory effects in viscoelastic liquids, the stochastic mot
of a Brownian particle in these fluids represents a n
Markov process, even if the inertia of the particle and flu
are negligible. Wang and Uhlenbeck@13# first analyzed the
non-Markov properties in translational Brownian motion o
simple harmonic oscillator in viscous fluid. They reduced
non-Markov process described by a stochastic second-o
differential equation for the position of Brownian particle,
a higher-dimension Markov process containing velocity
an extra variable. Using a similar idea, a theory of translat
Brownian motion in a Maxwell fluid was recently develope
@8,9#. In this theory, the non-Markov process described b
third-order stochastic equation for the position of a Brown
particle, was reduced to a higher dimension Markov proc
by introducing the velocity and acceleration as two new
dependent extra variables. Using this technique, a unive
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kinetic equation for the distribution function of position, ve
locity, and acceleration was obtained for translation Brow
ian motion in Maxwell fluid @9# that provided a complete
statistical description of the non-Markov stochastic proce

Papers@10,11# have recently studied a two-dimension
~2D! rotational Brownian motion in Maxwell fluid. This ro
tational Brownian motion was found to be equivalent to t
Brownian translation of a particle on a circular track. T
study this simplest non-Markov Brownian rotational motio
the authors of paper@10# adopted the approach@8# developed
for analysis of translation Brownian motion in a Maxwe
fluid. The rotational Bwnian motion for anisotropic particle
is highly simplified when the particles have a shape of a
circular disk. In this case, the stochastic equations for an
lar velocity are linear and therefore the process is Gauss
However, even in this case, the equations for particle ori
tation that relate the orientation vector and angular veloc
are nonlinear. To analyze 3D rotational Brownian motions
any nonspherical particle one has to overcome some fun
mental difficulties@3#, since statistical characteristics of the
motions are always non-Gaussian.

The present paper studies 3D rotational motion of Brow
ian axisymmetric particles in Maxwell fluid. The particle
are assumed to have an arbitrary shape of a body of rev
tion, such as spheroids, rods, disks, etc. When assuming
the spin, i.e., the rotation around the axis of particle symm
try is absent~or dynamically negligible! the random torque
in stochastic equations for the angular velocity and orien
tion vector are proven to be Gaussian. Using this ‘‘spinles
assumption, we analyze the motion of a Brownian parti
with permanent dipole moment affected by an external~elec-
tric or magnetic! field. This creates an opportunity for direc
studies of orientation and rotation of Brownian axisymmet
particles in various complex fluids.

II. BROWNIAN DYNAMICS WITH RELAXED TORQUE

We consider the rotational Brownian motion of a no
spherical, axisymmetric particle represented as a body

ian
1,
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V. S. VOLKOV AND A. I. LEONOV PHYSICAL REVIEW E 64 051113
revolution, in a quiescent Maxwell fluid with a single rela
ation timet. The general stochastic equations describing
inertial rotations of such a particle are

dLi

dt
5Mi1Mi

e1Mi
r . ~1!

HereLi is the angular moment relative to an arbitrary po
O within the particle body,

Li5I i j V j , ~2!

V i is the angular velocity of the particle,I i j is the anisotropic
inertia tensor of an axisymmetric particle,

I i j 5I ieiej1I'~d i j 2eiej !, ~3!

ande5$ei% is the unit vector that describes the orientation
the symmetry axis. The particle rotation is induced by
hydrodynamic, Mi(t,e), external, Mi

e(t,e), and random,
Mi

r(t,e), torques; the random torqueMi
r(t,e) resulting from

bombarding a Brownian particle by molecules of enviro
mental liquid.

The hydrodynamic torqueMi(t) acting on the Brownian
particle from the Maxwell fluid, is defined by Eq.~A8! from
Appendix A as

t
dMi

dt
1Mi52z i j

r ~e! V j . ~4!

The anisotropic properties of the Brownian motion a
caused by the rotational friction tensorz i j

r that for axisym-
metric particles has the uniaxial form, depending on the p
ticle orientation:

z i j
r 5z i

reiej1z'
r ~d i j 2eiej !. ~5!

Along with randomly changed orientation, the Brownian p
ticle may also rotate around its axis of symmetry. Thus
angular velocity for such a particle can be decomposed
components parallel,V i

i , and perpendicular,V i
' , to the par-

ticle axis of symmetry:

V i5V i
i
1V i

' , @V i
i
5Veeeei , V i

'5Ve~dei2eeei !#.
~6!

The evident kinematic relation,

dei

dt
5« i jkV jek , ~7!

where« i jk is the antisymmetrical unit tensor, describes t
rate of change in particle orientation. Combining Eqs.~6!
and ~7!, one can see that a random rotation around the
ticle symmetry axis does not change the particle orientat

We consider below an important particular case of a p
ticle motion without inner rotation~spin!. In this case the
angular velocity vector is normal to the orientation vect
i.e., Veee50, and Eq.~1! becomes
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dV i

dt
5Mi1Mi

e1Mi
r . ~8!

The hydrodynamic torque for the spinless rotation of an a
symmetric particle in a Maxwell fluid is determined from th
relaxation equation:

t
dMi

dt
1Mi52z'

r V i . ~9!

WhenVeee50, the terms involvingI i andz i
r in Eqs.~3! and

~5! vanish, and the friction coefficientz'
r represents the ro

tation resistance in the direction perpendicular to the part
symmetry axis.

The external torqueMi
e could arise from various sources

such as the interactions of electric, magnetic, or gravitatio
fields with, respective, electric particle dipole, magnetic m
ment of ferromagnetic particle, and a gravitational dipole
a particle. In all these cases, the external torque has the

Mi
e5« i jkpjHk , ~10!

wherepi is the dipole moment of the particle, andHk is an
external field. In the following we restrict ourselves to stud
ing either constant or long-wave oscillating external field
when the wavelength is considerably more than the larg
particle size. In this case, the external field can be conside
as uniform, generally time dependent, i.e.,Hk5Hk(t). In Eq.
~10!, the permanent dipole momentpi is assumed to be ori
ented parallel to the symmetry axis,

pi5mei , ~11!

with the constant magnitude of dipole momentm.
The correlation properties of the random torque are de

mined by the form of the stochastic equation for rotation
particle motion. The statistical properties of the rando
torqueMi

r(t) for a non-Markovian rotational Langevin equa
tion with frictional relaxation equations~8! and ~9! can be
found by a method used before for the translational Brow
ian motion in a Maxwell fluid@9#. In the case under study
this method gives

^Mi
r~ t !&50, ~12!

^Mi
r~ t !Mk

r ~0!&5T
z'

r

t
e2utu/rd ik .

Equation~12! demonstrates that the random torqueMi
r(t) is

represented by a Markov process, and can be regarded a
solution of the first-order stochastic differential equation

t
dMi

r

dt
1Mi

r5j i
r~ t !. ~13!

Herej i
r(t) is the delta-correlated random torque,

^j i
r~ t !jk

r ~0!&52Tz'
r d~ t !d ik , ~14!
3-2
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andd(t) is the delta function. Equation~13! shows that the
memory effect in the random torque originates from a flu
tuating environment. Equations~13! and~14! result from the
solution of an inverse problem@9# for restoring the white
noise for a random function with a given correlation fun
tion. These equations with arbitrary initial conditions may
considered as a most general form of the fluctuati
dissipation theorem for non-Markovian rotational Langev
equations~8! and ~9!.

Using the relaxation equations for systematic~9! and ran-
dom ~13! torques allows us to represent the set of stocha
equation~8! and~9! in the equivalent form with ad-function-
correlated random torquej i

r(t):

dei

dt
5« i jkV jek ,

dV i

dt
5V̇ i , ~15a!

tI'

d

dt
V̇ i1I'V̇ i52z'

r V i1tṀ i
e1Mi

e1j i
r . ~15b!

Hereafter the overdots denote the time derivatives. Acco
ing to Eqs.~10! and ~11!, the rate of change inMi

e is given
by

Ṁ i
e52mi j V j2a i j ej , mi j 5m~eeHed i j 2eiH j !,

a i j 5m« ik j Ḣk . ~16!

Equation~15b! with the use of Eq.~16! takes the form

tI'

d

dt
V̇ i1I'V̇ i52z i j V j2b i j ej1j i

r . ~17!

Here, the following notations have been used:

z i j 5z'
r d i j 1tmi j , b i j 5m« ik jhk , hi5Hi1tḢ i .

~18!

According to Eq.~17!, the angular velocityV is a non-
Markov process. As shown before, it can be reduced t
Markov process defined by the extended dynamic se
equations~15a! and~15b!, affected by a delta-correlated ran
dom torque. This set defines a multidimensional Markov
process$e,V,V̇%.

It should be noted that not every random process could
reduced to a Markovian one, even in the most general se
For instance, this is impossile when significant residual
fects are associated with inertia of liquid.

III. ROTATIONAL FOKKER-PLANCK EQUATION

Using the Klyatskin-Tatarskii method@14# we directly de-
rive from the stochastic equations of motion a kinetic eq
tion for the join probability density of orientation, angula
velocity, and acceleration of an axisymmetric Brownian p
ticle moving in a Maxwell fluid.

The distribution function for the solution of the set~15! is
defined as
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f ~e,V,V̇!5^d†e2e~ t !‡d†V2V~ t !‡d†V̇2V̇~ t !‡&.
~19!

Here e, V, andV̇ are the solution of Eqs.~15a! and ~15b!
corresponding to a certain realization of the random torq
j i

r(t) in Eq. ~15b!. The angular brackets in Eq.~19! define
the average of the variables over the set of all realizatio
Taking the time derivative of Eq.~19! and using Eqs.~15a!
and ~15b! yields

] f

]t
1

]

]ei

~« i jkV jekf !1V̇ i

] f

]V i

2
z i j V j1b i j ej

tI'

] f

]V̇ i

5
1

t

]

]V̇ i

~V̇ i f !2
1

tI'

]

]V̇ i

^j i
r~ t !R@j#&,

R@j#5d@e2e~ t !#d@V2V~ t !#d@V̇2V̇~ t !#. ~20!

HereR@j# is a nonlinear random functional of the Gaussi
stochastic processj(t) with zero average. To close Eq.~20!
we express the average value^j i

r(t)R@j#& in terms off, us-
ing the Furutsu-Novikov formula@15#. This formula, in our
case, is of the form

^j i
r~ t !R@j#&5E

0

t

^j i
r~ t !j j

r~s!&K ]R@j#

dj j
r~s!L ds. ~21!

Calculating the functional derivatives with the use of Eq
~15a! and ~15b!,

dei~ t !

dj j
r~ t !

50,
dV i~ t !

dj j
r~ t !

50,
dV̇ i~ t !

dj j
r~ t !

5
1

tI'

d i j , ~22!

and employing the fluctuation-dissipation relation~14!,
yields

^j i
r~ t !R@j#&52

Tz'
r

tI'

] f

]V̇ i

. ~23!

Using Eq. ~23! and the evident relation,]ei /]ej5d i j
2eiej , results in the closed form of the equation for th
distribution function:

] f ~e,V,V̇!

]t
1« i jkej

]

]ek

~V i f !1V̇ i

] f

]V i

2
z i j V j1b i j ei

tI'

] f

]V̇ i

5
]

]V̇ i

S V̇ i

t
1DV̇

]

]V̇ i

D f . ~24!

The diffusion coefficient in the space of angular accelerat
is represented as

DV̇5
D'

~tt I !
2 . ~25!
3-3
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Here D'5T/z'
r is the transverse diffusion constant andt I

5I' /z'
r is the inertial relaxation time.

The joint distribution functionf (e,V,V̇) of orientation,
angular velocity, and acceleration is a solution of Eq.~24!

for a given initial distributionf 05 f (e,V,V̇,t0). Addition-
ally, one can obtain the distribution function for orientatio

and angular velocity,f (e,V,t)5* f (e,V,V̇,t)dV̇. How-
ever, the functionf (e,V,t) cannot be found from the rota
tional Fokker-Planck equation since the stochastic proc
$e(t),V(t)% is non-Markovian.

For the free spinless rotational Brownian motion of a
symmetric particle in a Maxwell fluid, Eq.~24! takes the
form

] f ~e,V,V̇!

]t
1¹ i

r~V i f !1V̇ i

] f

]V i

2
V i

tt I

] f

]V̇ i

5
]

]V̇ i

S V̇ i

t
1DV̇

]

]V̇ i

D f . ~26!

Here the rotational operator“ i
r , defined as

“ i
r5« i jkej

]

]ek
, ~27!

is equivalent to the orbital angular momentum operator
quantum mechanics@5#.

Equation~26! has the stationary solution,

f s~V,V̇!5C expF2
I'~Ve•Ve1tt IV̇e•V̇e!

2T
G , ~28!

where C is a normalization constant. Equation~28! is an
extension of the Maxwell distribution, which includes th
new dependence on the angular accelerations. Using
~28!, the equilibrium moments are defined as follows:

^V iVk&05
T

I'

d ik , ^V̇ iV̇k&05
T

I'tt I
d ik , ^V iV̇k&050.

~29!

The second formula in Eq.~29! demonstrates that the equ
librium value of the second one-time moment of the angu
acceleration depends on the rheological properties of ca
fluid. This formula shows that the unphysical singulari
characterizing the classical model of rotational Brown
motion in a viscous fluid, wheret50, vanishes in the case o
the Maxwell fluid model. The first relation in Eq.~29! cor-
responds to the familiar equipartition distribution of kine
and thermal energy over the degrees of freedom:

1

2
I'^V i

2&05
1

2
T.

Here the temperatureT is expressed in energy units. Thus
t→`, the Brownian particles comes into the thermodynam
equilibrium with the viscoelastic environment.
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IV. ORIENTATION DYNAMICS

According to Eq.~7!, the random angular velocity drive
the random orientational motion. In order to find the equ
tion defining the orientation of a particle we make the vec
multiplication of Eq.~17! by e and using after that Eq.~7!,
obtain

tI ik
'

d3ek

dt3
1I ik

'
d2ek

dt2
1@z'

r 1t~mekHk1I'ėkėk!#
dei

dt

5m~hi2eienhn!1« i jkj j
rek , ~30!

I ik
' 5I'~d ik2eiek!.

The orientation of a Brownian particle described by the
equations is a non-Gaussian, non-Markovian stochastic
cess, with Eq.~30! defining the inertial nonlinear transforma
tion of white noise.

To simplify the problem we neglect the inertia effects
orientation dynamics of nanosize particles, excluding fro
analysis very short-time processes. According to Eq.~30! the
stochastic equation for the orientation of an noniner
Brownian particle in a Maxwell fluid has the form

~z'
r 1tmekHk!

dei

dt
5m~hi2eienhn!1« i jkj j

eek . ~31!

Equation~31! describes the noninertial nonlinear transform
tion of white noise and shows that in a noninertial appro
mation, the orientation of a particle is still the non-Gauss
Markov process. Also, Eq.~31! formally corresponds to the
limit I' /z'

r →0. This limit should be considered more car
fully for large values of relaxation timest when the inertial
effects might be coupled with viscoelasticity. For viscoela
tic carrier fluid under study, the external fieldHi plays a
double role, orienting a particle, and also hindering its ro
tion. This hindrance to rotation introduces an additional fr
tion coefficient, which depends on the relaxation timet of
the fluid, and the alignment energymekHk . We neglect, for
simplicity below, the fluctuations of the friction coefficien
Then Eq.~31! becomes

z r

dei

dt
5m~hi2eienhn!1« i jkj j

aek ~z r5z'
r 1tm^ek&Hk!.

~32!

Herez r is the mean friction coefficient.
According to the fluctuation-dissipation theorem, the ra

dom torquej i
e(t) for the noninertial rotational Brownian mo

tion has the following properties:

^j i
e~ t !&50, ^j i

e~ t !j j
e~0!&52Tz rd~ t !d i j . ~33!

The evolution equations for one-time moments of vario
orders can then be derived from the rotational Lange
equation~32! by averaging procedures. Due to the quadra
nonlinearity in Eq.~32!, these equations form an infinit
~nonclosed! chain. These equations, whose derivation is p
sented in Appendix B, are shown below up to the four
order moment equation:
3-4
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n~ t !
d^ei&

dt
52

1

t1
^ei&1l~hi2^eiek&hk!, ~34!

n~ t !
d^eiek&

dt
52

1

t2
S ^eiek&2

1

3
d ikD1l@^ei&hk1^ek&hi

22^eiekej&hj #, ~35!

n~ t !
d^eiekej&

dt
52

1

t3
F ^eiekej&2

1

6
~d ik^ej&1d i j ^ek&

1dk j^ei&!G1l b^eiek&hj1^eiej&hk

1^ekej&hi23^eiekejen&hnc, ~36!

n~ t !
d^eiejekel&

dt
52

1

t4
F ^eiejekel&2

1

10
~d i j ^ekel&1d ik^ejel&

1d ie^ekej&1d jk^eiel&1d j l ^eiek&

1dkl^eiej&!G1l b^eiejek&hl

1^eiejel&hk1^eiekel&hj1^ejekel&hi

24^eiejekelen&hnc. ~37!

In Eqs.~34!–~37!, the rotational relaxation timesta , the
parameterl, and functionn(t) are defined as

ta5z'
r /@a~a11!T#, l5m/z'

r ,

n~ t ![z r~ t !/z'
r 511ltmHk~ t !^ek~ t !&. ~38!

We now consider the case of a stationary external fi
Hi , when hi5Hi , and the constant unit vectorni in the
direction of the field, is defined asHi5niH. Then the non-
dimensional parameterk5mH/T, characterizing the
strength of the external field relative to the thermal energy
naturally introduced in Eqs.~34!–~37! in the productsltkH
in these equations.

There are two physically important cases when it is p
sible to find asymptotic solutions of the nonlinear relaxat
equations~34!–~37! for the one-time moments of variou
orders. We will present below only the analytical results
steady analyses for thermal equilibrium of the moments i
constant field. The same procedure for nonsteady situat
might also be developed but will need a numerical analy
It should be noted that formulas obtained below for the s
tionary case are identical for both the viscous and viscoe
tic carrier liquids.

~i! In the case of aweak external field, whenk5mH/T
!1, the steady solution of Eqs.~34!–~37! is of the form

^ei&e5
k

3 S 12
k2

15
1Oi~k4! Dni ,

^eiek&e5
1

3
d ik1

1

15
k2S nink2

1

3
d ikD1Oik~k4!, ~39!
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^eiekej&e5
1

15
k~d iknj1d i j nk1dk jni !2

k3

45
ninknj

1Oik j~k5!,

^eiejekem&e5
1

15
I i jkm1

k2

315
@3~d iknjnm1d i j nknm1d imnknj

1dk jninm1dkmninj1d jmnink!22I i jkm#

1Oi jkm~k4!.

HereI i jkm5d i j dkm1d ikd jm1d imd jk , andOik... are the order
functions of various tensor dimensionalities.

~ii ! In the case of astrong external field, when k
5mH/T@1, the stationary asymptotic solution of Eqs.~34!–
~37! is of the form

^ei&e5~12k21!ni1Oi~k22!,

^eiek&e5k21d ik1~123/k!nink1Oik~k22!,

^eiekej&e5ninknj1k21~d iknj1d i j nk1dk jni26ninknj !

1Oik j~k22!, ~40!

^eiejekem&e5ninjnknm1k21~d iknjnm1d i j nknm1d imnknj

1dk jninm1dkmninj1d jmnink210ninjnknm!

1Oi jkm~k22!.

In finding the form of the terms in Eqs.~39! and~40!, the
evident properties for the second, third, and fourth mome
d ik^eiek&51, d ik^eiekej&5^ej&, andd ik^eiekejem&5^ejem&
have also been used. Formulas~39! and~40! demonstrate the
general fact that the polyadic one-time moment tensors
different orders, formed of the unit orientation vectorei ,
depend only on all possible symmetrical combinations of
unit tensord ik and the unit vectorni describing the orienta-
tion of the external field, with coefficients depending only
parameterk. The same is true for the nonstationary ca
where the coefficients of these symmetrical tensors will a
depend on time.

V. DYNAMIC SUSCEPTIBILITY

The orientation of a particle can be experimentally inve
tigated by measuring the mean dipole moment

Pi5m^ei&. ~41!

In this regard, the theory developed above allows for int
pretation of these experiments when the time-dependen
lution of a linear problem for the mean dipole moment
available. We consider below the linear noninertial respo
of a Brownian axisymmetric particle suspended in Maxw
liquid to an external fieldH(t). In this case, the terms of th
order (mH/T)2 and higher in Eq.~34! can be neglected. Us
ing Eqs. ~41! and ~34!, yields the linear equation for the
mean dipole moment
3-5
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t1

dPi

dt
1Pi5x0S Hi1t

dHi

dt D , x05m2/3T. ~42!

Herex0 is the static susceptibility of particle. The orientatio
relaxation timet1 is defined in Eq.~34!. Equation~34! was
lianearized with replacing unknown first and second m
ments by their equilibrium valueŝei&050 and ^eiek&0
51/3d ik in the absence of an applied field. The solution
Eq. ~42! is of the form

Pi5E
0

`

x~s!Hi~ t2s! ds, ~43!

where the response functionx(t) is

x~ t !5
x0

t1
Ftd~ t !1S 12

t

t1
De2t/t1G . ~44!

For the oscillating external field,

Hi5Hi
m Re~e2 ivt! ~45!

with a constant amplitudeHi
m , the mean dipole moment i

defined by

Pi5Hi
m Rebx~v!e2 ivtc. ~46!

The steady-state response is described by the dynamic
ceptibility of particlex~v! depending on frequencyv:

x~v!5
12 ivt

12 ivt1
. ~47!

For a viscous carrier fluid (t50) Eq. ~47! reduces to the
well-known expression for the Debye susceptibility@1#. The
reduced real and imaginary parts of dynamic susceptib
are

xR85
11avR

2

11vR
2 , xR95

~12a!vR

11vR
2 , ~48!

where

xR85x8/x0 , xR95x9/x0 , a5t/t1 , vR5vt1 . ~49!

Here the parametera characterizes the effect of viscoelasti
ity, and vR is a nondimensional frequency of field oscill
tion. Figures 1 and 2 demonstrate the plots of reduced c
ponents of dynamic susceptibility versus the dimension
frequency. The dashed and solid lines, respectively, re
sent the predictions of the Debye theory (a50) and the
present theory witha50.2. Figure 1 shows that the real pa
has the nonvanishing limit at large values ofvt1 . According
to Eq. ~48!, the limiting values of the real part of dynam
susceptibility at small and large values ofvR are, respec-
tively, defined as

x085x, x 8̀ 5xt/t1 . ~50!
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Equation~50! shows that in the viscous case wheret50, the
Debye theory predictsx 8̀ 50. In contrast, in the viscoelasti
liquid, the relative limiting susceptibilityx 8̀ /x08 is nonzero
and increases with increasing the relaxation time of the flu

VI. CONCLUSIONS

This paper studied the rotational Brownian motion of a
symmetric particles in Maxwell viscoelastic fluid with on
relaxation time. This type of Brownian motion is describ
by the nonlinear stochastic equations~1! and ~7! with vis-
coelastic torque~4!, which depends on the orientation of th
particle. The solution of this equation represents a n
Gaussian, non-Markov process.

In the important special case when the rotation around
symmetry axis of the particle is dynamically negligible, th
random torque in stochastic equations for rotational mot
is a Gaussian stochastic process. Its stochastic propertie
defined by Eqs.~12!. The non-Markov stochastic proces
defined by the stochastic equations~7!–~9!, was analyzed by
increasing the dimensionality of space of dynamic variab

FIG. 1. Frequency dependence of the real part of dynamic
ceptibility for a50 ~dashed lines! anda50.2 ~solid lines!.

FIG. 2. Frequency dependence of the imaginary part of dyna
susceptibility for the same cases as in Fig. 1.
3-6
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In so doing, an additional dynamic variable, the Markov ra
dom torque, was introduced, which is considered as the
lution of an additional stochastic equation with a del
correlated random torque. Thus the problem of rotatio
Brownian motion in a Maxwell fluid was reduced to th
statistical description of an extended dynamic system~15!
and ~17!. Directly from this dynamic system, the kinet
equation~24! was derived for the joint probability distribu
tion of orientation, angular velocity, and acceleration o
Brownian particle in a Maxwell fluid. This kinetic equatio
gives the complete statistical description of the non-Mark
process.

In Sec. IV, the Brownian orientation dynamics was fo
mulated for axisymmetric particle moving in a Maxwe
fluid. In this case, the orientation equation of a particle in
presence of the time-dependent external field was establi
in the form of Eq.~30! which contains inertial and viscoelas
tic effects. In noninertial approximation, the problem w
reduced to Eq.~31! or its approximate analog, Eq.~32!.
These are nonlinear stochastic equations for the unit ve
of particle orientation. With the use of this equation, the
of nonlinear relaxation equations for the moments~34!–~37!
was obtained in Appendix B. Asymptotic solutions~39! and
~40! for small and large values of parameters characteriz
the strength of the field as compared to the thermal effe
were found for one-time moments in the stationary~equilib-
rium! case. It should be noted that the nonlinear stocha
equations~31! allow an exact solution, which will be de
scribed elsewhere.

The present paper studied a particle with a perman
dipole moment along its axis of symmetry. An extern
~electric or magnetic! field affects the orientation of such
particle. A simple linearized equation for the mean dipo
moment~41! was derived by direct averaging of the Eq.~34!
characterizing the evolution of the one-time first moment
particle orientation. Using this equation, the linear nonin
tial response was calculated for the time-dependent exte
field. For the oscillating external field with the constant a
plitude, the expression~47! for dynamic susceptibility was
obtained. It was found that there exists a nonzero hi
frequency limiting susceptibility, which increases with i
creasing the relaxation time of the fluid. In the Debye the
this high-frequency limiting susceptibility is equal to zero
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APPENDIX A: ROTATIONAL MOBILITY
OF AXISYMMETRIC PARTICLES IN LINEAR

VISCOELASTIC FLUID

Consider a rigid axisymmetric particle immersed in
isotropic, viscoelastic incompressible quiescent fluid defin
by the linear constitutive equations
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s i j 52pd i j 12E
0

`

G~s!g i j ~ t2s! ds, ~A1!

G~ t !5E
0

`

H~t!e2t/td ln t.

Here s i j is the stress tensor,p is the pressure,G(t) is the
relaxation modulus,g i j is the strain rate, a symmetric part o
the velocity gradient, andH(t) is the distribution function of
relaxation times. The simplest possible viscoelastic fluid
described by the Maxwell model with just one relaxati
time t0 . In this case,

H~t!52hd~ t2t0!, G~ t !5~h/t0!e2t/t0, ~A2!

where h is the viscosity of fluid. The Maxwell fluid is an
appropriate particular case to begin studying the Brown
motion in viscoelastic fluids. In general, the complex visco
ity of a viscoelastic fluid is defined as

h@v#5E
0

`

G~ t !eivtdt. ~A3!

In the case of the discrete relaxation spectrum,

H~t!52 (
a51

N

had~t2ta!,

the complex viscosity has the form

h@v#5 (
a51

N
ha

12 ivta
. ~A4!

Here ta are the relaxation times, andha are the relaxation
viscosities.

When a torqueM (t) acts on a particle, the particle rotate
with the angular velocityV(t). For small value ofM the
angular velocityV(t) is a linear functional ofM . For a vis-
cous fluid, hydrodynamic torque acting on the axisymme
particle is defined by@16#:

Mi52z i j
r V j , z i j

r 5hBi j . ~A5!

Herez i j
r is the rotation friction tensor, andBi j is an intrinsic

tensor depending only on the size and shape of a particl
should be noted that there is no coupling between transla
and rotational motions for axisymmetric particles.

Taking the Fourier transform of Eq.~A5!, and using the
well-known principle of correspondence between visco
and viscoelastic linear problems, yields

Mi~v!52h@v#Bi j V j~v!. ~A6!

Here Mi(v) and V i(v) are the Fourier components of th
torque and angular velocity, and the extension of the visc
case to the viscoelastic one was made by substituting
Newtonian viscosityh by the frequency-dependent viscosi
h@v# from Eq.~A4!. Hereafter the following notations for th
two-sided and one-sided Fourier transforms are used:
3-7



-

n
q

a
nt
ym

o
e

le
f

a-
on
t i
a
n
Th
Th
a
te
e
,

is

,

ent

V. S. VOLKOV AND A. I. LEONOV PHYSICAL REVIEW E 64 051113
x~v!5E
2`

`

x~ t !eivtdt, x@v#5E
0

`

x~ t !eivtdt.

Thus in the viscoelastic case, the torqueM (t,e) is easily
obtained from Eq.~A6! in the form of a linear memory func
tional:

Mi~ t !52Bi j E
0

`

G~s!V j~ t2s! ds. ~A7!

Equation ~A7! motivates the use of the memory functio
form in the rotational Langevin equation. It is seen that E
~A5! for the viscous fluid is the special case of Eq.~A7!
whenh(t)52hd(t). For a Maxwell fluid with a single ex-
ponential relaxation function~A2!, Eq. ~A7! can be rewritten
in the form of the differential equation,

t
dMi

dt
1Mi52z i j

r V j , ~A8!

describing the relaxation of torque. For an axisymmetric p
ticle, the rotational friction tensor may be decomposed i
the components parallel and orthogonal to the particle s
metry axis:

z i j
r 5z i

rejej1z'
r ~d i j 2eiej !. ~A9!

Hereei is the unit vector directed along the symmetry axis
a particle, andz i

r andz'
r are the longitudinal and transvers

coefficients of rotational friction.
A simple example of an anisotropic axisymmetric partic

is infinitesimally thin circular disk, for which the tensor o
rotation friction counted off relative to the disk center is@16#

z i j
r 5

32

3
hb3d i j . ~A10!

Hereb is the disk radius. The flat disk is isotropic for rot
tional motion. The torque acting on the disk for the rotati
about its diameter is the same as for the rotation abou
symmetry axis. The most interesting are the ellipsoidal p
ticles. The disklike particles, such as red blood cells a
mica flakes, could be approximated by oblate spheroids.
thin circular disk is a degenerated case of a spheroid.
rodlike particles, such as glass fibers, viruses, proteins,
stiff polymer molecules, can be approximated by the prola
spheroids. The rotational Stokes problem is complet
solved for the ellipsoid@16#. For long thin prolate spheroids
the rotational friction coefficientz'

r has the simple form

z'
r 5

16pha3

3@2 ln~2s!21#
, s51/b@1, ~A11!

wherea andb are, respective, polar and equatorial radii. Th
expression correlates well with the approximate result@17#
for the thin rods.
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APPENDIX B: EVOLUTION EQUATIONS FOR ONE-TIME
MOMENTS OF ORIENTATION VECTOR

The direct averaging Eq.~32! results in the evolution
equation for the average of the first moment^ei(t)&

n~ t !
d^ei&

dt
5l~hi2^eiek&hk!1

1

z'
r « i jk^j j

eek&

~l5m/z'
r !. ~B1!

The unknown correlator̂j i
eek& in Eq. ~A1! is calculated us-

ing the Furutsu-Novikov formula,

^j i
e~ t !ek~ t !&5E

0

t

^j i
e~ t !jn

e~s!&K dek~ t !

djn
e~s!L ds. ~B2!

Calculating the functional derivative due to Eq.~32!,

dei~ t !

dj j
e~ t !

5
1

z r
« i jkek ~B3!

and employing the fluctuation-dissipation relation~33!,
yields

^j i
e~ t !ek~ t !&52T« ik j^ej&. ~B4!

Substituting Eq~B4! into Eq. ~B1! and using well-known
formulas~e.g., see@18#!,

«pqs«snr5dpndqr2dprdqn ,
~B5!

«pqs«sqr5dqn«pqs«snr522dpr ,

results in the kinetic equation~34! for the mean orientation
which contains the second-order one-time moment.

The evolution equation for the second-order mom
^eiek& follows from Eq.~32! as

n~ t !
d^eiek&

dt
5l@^ei&hk1^ek&hi22^eiekej&hj #

1
1

z'
r @« i jn^j j

eenek&1«k jn^j j
eenei&#.

~B6!

Using the Furutsu-Novikov formula, results in

^j i
e~ t !en~ t !ek~ t !&5E

0

t

^j i
e~ t !jm

e ~s!&F K en~ t !
dek~ t !

djm
e ~s!L

1K ek~ t !
den~ t !

djm
e ~s!L Gds. ~B7!

Equation ~B7!, when combined with Eqs.~33! and ~B5!,
yields

^j i
eenek&52T@« ins^esek&1« iks^esen&#. ~B8!
3-8
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Substituting Eq.~B8! into Eq.~B6! and using Eq.~B5! yields
Eq. ~35! describing the evolution of the second one-time m
ment.

The equation for the third moment^eiekej& has the form

n~ t !
d^eiekej&

dt
5l@^eiek&hj1^eiej&hk1^ekej&hi

23^eiekejen&hn#1
1

j'
r @« ins^jn

eesekej&

1«knŝ jn
eeseiej&1« jns^jn

eeseiek&#. ~B9!

The Furutsu-Novikov formula leads to the relation
id

05111
-
^j i

eejekee&52Tb« i js^esekee&1« iks^esejee&1« ieŝ esejek& c.
~B10!

Substituting Eq.~B10! into Eq.~B9! with the use of Eq.~B5!
yields Eq. ~36! which describes the evolution of the thir
one-time moment.

Equation~37! for the fourth moment̂eiekejel& is derived
using Eqs.~33! and ~B5!, along with the relation

^jm
e esejekel&52T b«msp̂ epejekel&1«m jp^epesekel&

1«mkp̂ epesejel&1«mlp^epesejek& c
~B11!

that follows from the Furutsu-Novikov formula.
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