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Rotational Brownian motion of axisymmetric particles in a Maxwell fluid
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A theory of non-Markovian rotational Brownian motion is developed for axisymmetric particles moving in
a Maxwell fluid in the presence of an external field. Both the inertial and viscoelastic effects are taken into
account. A kinetic equation for the joint probability distribution of orientation, angular velocity, and accelera-
tion of a particle without spin is derived starting from the rotational Langevin equation with relaxed hydrody-
namic and random torques. A third-order stochastic differential equation for the particle orientation vector is
also derived. Directly from this equation, the set of nonlinear evolution equations for one-time moments is
derived in a noninertial approximation. The expressions for a linear response to a time-dependent external field
and dynamic susceptibility of particle are obtained by direct averaging of particle orientation equation. Ap-
pendices derive the rotational mobility of axisymmetric particles in a general linear viscoelastic fluid, and the
evolution equations for one-time moments of the orientation vector for axisymmetric particles moving in a
Maxwell fluid in the presence of an external field.
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I. INTRODUCTION kinetic equation for the distribution function of position, ve-
locity, and acceleration was obtained for translation Brown-
The theory of Brownian motion plays an important role in ian motion in Maxwell fluid[9] that provided a complete
many parts of modern physics. It also has a wide variety oftatistical description of the non-Markov stochastic process.
applications. Debyd1] who first analyzed the rotational ~ Papers[10,11 have recently studied a two-dimensional
Brownian motion of a sphere in viscous fluid adopted Ein-(2D) rotational Brownian motion in Maxwell fluid. This ro-
stein’s approach to the translational Brownian motion, netational Brownian motion was found to be equivalent to the
glecting the effects of the fluid’s inertia and elasticity. Sev-Brownian translation of a particle on a circular track. To
eral statistical approaches developed recently for studyingtudy this simplest non-Markov Brownian rotational motion,
the rotational Brownian motion in viscous liquidsee re- the authors of pap¢d0] adopted the approa¢B] developed
views[2-5]). An interest emerged recently in Brownian mo- for analysis of translation Brownian motion in a Maxwell
tion in viscoelastic fluids[6—12]. Evidently, viscoelastic fluid. The rotational Bwnian motion for anisotropic particles
properties of a carrier fluid may significantly affect the sta-is highly simplified when the particles have a shape of a flat
tistical characteristics of Brownian motion. The simplest,circular disk. In this case, the stochastic equations for angu-
Maxwell model of viscoelastic fluid is characterized by two lar velocity are linear and therefore the process is Gaussian.
parameters: a single relaxation time and viscosity. Due tdiowever, even in this case, the equations for particle orien-
memory effects in viscoelastic liquids, the stochastic motiorfation that relate the orientation vector and angular velocity,
of a Brownian particle in these fluids represents a nonare nonlinear. To analyze 3D rotational Brownian motions of
Markov process, even if the inertia of the particle and fluidany nonspherical particle one has to overcome some funda-
are negligible. Wang and Uhlenbefk3] first analyzed the mental difficultieq 3], since statistical characteristics of these
non-Markov properties in translational Brownian motion of amotions are always non-Gaussian.
simple harmonic oscillator in viscous fluid. They reduced a The present paper studies 3D rotational motion of Brown-
non-Markov process described by a stochastic second-ordé&&n axisymmetric particles in Maxwell fluid. The particles
differential equation for the position of Brownian particle, to are assumed to have an arbitrary shape of a body of revolu-
a higher-dimension Markov process containing velocity agdion, such as spheroids, rods, disks, etc. When assuming that
an extra variable. Using a similar idea, a theory of translatiorthe spin, i.e., the rotation around the axis of particle symme-
Brownian motion in a Maxwell fluid was recently developed try is absent(or dynamically negligiblg the random torque
[8,9]. In this theory, the non-Markov process described by dn stochastic equations for the angular velocity and orienta-
third-order stochastic equation for the position of a Browniantion vector are proven to be Gaussian. Using this “spinless”
particle, was reduced to a higher dimension Markov procesgssumption, we analyze the motion of a Brownian particle
by introducing the velocity and acceleration as two new in-With permanent dipole moment affected by an extefakc-

dependent extra variables. Using this technique, a univers#lic or magnetig field. This creates an opportunity for direct
studies of orientation and rotation of Brownian axisymmetric

particles in various complex fluids.
*Corresponding author. FAX:011-330-258-2339. E-mail ad-

dress: leonov@uakron.eda. 1. Leonoy). _ _ _ 1. BROWNIAN DYNAMICS WITH RELAXED TORQUE
Permanent address: Institute of Petrochemical Synthesis, Russian
Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, We consider the rotational Brownian motion of a non-

Russia. spherical, axisymmetric particle represented as a body of

1063-651X/2001/6¢45)/0511139)/$20.00 64 051113-1 ©2001 The American Physical Society



V. S. VOLKOV AND A. I. LEONOV PHYSICAL REVIEW E 64 051113

revolution, in a quiescent Maxwell fluid with a single relax- dQ; . .
ation timer. The general stochastic equations describing the L7 =Mi+Mi+M;. (8)
inertial rotations of such a particle are

The hydrodynamic torque for the spinless rotation of an axi-

dLi =M;+ME+ M. (1)  symmetric particle in a Maxwell fluid is determined from the
dt b relaxation equation:
Herel; is the angular moment relative to an arbitrary point dM; )
O within the particle bodly, T TMi=- 4O 9)
Li =] i Qj y (2)

WhenQe.=0, the terms involvind, and{| in Egs.(3) and

(5) vanish, and the friction coefficienit, represents the ro-

tation resistance in the direction perpendicular to the particle

symmetry axis.

li=lee+1.(5;—ee), (3) The exter.nal torqu@/l? could arise from \{arious sources,
such as the interactions of electric, magnetic, or gravitational

ande={e;} is the unit vector that describes the orientation offi€lds with, respective, electric particle dipole, magnetic mo-

the symmetry axis. The particle rotation is induced by thenent pf ferromagnetic particle, and a gravitational dipole of

hydrodynamic, M(t,e), external, M&(t,e), and random, @& particle. In all these cases, the external torque has the form
1 1 L 1 ] 1 1 1

M(t,e), torques; the random torqu;(t,e) resulting from
bombarding a Brownian particle by molecules of environ-
mental liquid.

The hydrodynamic torqu#;(t) acting on the Brownian
particle from the Maxwell fluid, is defined by E¢A8) from
Appendix A as

() is the angular velocity of the particlg; is the anisotropic
inertia tensor of an axisymmetric particle,

Mf=gPjHk, (10

wherep; is the dipole moment of the particle, ait] is an
external field. In the following we restrict ourselves to study-
ing either constant or long-wave oscillating external fields,
when the wavelength is considerably more than the largest
dM. particle size. In this case, the external field can be considered
— M, =— girj(e) Q. (4) as uniform, generally tllme dependen_t, ile,=H,(t). In Eq. _
dt (10), the permanent dipole momept is assumed to be ori-

. ) . _ ) ented parallel to the symmetry axis,
The anisotropic properties of the Brownian motion are

caused by the rotational friction tensgrq that for axisym- pi= e, (12)
metric particles has the uniaxial form, depending on the par-
ticle orientation: with the constant magnitude of dipole moment
The correlation properties of the random torque are deter-
g{j zglr,eiejJr g“i(é” —€€)). (5) mined by the form of the stochastic equation for rotational

particle motion. The statistical properties of the random
Along with randomly changed orientation, the Brownian par-torqueM(t) for a non-Markovian rotational Langevin equa-
ticle may also rotate around its axis of symmetry. Thus thejon with frictional relaxation equation¢8) and (9) can be
angular velocity for such a particle can be decomposed intgound by a method used before for the translational Brown-
components parallef)!, and perpendicula€; , to the par-  jan motion in a Maxwell fluid[9]. In the case under study,

ticle axis of symmetry: this method gives
Q=0+, [Ql=0.e8, O =0(5i—ec8)]. (MI(1))=0, (12
(6)
r
The evident kinematic relation, (MI(H)M(0))=T L e s, .
T
de . .
E=sijkﬂjek, (7)  Equation(12) demonstrates that the random tordué(t) is

represented by a Markov process, and can be regarded as the

Wheree,, is the antisymmetrical unit tensor, describes thesolutlon of the first-order stochastic differential equation

rate of change in particle orientation. Combining E(. dM’
and(7), one can see that a random rotation around the par- T——+ M= £ (1). (13
ticle symmetry axis does not change the particle orientation. dt

We consider below an important particular case of a par- Co
ticle motion without inner rotatior(spin). In this case the Hereg&(t) is the delta-correlated random torque,
angular velocity vector is normal to the orientation vector, Co )
i.e., 0.e,=0, and Eq(1) becomes (& (D£(0))=2TZ] 8(1) Sk, (14)
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and §(t) is the delta function. Equatiof13) shows that the fleQ Q)= _ STO— () 1sTO— O
memory effect in the random torque originates from a fluc- (&0, Q)=(e-e&n)]dl (]l ®).
tuating environment. Equatiori3) and(14) result from the

sol_utlofn of an glversfe p:_oblerf_ft)% for restoring tlh?. th'te Heree, Q, andQ are the solution of Eqg15a and (15b)
noise for a random function with a given correfation func corresponding to a certain realization of the random torque
tion. These equations with arbitrary initial conditions may be
& (t) in Eqg. (15b). The angular brackets in EL9) define
considered as a most general form of the fluctuation:
the average of the variables over the set of all realizations.

g';j ;2?;;?8?:%?51 for non-Markovian rotational I“r’mgevaaklng the time derivative of Eq19) and using Eqs(153
Using the relaxation equations for systema&#irand ran- and (154 yields
dom (13) torques allows us to represent the set of stochastic

equation(8) and(9) in the equivalent form with @&function- ﬁ+ i(s“kﬂ‘ekf )+Q,(7_f_ M i
correlated random torqué (t): at  oe 90 7l 99,
de daQ; . 19 1
H=sijkﬂjek, W:Qi, (15@ =__(Qf)___<§ (t)R[§]>
T Q) 7y 60,
d. : .
idtQ +1, Q== Qi+ ME+ME+ & . (15b R[&]=de—et) ][ Q—Q(1) ][ Q—Q(t)]. (20

HereR[ £] is a nonlinear random functional of the Gaussian
Stochastic procesg(t) with zero average. To close E®O)

we express the average val(# (t)R[ £]) in terms off, us-

by ing the Furutsu-Novikov formul@l5]. This formula, in our
case, is of the form

Hereafter the overdots denote the time derivatives. Accord:
ing to Egs.(10) and(11), the rate of change M} is given

M?=—miij—aijej, mij=,u,(eeH95ij—eiHj),

: R[£]
o= peiHy (16) (E(DRED) = f (& (DE(s) >< oF (s)>d5 (21
Equation(15b) with the use of Eq(16) takes the form Calculating the functional derivatives with the use of Egs.
d. (158 and(15b),
A e LA B se(t) o0ty s 1

=Y Ty = S
55;(0 5§j(t) 5§j(t) Y

and employing the fluctuation-dissipation relatiqi4),

(22)
Here, the following notations have been used:

L= 6+, Bij=meihy, hi=H;+H;. yields
(18)
According to Eq.(17), the angular velocity2 is a non- (EHR[E])=— i - (23)
Markov process. As shown before, it can be reduced to a 7l 90,

Markov process defined by the extended dynamic set of

equationg15g and(15b), affected by a delta-correlated ran- Using Eq. (23) and the evident relationge; loe;=
dom torque. This set defines a multidimensional Markowan_ee results in the closed form of the equat|on for the

process|e, Q,Q}. d|str|but|on function:
It should be noted that not every random process could be
reduced to a Markovian one, even in the most general sensgyt (g (), ()) J . of 0+ 88 of
For instance, this is impossile when significant residual ef-—+sijkej—(Qif )+, —
fects are associated with inertia of liquid. at N <Y an a0,
I [ a
I1l. ROTATIONAL FOKKER-PLANCK EQUATION _ 7 +Dy— | f. (24)
o<, o<,

Using the Klyatskin-Tatarskii methdd 4] we directly de-
rive from the stochastic equations of motion a kinetic equa-
tion for the join probability density of orientation, angular .
velocity, and acceleration of an axisymmetric Brownian par-
ticle moving in a Maxwell fluid.

The diffusion coefficient in the space of angular acceleration
is represented as

The distribution function for the solution of the 4@6) is sz:&z- (25)
defined as (r7)
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Here D, =T/{' is the transverse diffusion constant and IV. ORIENTATION DYNAMICS

- o - CoT
=1,/£, s the inertial relaxation time. According to Eq.(7), the random angular velocity drives

The joint distribution functionf (e, €2,€) of orientation, the random orientational motion. In order to find the equa-
angular velocity, and acceleration is a solution of E2)  tion defining the orientation of a particle we make the vector
for a given initial distributionf,=f(e,Q,Q,t,). Addition- ~ Multiplication of Eq.(17) by e and using after that Ed7),
ally, one can obtain the distribution function for orientation obtain

and angular velocity,f(e Q,t)=[f(eQ,Q,t)dQ. How- d3e, d%e, de
ever, the functionf(e,€,t) cannot be found from the rota- Tlfkmg—+lﬁ<ﬁ2—+[§i+r(,ueka+ IL'ek'ek)]E
tional Fokker-Planck equation since the stochastic process
{e(t),Q(t)} is non-Markovian. = u(hi—eieqhy) + &€y, (30)
For the free spinless rotational Brownian motion of axi-
symmetric particle in a Maxwell fluid, Eq24) takes the =1, (S—eiey).
form
The orientation of a Brownian particle described by these
If(e,Q,0) . of  Q; of equations is a non-Gaussian, non-Markovian stochastic pro-
+Vi(Qif ) +Q— — — cess, with Eq(30) defining the inertial nonlinear transforma-
Jt i 17 40, tion of white noise.
. To simplify the problem we neglect the inertia effects on
d | Q; o d orientation dynamics of nanosize particles, excluding from
- 5 . + DQE f. (26) analysis very short-time processes. According to(Bf). the
I I

stochastic equation for the orientation of an noninertial

Here the rotational operatdf! , defined as Brownian particle in a Maxwell fluid has the form

d
V{:Sijkejﬁ—;, 27) (§i+TMeka)d—?:/i(hi_eienhn)+8ijk§?ek- (32)
Equation(31) describes the noninertial nonlinear transforma-
Nion of white noise and shows that in a noninertial approxi-
mation, the orientation of a particle is still the non-Gaussian
Markov process. Also, Eq31) formally corresponds to the
o limit 1, /£ —0. This limit should be considered more care-

L (Qe- Qe 77 Qe D) . (28 fully for large values of relaxation timeswhen the inertial
2T effects might be coupled with viscoelasticity. For viscoelas-
tic carrier fluid under study, the external field; plays a
double role, orienting a particle, and also hindering its rota-
tion. This hindrance to rotation introduces an additional fric-
tlon coefficient, which depends on the relaxation timef
the fluid, and the alignment energye,H,. We neglect, for

T o T . simplicity below, the fluctuations of the friction coefficient.
<QiQk>O:E Sk, (Qidio=7— ik, (QiQ)o=0. Then Eq.(31) becomes

|, 77
(29 de A .
Crgp ~H(hi—eehy) +eiéiec (G=41+ Tl Hy).

(32

is equivalent to the orbital angular momentum operator i
guantum mechanids].
Equation(26) has the stationary solution,

f(Q,Q)=C exp[ -

where C is a normalization constant. Equati@g@8) is an
extension of the Maxwell distribution, which includes the
new dependence on the angular accelerations. Using E
(28), the equilibrium moments are defined as follows:

The second formula in Eq29) demonstrates that the equi-
librium value of the second one-time moment of the angular
acceleration depends on the rheological properties of carrigjg e £, is the mean friction coefficient.

fluid. This formula shows that the unphysical singularity,  according to the fluctuation-dissipation theorem, the ran-

characterizing the classical model of rotational Browniangq, torqueg®(t) for the noninertial rotational Brownian mo-
. . . . - . . I
motion in a viscous fluid, where=0, vanishes in the case of tion has the following properties:

the Maxwell fluid model. The first relation in E¢29) cor-
responds to the familiar equipartition distribution of kinetic (£3(1))=0, <§$(t)§?(o)>:2-r§r5(t)5ij ) (33
and thermal energy over the degrees of freedom:
The evolution equations for one-time moments of various
0 orders can then be derived from the rotational Langevin
§|i<9i >0_§T' equation(32) by averaging procedures. Due to the quadratic
nonlinearity in Eq.(32), these equations form an infinite
Here the temperaturEis expressed in energy units. Thus as(nonclosed chain. These equations, whose derivation is pre-
t—oo, the Brownian particles comes into the thermodynamicsented in Appendix B, are shown below up to the fourth-
equilibrium with the viscoelastic environment. order moment equation:
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d(e;)

v(t) T (34

1
_T_<ei>+)\(hi_<eiek>hk).
1

o(t) d<2itek> _ 1

+N[(e)ht(eh

1
- T_z (ejen) — §5ik

—2(eiee)h;], (35

d(eiexe;)

1
v(t) T (eiekej>—g(5ik<ej>+5ij<ek>

1
S

+ (&) | T A (eeh;+(ee)hy

+(ewej)hi —3(eiexejen)hy, (36)

V(t)d<eiejekel> _

1
a T 1o Gii(ee) + di(ejen)

<eiejekel>_

+ Sie(€x€)) + Sj(eie) + 5 (eiew)

+ ouleig))) |+ N (eeenh

+(eiejeph+(eee)h;+(eee)h
(37)

In Egs.(34)—(37), the rotational relaxation times,, the
parameten, and functiony(t) are defined as

—4(eiejeceen)hy).

7= [a(a+)T], N=wnlll,

v()={ (1)1 =1+ NruH(t)(el(t). (38)

PHYSICAL REVIEW E 64 051113
1 K3
<eiekej>e:l—5’<(5iknj + Mt SiNi) = 75 NNk
+ Oy (°),
1 K2
<eiejekem>e:l_5| ijkm+ E[3(5iknjnm+ SijNicNm+ SimNiN;
+ 8 NiNm T SimiNj+ SjmNiNk) — 2 ijkm]
+Ojjkm( &%).

Herelijxm= 6ij Skmt SikOjm+ Simdjk » andO;y__are the order
functions of various tensor dimensionalities.

(i) In the case of astrong external field when «
= uH/T> 1, the stationary asymptotic solution of E¢34)—
(37) is of the form

(8)e=(1— k" Hni+0i(x~?),
(ei&e= Kk 18+ (1= 3lk)nin+ O (k™ 2),
<eiekej>e: ninknj + K_l(éiknj + 5” nk+ 5kjni - 6ninknj)
+O0yj(k2), (40)
<eiejekem>e: ninjnknm+ Kil( 5iknjnm+ 5” nknm+ 5imnkn]-
+ 5kjninm+ 5kmninj + §jmnink_ 1minjnknm)
+Ojjkm(k2).

In finding the form of the terms in Eq§39) and(40), the
evident properties for the second, third, and fourth moments
Si(eie =1, di(eexe))=(e)), and d(eece;en) =(€jen)

We now consider the case of a stationary external field1@ve also been used. Formul(@$) and(40) demonstrate the

H,, when h;=H;, and the constant unit vectar, in the

direction of the field, is defined a3;=n;H. Then the non-
characterizing the

dimensional parameterx=uH/T,

general fact that the polyadic one-time moment tensors of
different orders, formed of the unit orientation vecer,
depend only on all possible symmetrical combinations of the

strength of the external field relative to the thermal energy, i¢/Nit tensors, and the unit vecton; describing the orienta-

naturally introduced in Eqg34)—(37) in the products\ 7,H
in these equations.

tion of the external field, with coefficients depending only on
parameterx. The same is true for the nonstationary case,

There are two physically important cases when it is pos‘yvhere the coefficients of these symmetrical tensors will also
sible to find asymptotic solutions of the nonlinear relaxationde€pend on time.

equations(34)—(37) for the one-time moments of various
orders. We will present below only the analytical results of
steady analyses for thermal equilibrium of the moments in a
constant field. The same procedure for nonsteady situatior{ls
might also be developed but will need a numerical analysis.g
It should be noted that formulas obtained below for the sta-
tionary case are identical for both the viscous and viscoelas-

tic carrier liquids.
(i) In the case of aveak external fieldwhen k= uH/T
<1, the steady solution of Eq&34)—(37) is of the form

K2 4
1- 350k |y,

<ei>e:g

+O0i(kY), (39

1 1 ) 1
<eiek>e:§ Sik T 75 K| NNk 3 Jik

V. DYNAMIC SUSCEPTIBILITY

The orientation of a particle can be experimentally inves-
ated by measuring the mean dipole moment

Pi=u(e).

In this regard, the theory developed above allows for inter-
pretation of these experiments when the time-dependent so-
lution of a linear problem for the mean dipole moment is
available. We consider below the linear noninertial response
of a Brownian axisymmetric particle suspended in Maxwell
liquid to an external fieldH(t). In this case, the terms of the
order (wH/T)? and higher in Eq(34) can be neglected. Us-
ing Egs. (41) and (34), yields the linear equation for the
mean dipole moment

(41)
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dp, dH; ) 10r
TlW‘F Pi:XO Hi+TW y Xo— M /3T (42)
08
Herex is the static susceptibility of particle. The orientation
relaxation timer; is defined in Eq(34). Equation(34) was o6

lianearized with replacing unknown first and second mo-

ments by their equilibrium valuege;)o=0 and (ee)q =
=1/38; in the absence of an applied field. The solution of o4}
Eq. (42) is of the form

. 02k
Pi:f x(s)Hi(t—s) ds, (43
0
0.0
where the response functig(t) is 2
log(ag)
r
x(t)= Xo To(t)+| 1— —) e_t’Tl}. (44) FIG. 1. Frequency dependence of the real part of dynamic sus-
1 1 ceptibility for =0 (dashed linesand &= 0.2 (solid lines.

For the oscillating external field, Equation(50) shows that in the viscous case where0, the

Debye theory predictg.,=0. In contrast, in the viscoelastic
liquid, the relative limiting susceptibility../ xy is honzero
and increases with increasing the relaxation time of the fluid.

Hi=H"Re(e '*!) (45)

with a constant amplitudel", the mean dipole moment is
defined by
VI. CONCLUSIONS

=HM “lwt . ) . . . .
Pi=H{"Rex(w)e ™. (46) This paper studied the rotational Brownian motion of axi-

mmetric particles in Maxwell viscoelastic fluid with one
axation time. This type of Brownian motion is described
by the nonlinear stochastic equatiofls and (7) with vis-
1 coelastic torque4), which depends on the orientation of the
lwT . . . .
(@)= +——. (47) particle. The solution of this equation represents a non-
1-lon Gaussian, non-Markov process.
) i , In the important special case when the rotation around the
For a viscous carrier fluid«=0) Eq. (47) reduces to the gymmetry axis of the particle is dynamically negligible, the
well-known expression for the Debye susceptibility. The  3n40m torque in stochastic equations for rotational motion
reduced real and imaginary parts of dynamic susceptibilitys 5 Gaussian stochastic process. Its stochastic properties are
are defined by Eqs(12). The non-Markov stochastic process,
defined by the stochastic equatidi@$—(9), was analyzed by
(49) increasing the dimensionality of space of dynamic variables.

The steady-state response is described by the dynamic suf%/I
ceptibility of particle y(w) depending on frequenay:

2
,:1+awR ”:(1—a)wR
AR 1+w§' XR 1+w2R '
06
where

Xr=X'1x0, Xg=X"Ix0, a=71l71, wr=ow7. (49)
0.4

Here the parameter characterizes the effect of viscoelastic-
ity, and wg is a nondimensional frequency of field oscilla- .=
tion. Figures 1 and 2 demonstrate the plots of reduced com™
ponents of dynamic susceptibility versus the dimensionless
frequency. The dashed and solid lines, respectively, repre:
sent the predictions of the Debye theorg=0) and the
present theory witle=0.2. Figure 1 shows that the real part
has the nonvanishing limit at large valuesuof, . According
to Eq. (48), the limiting values of the real part of dynamic 0'0_3
susceptibility at small and large values of are, respec-
tively, defined as

02|

log(eg )

FIG. 2. Frequency dependence of the imaginary part of dynamic
h= L=xT1lT]. (50 i o E
Xo=Xs Xo=XTIT1 susceptibility for the same cases as in Fig. 1.
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In so doing, an additional dynamic variable, the Markov ran- o

dom torque, was introduced, which is considered as the so- gij=—pJj +2f0 G(s)yij(t—s)ds, (A1)
lution of an additional stochastic equation with a delta-

correlated random torque. Thus the problem of rotational o

Brownian motion in a Maxwell fluid was reduced to the G(t)zf H(m)e YdIn 7.

statistical description of an extended dynamic systés) 0

and (17). Directly from this dynamic system, the kinetic oo oy; is the stress tensop is the pressureG(t) is the
equation(24) was derived for the joint probability distribu- ¢ |axation modulusy;; is the strain rate, a symmetric part of
tion of orientation, angular velocity, and acceleration of aye velocity gradient, ant (1) is the distribution function of

Brownian particle in a Maxwell fluid. This kinetic equation rg|axation times. The simplest possible viscoelastic fluid is
gives the complete statistical description of the non-Markovgescribed by the Maxwell model with just one relaxation

process. time 7. In this case,
In Sec. IV, the Brownian orientation dynamics was for-
mulated for axisymmetric particle moving in a Maxwell H(r)=278(t—15), G()=(n/mg)e ™,  (A2)

fluid. In this case, the orientation equation of a particle in the

presence of the time-dependent external field was establishd{1€re 7 is the viscosity of fluid. The Maxwell fluid is an
in the form of Eq.(30) which contains inertial and viscoelas- appropriate particular case to begin studying the Brownian

tic effects. In noninertial approximation, the problem wasmotion in viscoelastic fluids. In general, the complex viscos-

reduced to Eq.31) or its approximate analog, Ed32). ity of a viscoelastic fiuid is defined as

These are nonlinear stochastic equations for the unit vector o _

of particle orientation. With the use of this equation, the set n[w]=j G(t)e'“'dt. (A3)
of nonlinear relaxation equations for the mome(34)—(37) 0

was obtained in Appendix B. Asymptotic solutiof@s) and_ . In the case of the discrete relaxation spectrum,

(40) for small and large values of parameters characterizing
the strength of the field as compared to the thermal effects, N

were found for one-time moments in the stationeguilib- H(T)=22 n,0(7—1,),
rium) case. It should be noted that the nonlinear stochastic a=1
equations(31) allow an exact solution, which will be de-

scribed elsewhere. the complex viscosity has the form

The present paper studied a particle with a permanent N
dipole moment along its axis of symmetry. An external plw]= 2 Ta (Ad)
(electric or magneticfield affects the orientation of such a a1 l-iwt,’

particle. A simple linearized equation for the mean dipole
moment(41) was derived by direct averaging of the E84)  Here 7, are the relaxation times, angl, are the relaxation
characterizing the evolution of the one-time first moment ofviscosities.
particle orientation. Using this equation, the linear noniner- When a torquéM(t) acts on a particle, the particle rotates
tial response was calculated for the time-dependent externalith the angular velocity2(t). For small value ofM the
field. For the oscillating external field with the constant am-angular velocity€)(t) is a linear functional oM. For a vis-
plitude, the expressiofd7) for dynamic susceptibility was cous fluid, hydrodynamic torque acting on the axisymmetric
obtained. It was found that there exists a nonzero highparticle is defined by16]:
frequency limiting susceptibility, which increases with in-
creasing the relaxation time of the fluid. In the Debye theory Mi=—{;Q5, &=nBj. (AS)
this high-frequency limiting susceptibility is equal to zero.
Here gj; is the rotation friction tensor, anig; is an intrinsic
tensor depending only on the size and shape of a particle. It
ACKNOWLEDGMENTS should be noted that there is no coupling between translation
and rotational motions for axisymmetric particles.
The authors appreciate partial support from EPIC-UAP Taking the Fourier transform of EgA5), and using the
172 and support for V. S. Volkov by INTAS, Project No. well-known principle of correspondence between viscous

278, 2001. and viscoelastic linear problems, yields
Mi(w)=—7[w]B;jQj(w). (A6)
APPENDIX A: ROTATIONAL MOBILITY .
OF AXISYMMETRIC PARTICLES IN LINEAR Here M;(v) a”dlﬂi(“’)l are thed':c;]””er Com.ponefnas of the
VISCOELASTIC FLUID torque and angular ve OCIty, and the extension of the viscous

case to the viscoelastic one was made by substituting the
Consider a rigid axisymmetric particle immersed in anNewtonian viscosityy by the frequency-dependent viscosity
isotropic, viscoelastic incompressible quiescent fluid definedf ] from Eq.(A4). Hereafter the following notations for the
by the linear constitutive equations two-sided and one-sided Fourier transforms are used:
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. . - , APPENDIX B: EVOLUTION EQUATIONS FOR ONE-TIME
X(w)=j x(t)e'tdt, x[w]= fo x(t)e'“'dt. MOMENTS OF ORIENTATION VECTOR

The direct averaging Eq(32) results in the evolution
Thus in the viscoelastic case, the torduét,e) is easily — equation for the average of the first moméaf(t))
obtained from Eq(A6) in the form of a linear memory func-
tional: d(e;)

1
v(t) W:)\(hi_<eiek>hk)+ Zsijk<§?ek>

Mi(t)=—B;; fo G(s)Qj(t—s)ds. (A7) (N=pull"). (BL)

o\ .
Equation (A7) motivates the use of the memory function 1he Unknown correlatofée,) in Eq. (A1) is calculated us-

form in the rotational Langevin equation. It is seen that Eq."9 the Furutsu-Novikov formula,
(A5) for the viscous fluid is the special case of E&7) .

when n(t)=2745(t). For a Maxwell fluid with a single ex- <§¢(t)ek(t)>=f (E5(1)E(s))
ponential relaxation functiofA2), Eq. (A7) can be rewritten ! o o on

in the form of the differential equation,

oey(t)
SEA(S)

> ds. (B2

Calculating the functional derivative due to E§2),

M,
T——+M;=—Q;, (A8) og(t) 1
dt | 11%7] —Ie( ) = —Sijkek (83)
o&j(t) &
describing the relaxation of torque. For an axisymmetric par- ) . L .
ticle, the rotational friction tensor may be decomposed intd®"d employing the fluctuation-dissipation relatid83),
the components parallel and orthogonal to the particle symY/€lds
metry axis:
(El(D)ed(t)=—Tei(e)). (B4)
r— #I'a A r .. — Qe
Gi=dieet+Lu(dij—eig)). (A9) Substituting Eq(B4) into Eq. (B1) and using well-known

) ] ) . formulas(e.g., sed18]),
Heree; is the unit vector directed along the symmetry axis of

a par_tigle, and;| anq I are the longitudinal and transverse €pqssnr= Opndqr— Spr Sgn.

coefficients of rotational friction. (B5)

. A ;mplg examp!e of an anisotropic axisymmetric particle €pqsar= OqnEpgEsnr= — 201+

is infinitesimally thin circular disk, for which the tensor of

rotation friction counted off relative to the disk centef 1€] results in the kinetic equatiof84) for the mean orientation,
which contains the second-order one-time moment.

;32 o The evolution equation for the second-order moment
Gij 3 b 5ij - (A10) (ejey) follows from Eq.(32) as
Hereb is the disk radius. The flat disk is isotropic for rota- (1) d(eie) =\[(e)h+{eyh —2(eiee)h;]
tional motion. The torque acting on the disk for the rotation dt ' ' e
about its diameter is the same as for the rotation about its 1
symmetry axis. The most interesting are the ellipsoidal par- + —[ein{ Eene) +erin( E2ene) ].
ticles. The disklike particles, such as red blood cells and Zi[ in{ 4180810+ eign &80
mica flakes, could be approximated by oblate spheroids. The (B6)

thin circular disk is a degenerated case of a spheroid. The

rodlike particles, such as glass fibers, viruses, proteins, angsing the Furutsu-Novikov formula, results in
stiff polymer molecules, can be approximated by the prolated

spheroids. The rotational Stokes problem is completely t Sey(t)
solved for the ellipsoid16]. For long thin prolate spheroids, (&(Den(te(t))= fo<§F(t)§§1(s)> en(t) e (s)
the rotational friction coefficient'| has the simple form m
+< (t) oen() > }d (B7)
167 na’ €y e S.
’ o s=1b>1, (ALl SEE(S)

L73[21n(2s)—1]"
Equation (B7), when combined with Eqs(33) and (B5),
wherea andb are, respective, polar and equatorial radii. Thisyields

expression correlates well with the approximate regLif .
for the thin rods. <§| enek>: _T[Sins<esek> + 8iks<esen>]- (B8)
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Substituting Eq(B8) into Eq.(B6) and using Eq(B5) yields

Eq. (35) describing the evolution of the second one-time mo-

ment.
The equation for the third momefe e.e;) has the form

d(eiece))

T

=N{(eieh;+(eieph+(ee)h;

1
—3(eievejen) ]+ [ eins( £nesexe;)
1

3

+ 8kns<§§esei ej> + 8jns<§§esei ek)]- (Bg)

The Furutsu-Novikov formula leads to the relation

PHYSICAL REVIEW E 64 051113
<§ieej €Be) = — Tlsijs<esekee> + 8iks<esej €e) + &iesl €€ e]-
(B10)

Substituting Eq(B10) into Eq.(B9) with the use of Eq(B5)
yields Eq. (36) which describes the evolution of the third
one-time moment.

Equation(37) for the fourth momente;e.e;e)) is derived
using Eqgs(33) and(B5), along with the relation

<§‘r5nesej ekel>: _Tl.smsp<epej ekel>+ 8mjp<epesekel>

+ 8mkp(epesej el> + 8mlp<epesej ek>J
(B12)

that follows from the Furutsu-Novikov formula.
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