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Self-generated disorder and structural glass formation in homopolymer globules
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We have investigated the interrelation between spin glasses and structural glasses. Spin glasses in this case
are p-spin interaction spin glasses~at p.2) or Potts glasses that contain quenched disorder, whereas the
structural glasses are here exemplified by a homopolymeric globule, which can be viewed as a liquid of
connected units on a nanoscale. It is argued that the homopolymeric globule problem can be mapped onto a
disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin
glass model. In this sense the disorder in the globule is self-generated~in contrast to spin glasses! and can be
related to competing interactions~virial coefficients of different signs! and the chain connectivity. The work is
aimed at giving a quantitative description of this analogy. We have investigated in the mean-field approxima-
tion the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy
globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature
dependence is also discussed.

DOI: 10.1103/PhysRevE.64.051112 PACS number~s!: 05.40.2a, 36.20.2r, 75.10.Nr, 71.55.Jv
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I. INTRODUCTION

The existing dynamical theory of glass-forming ove
cooled liquids and polymers is mainly applicable to the re
tively high temperature area. The well-known mod
coupling theory ~MCT! @1# predicts a dynamical phas
transition at the critical temperatureTc where the overcooled
liquid becomes nonergodic and stays in this state upon
ther cooling. It is significant that according to MCT the cha
acteristic times of thea relaxation and the viscosity exhibit
power law divergenceta(T)}h(T)}uT2Tcu2g at a critical
temperatureT5Tc . It is now realized that this type of sin
gularity is generic for a broad class of mean-field~MF! mod-
els and its appearance is an indication of the role ofactiva-
tion processes, which are neglected in MF models@2#. This
means physically that the topography of the free energy la
scape in the space of the coarse grained variables shou
taken into consideration. At low temperatures the free ene
landscape determines more or less the dynamics of the
tem. The size of the free energy barriers between the m
stable states, however, determines the rate of any activa
processes in the low temperature regimeT,Tc .

At the so-called Kauzmann temperatureTK , which is usu-
ally TK,Tc , a genuine thermodynamic glass transition or
called Gibbs-DiMarzio transition is expected to take pla
@3#. At the Gibbs-DiMarzio~or Kauzmann! temperatureTK ,
the system is preferably in a thermodynamically unique c
figuration since the heights of the free energy barriers g
with increasing system size.

The earliest analytical approach to the problem that c
tured these two aforementioned aspects was worked ou
several papers by Kirkpatrick, Thirumalai, and Wolynes
the late 1980s@4#. In these papers, which study the pheno
ena by making use ofp-spin interaction spin glasses~at p
.2) and Potts glasses with more than four components,
following conclusions were drawn.

~1! The predicted phase transition temperatureTA ob-
tained by the dynamical theory~actually equivalent toTc of
1063-651X/2001/64~5!/051112~16!/$20.00 64 0511
-
-

r-
-

d-
be
y

ys-
ta-
on

o
e

-
w

-
in

-

he

the MCT based on Langevin dynamics in the mean-fi
limit ! is higher than the KauzmannTK obtained by the static
theory ~or by the ordinary replica theory!.

~2! As the temperature decreases~starting from the para-
magnetic phase! the metastable minima appear first exac
at TA .

~3! In the intermediate temperature regimeTK,T,TA
many metastable states are separated by high barriers. I
mean-field limit these metastable states have an infini
long lifetime. This is a well-known pathology of the MF
model and a sharp transition does not occur in a finite dim
sional system. Nevertheless, in a finite dimensional sys
TA is physically significant, since forT,TA activated trans-
port is the typical process.

~4! The overlap order parameter within the one-step r
lica symmetry breaking~1-RSB! scenario undergoes a dis
continuous jump atTK . This recalls a first order phase tran
sition even though thermodynamically~e.g., in the specific
heat! the transition seems to be of second order. The auth
called this class of phase transitionsrandom first order phase
transitions. Crisanti and Sommers confirmed essentially t
same type of behavior for thep-spin spherical model@5#,
which is different from the Sherrington-Kirkpatrick@6#
model, and the behavior is shared by some other spin g
models@7#.

Indeed, it has been argued often that many connect
exist between the behavior of structural glasses and
glasses without reflection symmetry@2,4,7#. Most of the
properties mentioned above for the spin glass can be fo
in the context of structural glasses too. However, the imp
tant difference between the spin and structural glasses is
the spin glasses models already contain a quenched diso
in the Hamiltonian. In structural glasses the Hamiltonian i
regular function of the particle coordinates and does not c
tain disorder. Nevertheless, the free energies in both syst
resemble each other and possess similar properties. Thus
disorder is in a sense self-generated and develops during
cooling ~or glass transition! process.

The properties and possibilities of self-generated~or self-
©2001 The American Physical Society12-1
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induced! disorder have already been discussed in the fra
work of rather special spin models@2,8#. These models ex
plicitly involve pseudorandom numbers, i.e., the spin-s
couplings, although deterministic, oscillate very rapid a
can be considered as~pseudo!random variables. These mod
els, however, provide some spin analogies with structu
glasses but still are quite different from structural glasses@2#.

Furthermore, the ideas and the methods of the mean-
spin glass models@9–11# have been successfully used
study the freezing states in a heteropolymer globule@12–15#.
The corresponding model considers the conformational
havior of a polymer chain with randomly quenched intera
tions between monomers. These random copolymers alw
possess a collapsed~or globular state! depending on the tem
perature and the strength of the randomness. It was suc
fully shown that the disorder results in a globular and ev
tually in a glassy globular state. The corresponding freez
is characterized by a transition between two phases:
phase is characterized by many accessible configurati
while the other is dominated by only a few of them, i.e.,
eventually frozen state. In this context heteropolymer fre
ing usually serves as a simple ‘‘toy model’’ for the prote
folding phenomenon@15#. This relationship between th
freezing and folding phenomena is caused mainly by the
that in both cases only a single conformation~which in the
context of protein folding is called the native state! domi-
nates.

In the following we are going to investigate a simil
problem in homopolymer globules in poor solvent. It is w
known that homopolymers in poor solvent form globules d
to an attractive second virial coefficient; the globules
then stabilized by the repulsive third virial coefficient@16#.
The relevant parameter for globule formation is the sec
virial coefficient which is measured by the relative distan
from the so-calledQ temperature, where the homopolym
takes Gaussian conformations. Just belowQ the polymer
collapses and the lower the temperature the more dense
comes the globule. The intuitive limit is then a dense liqu
globule. We will show, nevertheless, that even at lower te
peratures and beyond a certain density the globule fre
and forms a glass. Homopolymer globules show a struct
glass transition. Thus the system will form a ‘‘nanoglass
i.e., a frozen and condensed polymer chain restricted to
scale of the individual globule.

It is most interesting to note that in recent Monte Ca
simulations of homopolymer globules, Milchev and Bind
@17# found a dramatic decrease of the acceptance rate o
moves, which in its turn suggests the growth of the char
teristic times. They saw also pronounced density fluctuati
which appear in the center of the globule and spread over
entire globule as the temperature is lowered. These res
were interpreted in terms of a glassy type of transition. Th
investigations have been restudied in papers by Kreitm
et al. @18–20# where a similar dynamical behavior of th
homopolymer globule was verified once more and gene
ized for the cyclic deformation regime. Moreover, the gla
transition in a homopolymer globule~for chain lengthN
,27 on a 33333 cubic lattice! was investigated by com
puter simulations@21#. These authors found that the confo
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mation space of the model consisted of one huge valley
a large number of small ‘‘chambers.’’ These disjoint d
mains of the conformational space are responsible for
ergodicity breaking and freezing transition. This might
important for the final processes of folding dynamics in p
tein molecules because the speed and reliability of the fo
ing depends on whether the native state belongs to the s
conformational space domain or not@15#.

The thermodynamic behavior of homopolymer globu
has been studied also by discontinuous molecular dynam
simulation @22,23#. By making use of a simple off-lattice
model for chain lengthN564 the authors showed the exi
tence of a first order liquid-solid-like transition. The trans
tion occured at temperatures below the coil-globule tran
tion temperature and was detected by a heat capacity pea
well as by a Lindemann parameter jump. It is interesting t
there is a qualitative similarity between homopolymers a
proteins where the transition from the molten globule to
native state is also of first order@24,25#. In Ref. @26# an
‘‘expanded ensemble’’ Monte Carlo algorithm was intr
duced which helps to overcome the density slowing down
the globule state. For chain lengths up toN5512 the authors
saw a bimodal distribution in the number of contacts p
monomer. This is again a clear indication of a first ord
liquid-to-solid transition of the collapsed globule.

As already mentioned, it is most important that the glo
ule formed from ordinary homopolymers does not cont
any quenched disorder. If this system forms glassy states
disorder has to be self-generated. Nevertheless, to f
glassy states certain frustrations are necessary. These
result from the interplay between attractive interaction~nega-
tive second virial coefficientv), repulsion ~positive third
virial coefficient w), and the constraints imposed by th
chain connectivity. These frustrations might already be s
ficient to provide a structural glass transition from a liqu
globule to a glassy globule.

The main purpose of the present paper is to investig
these problems in more detail by analytical means. We w
indeed show that a linear homopolymer in the conden
globular phase undergoes a genuine structural glass tra
tion of a type similar to that in ap-spin interaction spin glass
with p.2 or a Potts glass model. We stress once more
the homopolymer is a pure system and does not con
quenched disorder. Nevertheless, then-component field
theory formulation for linear polymers@27# already provides
a natural and solid basis@28#. As we will show below, the
homopolymer globule is a generic system where frustrati
rather than quenched disorder trigger the glass formation
a starting point we employ the field-theoretical description
a self-interacting polymeric chain in a poor solvent@29,30#.
So far, in Refs.@29,30# it has been shown that the Laplac
transformation~with respect to the chain lengthN) of the
polymeric correlation function can be associated with
corresponding correlator within then→0 limit of the
n-componentca

4 ,ca
6 field theory ~where a51, . . . ,n). We

argue instead that the samen-component field theory can b
mapped onto some kind of disordered one-component m
where the imposed random field is non-Gaussian~colored
noise! and its statistical moments are determined only
2-2
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SELF-GENERATED DISORDER AND STRUCTURAL . . . PHYSICAL REVIEW E 64 051112
virial coefficientsv,w, . . . , etc. In this case the indexa acts
as a replica index for spin glasses@9,10# or random magnet-
ics @11#. This mapping has already been suggested for s
glasses three decades ago@31,32# but was never actually
used. At this point we should add a general rema
Throughout the paper we use the large globule approxi
tion, i.e., we consider the chain lengthN to be very large.
This is necessary to avoid additional complications close
the surface of the globule. Intuitively it is obvious that mon
mers close to the globule surface experience a different
namic environment, such that different mechanisms of fre
ing take place. We will come back to this point in a lat
publication.

II. THE HOMOPOLYMER GLOBULE AS A DISORDERED
SYSTEM

A. The field theory representation

In this section we will provide the basic formulations a
the field theory for polymers in poor solvent, i.e., with attra
tive interactions caused by a negative second virial coe
cient. To do so, we start from the usual continuous desc
tion of a homopolymer chain of lengthN in a poor solvent.
The chain conformation is characterized by t
d-dimensional vector functionr (s), wheres (0<s<N) enu-
merates segments of the chain. The corresponding Edw
Hamiltonian has the following form@30#:

H@r ~s!#5
d

2a2E0

N

dsS ]r ~s!

]s D 2

2
uvu
2 E

0

N

dsds8d„r ~s!

2r ~s8!…1
w

3!E0

N

dsds8ds9d„r ~s!2r ~s8!…d„r ~s8!

2r ~s9!…. ~2.1!

The first term in the Hamiltonian~2.1! is responsible for the
chain connectivity, whereas the two other terms are c
nected with the virial expansion. In Eq.~2.1! we already
imposed the condition that the second virial coefficient
negative,v,0, and the third virial coefficientw.0. Usually
the second virial coefficient is measured by its distance fr
the Q temperature, i.e.,uvu.a3uT2Qu/Q5a3t. The third
virial coefficient is always of the order ofw;O(a6). The
density of the globule is easily estimated byr.uvu/w, which
provides a naive limit of the temperature atra351. Indeed,
at sufficient low temperatures the globule is dense, and
entropy term~first term! becomes less and less importa
The remaining entropic fluctuations are important only
length scalesj.a/t. This observation will allow us later the
safe use of corresponding mean-field theories.

The next step@29,30,33# ~see also Appendix A! is to em-
ploy the Laplace transformation of the polymeric correlati
function J(r1 ,r2 ;N),

J~r1 ,r2 ;m!5E
0

`

dN J~r1 ,r2 ;N!exp~2mN!, ~2.2!
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which can be associated with then→0 limit of the ca
4 ,ca

6

field theory as follows:

J~r1 ,r2 ;m!5 lim
n→0

E )
a51

n

Dcac1~r1!c1~r2!

3exp$2Hn@cW ;m#%, ~2.3!

wherecW 5$c1 ,c2 , . . . ,cn% is an n-component field andm
the chemical potential, which is conjugate toN, and the rep-
licated Hamiltonian is

Hn@cW ;m#5
1

2E ddr (
a51

n

ca~r !Fm2
a2

2d
¹2Gca~r !

2
uvu
8 E ddr F (

a51

n

ca
2~r !G2

1
w

3!8E ddr F (
a51

n

ca
2~r !G3

1•••. ~2.4!

As usual the vector fieldc corresponds to the polymer den
sity in the usual manner, i.e.,r}^c1

2&. The relationship be-
tweenm andN has the form

N52

~]/]m!E ddr 1ddr 2J~r1 ,r2 ;m!

E ddr 1ddr 2J~r1 ,r2 ;m!

. ~2.5!

The attractive interaction term of orderc4 changes the be
havior of the field theory. Correlations of the self-avoidan
are no longer important and we must consider the bala
between the attractive and repulsive forces. Although
mentioned above the relative unimportance of the connec
ity term, we have to keep track of it as well. The care
analysis below shows that it provides at sufficiently low se
ond virial coefficients significant contributions on sma
scales @j;O(a)# that are caused only by connectivity
These are in part responsible for frustration.

B. Mapping onto a random model

Now we are going to map this field theory onto a rando
system. It can be shown~see Appendix B! that the free en-
ergy of the globule stateFGl can be interpreted as the fre
energy of a one-component random model with Hamilton

H$c%5
1

2E ddr Fmc2~r !1
a2

2d
~“c!21t~r !c2~r !G ,

~2.6!

where the random fieldt(r ) is non-Gaussian with its gener
ating functional of the form
2-3
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F$r~r !%[expH 2E ddr t ~r !r~r !J
5expH uvu

8 E ddr r2~r !2
w

3!8E ddr r3~r !J ,

~2.7!

and where the overbar means averaging overt(r ). It is inter-
esting to underline that only for this combination of signs
the virial coefficients (v,0,w.0) are the even central mo
ments t(r 1)t(r 2)•••t(r 2m) @see Eqs.~B8!–~B11!# positive,
as they should be for a real fieldt(r ). The aforementioned
mapping takes the form

FGl52 lim
n→0

1

n
ln Zn̄, ~2.8!

where the replicated partition function is

Zn̄5E DcW exp$2Hn%. ~2.9!

In the present paper we are going to use this analogy
tween the homopolymer model~which is a ‘‘pure’’ model,
i.e., does not include quenched disorder in its Hamiltoni!
and the random model~2.6!.

C. Legendre transformation

As a next step we should go to the two-replica variab
Qab(r ), or Parisi overlaps@9# for polymers @28#. One can
implement this using the Legendre transformation of the
teraction part of the Hamiltonian~2.4! which can be repre-
sented in the form

K@uab#[
uvu
8 E ddr (

a,b51

n

uabuba

2
w

3!8E ddr (
a,b51

n

uabubcuca

2
z

4!16E ddr (
a,b51

n

uabubcucduda1O~uab
5 !,

~2.10!

where the pair fielduab(r )[ca(r )cb(r ) and where we have
also kept the fourth virial coefficientz. Let us introduce the
integral transformation

exp$K@uab#%5E )
c,d

n

DQcd~r !expH W@Qab#

1E ddr(
a,b

n

Qab~r !uab~r !J ~2.11!

and findW@Qab# in the form of a functional expansion. Fo
this purpose one should use the saddle point method in
~2.11! which can be carried out in the same spirit as in Re
05111
f

e-

s

-

q.
.

@34,35#. This results in the Legendre transformation with r
spect to the extremum fieldQ̄ab ,

K@uab~r !#5W@Q̄ab~r !#1E ddr (
a,b51

n

Q̄ab~r !uab~r !.

~2.12!

As a result@36# we get

d K

duab
5Q̄ab~r !, ~2.13!

d W

dQ̄cd~r !
52ucd . ~2.14!

By making use of the expansion~2.10! in Eqs. ~2.13! and
~2.14! one obtains forW@Qab# the following expression:

W@Qab~r !#52
2

uvu E ddr Tr~Q2!2
4w

3uvu3E ddr Tr~Q3!

2
2

uvu4 S w2

uvu
1

z

3D E ddr Tr~Q4!1O~Q5!.

~2.15!

After the transformation~2.11! the replicated partition func-
tion ~2.9! takes the form

Zn̄5E )
c,d

n

DQcd~r !expH 2
1

2
Tr lnH Fm2

a2

2d
¹2Gdab

22Qab~r !J 1W@Qab~r !#J . ~2.16!

So far only mathematical identities have been used. N
ertheless, the use of the overlap variablesQab allows us to
detect completely different correlations from the classi
O(n) field theory in the limitn→0 for self-avoiding walks.
They will allow us to probe for a more complicated pha
space and provide information on the presence of glassy-
correlations in the globules. With this in mind it appea
instructive to express the generalization of the polyme
correlation function~2.3!

Jab~r1 ,r2 ;m!5^ca~r1!cb~r2!& ~2.17!

in terms of overlapsQab(r ). To this end we add the sourc
termca(r )ha(r ) in Eq. ~2.11!. After substitution in Eq.~2.9!
and integration overcW one gets

Jab~r ,r 8;m!5^$@ 1̂•G0
2122Q̂#21%ab&~r ,r 8!, ~2.18!

where G0
215m2(a2/2d)¹2. The corresponding polyme

correlator~2.3! is nothing but theJ11(r ,r 8;m) element of
the matrix~2.18!.

The correlatorJab(r ,r 8;m) measures the probability o
finding a chain configuration starting atr in the replicaa
provided that it ends atr 8 in the replicab. From Eq.~2.18!
2-4
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this correlator can also be seen as the scattering amplitud
a free ‘‘particle’’ with the Green functionG0 on the ‘‘scat-
terers’’ whose density is described byQcd .

The present representation~2.16! is very promising and
recalls the corresponding expressions for spin glass mo
@3,5,9,10#. The striking difference between these two case
that in Eq.~2.16! only the pure model parameters~Kuhn’s
segment length and virial coefficients! are involved. As a
result the representation can provide a good starting poin
the phenomenon of self-generated disorder which, as we
lieve, is behind the structural glass formation.

III. MEAN-FIELD TREATMENT

A. Landau-type expansion

In order to simplify the mean-field treatment of the int
gral ~2.16! let us expand the effective Hamiltonian in E
~2.16! to fourth order. We obtain by this procedure

Zn̄5E )
a,b51

n

DQab~r !

3expH 2 (
a,b51

n E ddr 1ddr 2G (2)~r1 ,r2!Qab~r1!Qba~r2!

2 (
a,b,c51

n E ddr 1ddr 2ddr 3G (3)~r1 ,r2 ,r3!Qab~r1!

3Qbc~r2!Qca~r3!2 (
a,b,c,d51

n E ddr 1ddr 2ddr 3ddr 4

3G (4)~r1 ,r2 ,r3 ,r4!Qab~r1!Qbc~r2!Qcd~r3!Qda~r4!J ,

~3.1!

where the coefficients

G (2)~r1 ,r2!5
2

uvu
d~r12r2!2G0~r12r2!G0~r22r1!,
es

05111
of

ls
is

or
e-

G (3)~r1 ,r2 ,r3!5
4

3 F w

uvu3
d~r12r2!d~r22r3!

2G0~r12r2!G0~r22r3!G0~r32r1!G ,

G (4)~r1 ,r2 ,r3 ,r4!5
2

uvu4 S w2

uvu
1

z

3D d~r12r2!d~r22r3!

3d~r32r4!2G0~r12r2!G0~r22r3!

3G0~r32r4!G0~r42r1!. ~3.2!

As often in MF theories the order parameterQab does not
depend on the spatial coordinater . As is customary in the
MF theory of the spin glass models@9–11#, we decompose
the Parisi matrixQab in the following form:

Qab5~q2 f !dab1 f 1Dab . ~3.3!

In Eq. ~3.3! the symmetric partRab5(q2 f )dab1 f , with the
diagonalq and off-diagonalf elements, describes the replic
symmetric~RS! solution@9–11#. The matrixDab equals zero
for a5b and is responsible for the replica symmetry brea
ing ~RSB! @9–11#. The use of the decomposition~3.3! in Eq.
~3.1! allows one in the MF approximation to separate t
total free energy into RS and RSB parts. During the calcu
tion of the traces in Eq.~3.1! it is convenient to use Parisi’s
representation ofDab by a functionD(x), where 0<x<1.
Then the free energy is found to be

lim
n→0

1

nV
F$Qab%5 f RS$q, f %1 f RSB$q, f ;D~x!%, ~3.4!

where the RS free energy

f RS$q, f %5A~q22 f 2!1B~q323q f212 f 3!

1C~q426q2f 218q f323 f 4! ~3.5!

and the RSB free energy
f RSB$q, f ;D~x!%52w1E
0

1

dxD2~x!2w2F E
0

1

dxD~x!G2

2w3E
0

1

dxFxD3~x!13D~x!E
0

x

dyD2~y!G1w4F E
0

1

dxD~x!G3

1w5H 4E
0

1

dxD~x!E
0

x

dyyD3~y!1E
0

1

dxx2D4~x!12E
0

1

dxD2~x!S F E
0

1

dyD~y!G2

12F E
x

1

dyD~y!G2

22E
0

x

dyD~y!E
y

1

dzD~z! D J ~3.6!
e
-

he
The coefficients in Eqs.~3.5! and ~3.6! are given in Appen-
dix C by Eqs.~C10!–~C17!.

The minimization off RS leads to the RS solution,qm and
f m , whereas the maximization~as is the case for spin glass
@9–11#! of f RSB results in the RSB solution in terms of th
overlap matrixD(x). The coefficients in the Landau expan
sion of f RSB depend also on the RS solution.

In order to take into account the spatial correlation in t
2-5
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RS sector~see Sec. V B!, it is convenient to assume that th
variable q and the coefficientsA,B, and C are weaklyk
dependent. In this case the Landau expansion is more
volved and is given in Appendix C.

B. Density in terms of Qab

The essential issue is to express the globule densityr in
terms of the order parameterQab . This allows one to detec
any glassy features inside the globule and to distinguish
tween the liquid and glassy phases. Moreover, it will sh
any unusual properties of the phase space. As mentio
already in the introductory remarks the density is determi
by thec fields. In the MF approximation the local monom
density is given in terms of the grand canonical partiti
function as

r~r !5E
0

N

ds
E ddrJ~r ;s!J~r2r 8;N2s!

E ddrJ~r ;N!

, ~3.7!

which should be supplemented by the normalization con
tion ~mass conservation!, i.e.,

E ddrr~r !5N. ~3.8!

By making use of Eqs.~3.7! and ~3.8! and after Laplace
transformation we find

E ddr E ddr 8J~r 8;m!J~r2r 8;m!52
]

]mE ddrJ~r ;m!,

~3.9!

whereJ(r ;m) is the Laplace transformation ofJ(r ;N) @see
Eq. ~2.2!#. Then the equation that determines the ch
length becomes

N52
]

]m
lnH E ddrJ~r ;m!J ~3.10!

and takes the form

N5

E ddr E ddr 8J~r 8;m!J~r2r 8;m!

E ddrJ~r ;N!

. ~3.11!

In the MF approximation Eq.~2.3! reads

J~r !5c1
mf~r !c1

mf~0!, ~3.12!

wherec1
mf(r ) is the MF solution forc1(r ). Combining Eqs.

~3.12! with ~3.11! and ~3.8! leads to the expected result

r~r !5@c1
mf~r !#2. ~3.13!

Finally, in order to express the density in terms ofQab we
recall that the pair fieldu11

mf5@c1
mf(r )#2 ~see Sec. II C!. Com-
05111
in-

e-

ed
d

i-

n

bining this with Eqs.~2.14! and ~2.15! and taking into ac-
count the decomposition~3.3! one obtains the following ex-
pansion for the density:

r5
4

uvu
q1

4w

uvu3
q21

8

uvu4 S w2

uvu
1

z

3Dq31
4w

uvu3 F2E
0

1

dxD2~x!G
1

8

uvu4 S w2

uvu
1

z

3D F23qE
0

1

dxD2~x!1E
0

1

dxS xD3~x!

13D~x!E
0

x

dyD2~y! D G . ~3.14!

In Eq. ~3.14! we have used Parisi’s representation ofDab and
taken into account that the off-diagonal element vanishef
50 ~see below!. The ‘‘singularity’’ uvu→0 in Eq. ~3.14! is
spurious, as we will see in the next section. In the MF a
proximation the value ofq becomesuvu dependent itself, i.e.
q}uvu2 andD(x)}uvu2, so thatr→0 at v→0, as it should
close to theQ temperature.

IV. Q POINT REGIME: COIL-GLOBULE TRANSITION

The question that must be resolved first is the ordin
coil-globule transition. In any case the present general
proach should reproduce the physical properties of the s
dard coil-globule transition@27,37#. We investigate the sys
tem just below theQ temperatureT,Q. In Refs.@29,30# the
standard O(n) field-theoretic formulation~see Sec. II A! was
used in order to treat this problem beyond scaling. T
method of pair fields, which is a simpler version of th
present formulation@38#, was developed and applied to th
coil-globule transition. In that earlier paper of one of th
present authors the third virial coefficient was not taken i
account, which corresponds to an expansion around thQ
point regime. Here, the Legendre transformation meth
from Sec. II C makes it easy to take into account an arbitr
number of virial coefficients.

In the Q point region~i.e., atT<Q) the globule confor-
mations are very close to Gaussian forms so that for
chemical potential one can expect the scalingm5m0 /N. In
this case it is convenient to rescale the virial coefficie
uvu,w, andz in the following way:

x5
uvu

ad
N(42d)/2, ~4.1!

y5
w

a2d
N32d, ~4.2!

t5
z

a3d
N(823d)/2, ~4.3!

which shows the upper critical dimensions of the differe
terms in the virial expansion. After that the scaling forms
the coefficients~C10!, ~C11!, and~C12! are given by
2-6
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A5
N(42d)/2

ad F2

x
2S d

2p D d/2G„~42d!/2…

m0
(42d)/2 G , ~4.4!

B5
4 N(62d)/2

3 a2d F y

x3
2S d

2p D d/2G„~62d!/2…

2m0
(62d)/2 G , ~4.5!

C5
N(82d)/2

a3d F2
y2

x5
1

2

3

t

x4
2S d

2p D d/2G„~82d!/2…

3m0
(82d)/2 G .

~4.6!

In the Q point regimeuvu5ad(12T/Q)→0 andN@1, so
that atd53 x'1, y'1, andt!1, i.e., the fourth virial co-
efficient becomes irrelevant.

In the present regime only the RS solution makes phys
sense, since no other solution than the onset of the liq
globule can be expected. Thus we minimize the RS free
ergy ~3.5! with respect toq and f. The resulting solution
reads

f m50, ~4.7!

qm5
23B1A~3B!2132uAuC

8C
, ~4.8!

so that the RS free energy becomes

f RS$q%5A q21B q31C q4. ~4.9!

Let us consider a possible second order phase transition
impose the conditions:A<0,B.0, andC.0. In the vicinity
of the transition point the coefficientA becomes small,uAu
!1, and the order parameter takes the value

qm'
2 uAu
3 B

. ~4.10!

As is seen from Eqs.~4.4! and ~4.5!, in d53 the order pa-
rameter scales asqm}1/N. Thus, it follows from Eq.~3.14!
that the density scales asr54qm /uvu, which means physi-
cally r51/N1/2 ~note also thatx'1 anduvu}N21/2). There-
fore we reproduce the correct scaling for the density, wh
is found also from naive scaling.

We can also obtain the transition line in theuvu-w plane,
which will be the first step toward a more general pha
diagram spanned by the virial coefficients. This line is d
fined by the conditionsA50,B.0, andC.0, which again
for three dimensionsd53 yield

m05S x

2D 2S 3

2p D 3FGS 1

2D G2

, ~4.11!

y

x3
.S 3

2p D 3/2GS 3

2D
2 m0

3/2
, ~4.12!
05111
al
id
n-

nd

h

e
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y2

x5
.S 3

2p D 3/2GS 5

2D
6 m0

3/2
. ~4.13!

It is interesting that if Eq.~4.11! is valid then conditions
~4.12! and~4.13! merge and convert into the globule stabili
conditiony.16p2/27. We can eliminatem0 in Eq. ~4.11! by
combining Eq.~3.10! with the polymer correlation function

J~k;m!5
1

~a2/6!k21m22qm

. ~4.14!

We recall that in Eq.~4.14! m5m0 /N and qm5qm
0 /N. The

result of the combining reads

m05112qm
0 22

]

]m0
qm

0 . ~4.15!

By making use of Eqs.~4.10! and~4.11! in Eq. ~4.15! for the
transition line, one gets

S x

2D 2S 3

2p D 3

511S 4

3D
16

27
p2

y2
16

27
p2

, ~4.16!

where the globule stability conditiony.16p2/27 is implied.
For completeness we check for the possibility of a fi

order phase transition. The necessary conditions for this
A.0,B,0, and C.0 @see Eq.~4.9!#. It is simple to see
from Eqs.~4.4!–~4.6! that these conditions are contradictor
This means that within our MF approach only the seco
order coil-globule phase transition is possible, which is
accordance with the well-known result@37#. Therefore the
present field-theoretic formulation is able to reproduce
standard coil-globule transition as the replica symmetric
lution at conditions close to theQ temperature.

V. DEEPER IN THE GLOBULE STATE: LIQUID VERSUS
GLASSY REGIME

A. RSB solution in the globule

In this section we investigate the possibility of replic
broken solutions deeper in the globular state. The glob
density from naive scaling is given byra35a3uvu/w5t and
has a natural limit att51. Physically this limit corresponds
to a dense globular state without any solvent inside. At te
peratures below the coil-globule phase transition, but still
above t51, the system is usually characterized by
monomer-monomer correlation lengthj,RGl}N1/3. In this
case the chemical potential and the density are no longeN
dependent. It can be seen from dimensional analysis
simple scaling arguments@27,30,37# that the chemical poten
tial scales asm}uvu2/w}t2, the densityrGl}uvu/w}t, and
j}1/uvu}t21.

In this regime fluctuations can still be important unle
a<j!RGl , where the MF solution, which we discussed
Sec. III, becomes valid. Here one can expect that, becaus
2-7
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competing interactions~negative second virial coefficien
versus positive third virial coefficient! and the constraints
imposed by the chain connectivity, only a few conformatio
will dominate. This could manifest itself as the glass tran
tion long known for spin glass models@9–11# and het-
eropolymers@15#. Formally speaking, this transition show
itself as a nontrivial solution that maximizes the RSB fr
energy functional~3.6!.

Before doing this extremization let us find first the corr
sponding equation for the chemical potential. In the R
case we should calculate theJ11 element from Eq.~2.18!
and substitute it into Eq.~3.10!. We use here the so-calle
one-step replica symmetry breaking~1-RSB! scenario, which
is generic for the glass transition in thep-spin model@4,5,7#,
the random energy model@39#, and random heteropolymer
@15#. Then Parisi’s functionD(x) is defined by only two
parameters:

D~x!5H 0, x,x0 ,

s, x.x0 .
~5.1!

The interpretation ofs and the break pointx0 is the follow-
ing @10#. Within the 1-RSB scenario all replicas are group
into clusters so that their ultrametric organization has o
two levels: the intracluster overlap~or self-overlap! has the
strengths whereas the intercluster overlap is equal to ze
The fraction of replicas that overlap with the strengths is
equal to 12x0. After this simplification the inversion in Eq
~2.18! can be done analytically@see Eq.~AII7 ! of Ref. @40##.
After a straightforward calculation one gets

J11~k;m!5
1

x0@~a2/2d!k21m22q22~12x0!s#

2
12x0

x0@~a2/2d!k21m22q22s#
. ~5.2!

Insertion of Eq.~5.2! in Eq. ~3.10! simply yields

m22qm22~12x0!sm5OS 1

ND , ~5.3!
s
i-

-

y

.

whereqm and sm are the solutions that extremize the fre
energies~3.5! and ~3.6!, respectively. With the 1-RSB as
sumption@see Eq.~5.1!# the free energy~3.6! becomes

f RSB~s,x0!52w1~12x0!s21uw3u~12x0!~22x0!s3

2uw5u~12x0!~323x01x0
2!s4. ~5.4!

It is convenient to represent the chemical potential in
form

m5
uvu2

s~ uvu,w!
, ~5.5!

wheres(uvu,w) is a function ofuvu andw. For convenience
we switch to dimensionless variables~keeping for simplicity
the same notations!:

v

a3
→v,

w

a6
→w,

z

a9
→z,

s

a6
→s,

Aa3→A, Ba3→B, Ca3→C. ~5.6!

We also introduce the reduced values~with overbar!

Ā5Auvu, B̄5Buvu3, C̄5Cuvu5,

q̄m5
qm

uvu2
, s̄m5

sm

uvu2
,

w̄15w1uvu, w̄35w3uvu3, w̄55w5uvu5. ~5.7!

After that, Eq.~5.3! for s(uvu,w) ~or for the chemical poten-
tial! takes the compact form

1

s
52q̄m12~12x0!s̄m , ~5.8!

where
q̄m5
23B̄1A~3B̄!2132ū AuC̄

8C̄
, ~5.9!

s̄m5
3uw̄3u~22x0!1A@3uw̄3u~22x0!#2232w̄1uw̄5u~323x01x0

2!

8uw̄5u~323x01x0
2!

, ~5.10!

w̄15Ā12C̄q̄m
2 , ~5.11!

w̄352B̄24C̄q̄m, ~5.12!

w̄552C̄, ~5.13!

051112-8
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and the reduced coefficients read

Ā522S 3

2p D 3/2

GS 1

2D s1/2, ~5.14!

B̄5
4

3 Fw2
1

2 S 3

2p D 3/2

GS 3

2D s3/2G , ~5.15!

C̄52w21
2

3
zuvu2

1

3 S 3

2p D 3/2

GS 5

2D s5/2. ~5.16!

Equations~5.9! and~5.10! are the results of extremization o
Eqs.~4.9! and~5.4!, respectively. hroughout the remainder
the paper we will retain the conditionsA,0,B,0,C
.0,w1.0,w3,0, and w5,0. This assures that the non
trivial solutionsm shows up via a first order phase transitio
in a similar manner as inp-spin spin glasses@4,5# or the
random energy model@39#. On the coexistence line betwee
liquid and glassy phases additionallyf RSB(sm ,x0)50 and
this leads to the corresponding equation

w̄1uw̄5u

uw̄3u2
5

~22x0!2

4~323x01x0
2!

. ~5.17!

The equation for the reduced globule densityc5ruvu can be
easily obtained from Eq.~3.14! under the 1-RSB assumptio
~5.1!. The calculation yields

c54qm1
4w

uvu2
qm

2 1
8

uvu3 S w2

uvu
1

z

3Dqm
3 2

4w

uvu2
sm

2 ~12x0!

1
8

uvu3
S w2

uvu
1

z

3D F23qmsm
2 ~12x0!1

sm
3

2
~12x0

2!

1
3

2
sm

3 ~12x0!2G . ~5.18!

Equations ~5.8!–~5.16! for the function s(uvu,w) can be
solved numerically at given values of the fourth virial coe
ficient z and break pointx0. After substitution of this solution
s(uvu,w) in Eq. ~5.17! we arrive at the equation for the co
existence line in the plane ofuvu andw. By changingx0 one
can obtain a whole set ofx0 isolines. We will give the cor-
responding numerical solution in Sec. V C but first we an
lyze the validity of the MF approximation given above.

B. Role of fluctuations in RS sector

As mentioned above, the MF solution is valid when t
fluctuations are negligible. Generally speaking, this sho
be required for the RS and RSB sectors of the replica sp
In the present paper it is not our intention to consider fl
tuations in the RSB sector, which is a rather involved pro
lem that leave for a future publication.

In the RS sector spatial fluctuations are described by
correlation function~C21! ~see Appendix C!. It is easy to
calculate from Eq.~C21! the radial distribution function
g(r )54pr 2^Dq(r )Dq(0)& at d53. Again we turn to the
05111
,

-

d
e.
-
-

e

reduced variables~5.5!–~5.7!. After the inverse Fourier
transformation of Eq.~C21!, the radial distribution function
reads

g~r !5
r

2X̄
expH 23uvuAX̄

Ȳ
r J , ~5.19!

where

X̄5Ā13q̄mB̄16q̄m
2 C̄ ~5.20!

and

Ȳ5
1

24p S 3

2D 3/2Fs3/215q̄ms5/21
63

4
q̄m

2 s7/2G . ~5.21!

It is important to note here once more that the quantitiesX̄

and Ȳ do not have any additionaluvu dependence.
We estimate now the Ginzburg parameter«G , ~see, e.g.,

@41#! as the ratio ofg(r ) at its maximum togm
2 5q̄m

2 uvu4.
Then for the Ginzburg criterion we have the equation

uvu25
1

6e«Gq̄m
2 AX̄~ uvu,w!Ȳ~ uvu,w!

, ~5.22!

wheree is the Napier number. Equation~5.22! for a reason-
ably small «G represents a line in the (uvu,w) plane that
separates fluctuating and MF regimes. From now on we
call these two regimes theliquid globule and theglassyglob-
ule, respectively.

From Eq.~5.19! the correlation length is given by

j5
1

3uvu AX̄

Ȳ
}t21, ~5.23!

which is qualitatively in line with the standard resu
@27,30,37# and the correct scaling.

From the Gaussian approximation for the effective Ham
tonian in the RS case@Eq. ~C18!# it is easy to calculate the
corresponding RS free energy, which takes the form

f RS$q̄m%5uvu3@Āq̄m
2 1B̄q̄m

3 1C̄q̄m
4 #

1
T

2E d3k

~2p!3
ln@ uvu2X̄1k2Ȳ#. ~5.24!

The last integral in Eq.~5.24! diverges at largek. This ul-
traviolet divergence is of no significance as long as theuvu -
dependence is the only one we are interested in. For
second derivative of the integral in Eq.~5.24! with respect to
uvu2 one has

I uvu29 52
TX̄2

4p2E0

` k2dk

@ uvu2X̄1k2Ȳ#2
52

T

16p S X̄

Ȳ
D 3/2

1

uvu
.

~5.25!
2-9
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After that the expression for the RS free energy takes
form

f RS5uvu3@Āq̄m
2 1B̄q̄m

3 1C̄q̄m
4 #2

T

12p S X̄

Ȳ
D 3/2

uvu3.

~5.26!

We ascribe this branch of the free energy to the liquid gl
ule state and will consider it in more detail in the next su
section.

C. Numerical calculations: Chemical potential, phase diagram,
and configurational entropy

Finally we are going to compute the phase diagram for
polymer globule. We recall here that the first step carried
earlier in this paper, i.e., the RS solution, corresponds to
classical coil-globule transition. Here we are now in the p
sition to calculate from the 1-RSB free energy the transit
to the glassy state. The numerical solution of Eqs.~5.8!–
~5.16! at z59 andx050.88 is shown in Fig. 1. As can b
seen the functions(uvu,w) depends linearly onw and almost
does not depend fromuvu. This is in agreement with the
well-known result @30,37# m}uvu2/w @see Eq.~5.5!#. We
have also calculateds(uvu,w) at x050.90,x050.92, andx0
50.95 and have used these results as input in Eq.~5.17!.
This eventually leads tox0 isolines in the glassy globule
phase which are plotted in Fig. 2.

The line that is associated with Eq.~5.22! corresponds to
the Ginzburg criterion for fluctuations in the RS sector a
separates the glassy globule from the liquid one. Obviou
the position of this line depends on the value of«G!1 and
should be better seen as a crossover from the fluctuatin
the mean-field regime. In Fig. 2 this line is given at«G
50.033. We have not shown morex0 isolines explicitly, but
it is important to recall that by changingx0 continuously one
can span the whole phase diagram from left to right. It
interesting that thex0 isolines in Fig. 2 are almost vertica
This means that in a real experiment~upon changing the
solvent qualityuvu by temperature! always some particula
value ofx0 is hit in the glassy phase and stays with it asuvu

FIG. 1. The dependence of the parameters @see Eq.~5.5!# on the
dimensionless@see Eq. ~5.6!# virial coefficients at z59 and
x050.88.
05111
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increases. We recall that 12x0 is the fraction of replicas tha
overlap with the strengthsm5s̄muvu2.

The fact that on the transition line the value ofx0 is less
than 1 shows that the transition is thermodynamically of
first order. This is contrary top-spin spin glasses@4,5,7# and
random heteropolymers@13#. It is well known that in these
cases the transition has no latent heat~i.e., it is thermody-
namically of second order! since x051 at the transition
point, while the order parameters undergoes a jump~i.e.,
displays a first order transition!. In our case the transition is
of first order thermodynamically as well as with respect
the order parameter. In Fig. 2 we have shown also the
that corresponds to the coil-globule second order transi
@see Eq.~4.16!# at the chain lengthN5250. The critical
value uvucr on this line is scaled as 1/AN.

Figure 3 shows the reduced density behavior@see Eq.

FIG. 2. The phase diagram of the polymer globule in terms
dimensionless virial coefficients. The lower solid line correspon
to the coil-liquid globule second order transition, whereas the up
solid line is associated with the first order liquid-to-solid globu
transition. Dotted and dashedx0 isolines correspond to glassy sta
with different values ofx0. The otherx0 isolines, which are not
shown here, have intermediate values ofx0.

FIG. 3. The reduced densityc as a function of virial coefficients
at z59 andx0 5 0.88.
2-10
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~5.18!# at x050.88 in the same intervals ofuvu andw as in
Fig. 2. It can be seen that the density on the transition lin
fairly small, justifying the use of the virial expansion.

Let us now calculate the configurational entropySconf ~or
the complexity! @42#, which is usually of interest for glass
forming liquids. The configurational entropy in the liqu
globule state can be defined as the difference

Sconf5Sliquid2Svalley, ~5.27!

where

Sliquid52
] f RS

]T
~5.28!

and Svalley is the entropy~per particle! that corresponds to
one pure state or a valley in the free energy landscape
order to estimateSvalley let us recall from Ref.@43# that the
order parameters describes the structure of the space
valleys through the probabilityP(s) that two valleys drawn
with the Boltzmann distribution have an overlaps. For the
1-RSB scenario this function has a rather simple for
P(s)5x0d(s)1(12x0)d(s2sm). The dimension of the
matrix Dab , which within 1-RSB is parametrized byn(x0
21)/2 parameterss, becomes negative atn→0 and 0<x0
<1. Therefore the free energyf RSB @see Eq.~5.4!# becomes
negative, and the factor2(12x0) in Eq. ~5.4! can be treated
as the ‘‘fraction of valleys’’ with overlapsm . In this case
the intravalley free energy can be obtain by dividing ou
common factor of 2(12x0) in Eq. ~5.4!: f valley5
2 f RSB/(12x0). Then we can estimateSvalley in the follow-
ing way:

Svalley5
1

12x0

] f RSB

]T
. ~5.29!

The configurational entropy in the glassy globule state
given in the same way as in thep-spin spin glasses@4,43#:

Sconf5
1

N
@c~1!2c~12x0!#, ~5.30!

wherec(x) is the digamma function.
By cooling the system along thex0 isoline atx050.88,

we calculated the configurational entropy for liquid@see Eqs.
~5.27!–~5.29!# and glassy@Eq. ~5.30!# globules. Figure 4
gives the result of this calculation. As discussed above
transition is of first order, i.e.,Sconf undergoes a jump which
is qualitatively in line with molecular dynamics@22,23# and
Monte Carlo@26# simulations. We must bear in mind that th
transition temperature in Fig. 4 is also defined by the G
zburg criterion for fluctuations~see the intersection point o
the upper solid line and thex050.88 isoline in Fig. 2!, so
that this transition can be treated as a crossover from
fluctuating regime to mean field, where only a few sta
dominate. This possibility is shown in Fig. 4 by the dash
lines. On the other hand, this behavior is quite different fr
that of low molecular weight systems or polymer me
whereSconf goes to zero continuously as soon asT→TK .
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VI. CONCLUSION AND OUTLOOK

We have shown that the homopolymer globule probl
can be formulated within then→0 limit of free n-component
ca

4 ,cb
6 field theory and can then be mapped onto a dis

dered one-component model with non-Gaussian rand
noise. It is of interest that the statistical moments of t
noise can be expressed only through the virial coefficient
the pure model, a fact which gives grounds to discuss s
generated disorder. On the other hand, then→0 limit is
responsible at the same time both for the polymer conform
tions and for the nontrivial structure of the replica spa
Physically this means that units with competitive interactio
and constrained by the connectivity possess good preco
tions for glass formation.

The Legendre transformation from the pair fiel
ca(r )cb(r ) to the Parisi overlap parametersQab(r ) leads to
an effective Hamiltonian that is akin to corresponding e
pressions for spin glass models. We have investigated
resulting replicated model within a mean-field Landau-ty
treatment. First of all, the RS solution of the correspond
equation is associated with the conventional coil-liquid glo
ule transition whereas the RSB solution deeper in the glob
state is related to the glassy regime. This mean-field gla
globule phase can be assured only if the fluctuations in
and RSB sectors are small. In this paper we have studied
fluctuations only in the RS sector and have sketched
corresponding Ginzburg criterion line on the phase diagra
We have calculated the configurational entropy for the liq
and glassy globules and shown that the transition betw
them is a first order one, as it is also in molecular dynam
and Monte Carlo computer simulations@22,23,26#, whereas
for the random heteropolymer@13# the freezing is thermody-
namically a second order transition. On the other hand, c
puter simulation@24# and experiment@25# show that the fold-
ing in proteins has a latent heat, i.e., the rand

FIG. 4. The configurational entropySconf(T) as a function of
temperature while the globule is cooling from the liquid to t
glassy state. For convenience we use dimensionless variablesT/Q
→T andSconf /kB→Sconf , whereQ is theQ temperature andk B is
the Boltzmann constant.
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heteropolymer is a poor model of protein-folding thermod
namics. It has been shown@15,44# that in heteropolymer
models where some sequences of monomers have espe
low energy in their native conformation the folding is the
modynamically a first order transition.

However, our calculations show that for the homopolym
globule glassy phases occur already deeper in the poor
vent regime. The reasons can be found in competing inte
tions ~virial coefficients of different signs! and the connec-
tivity. A transition with latent heat is possible. In this respe
reworking of the random heteropolymer problem with
our field-theoretical approach~as oppose to the density func
tional method@13–15#! would be very interesting. This coul
elucidate the problem of how the self-generated disor
interplays with quenched disorder and eventually modi
the freezing conditions. It is interesting to note also th
some nonpolymer systems without quenched disor
can show glassy behavior as a result of competing inte
tions on different length scales. As an example one can r
to the frustration-limited domain theory of structural glass
@45# as well as to the ‘‘stripe glasses’’ in doped Mott ins
lators @46#.

The dynamical aspects of the thermodynamic transit
discussed above are a matter of crucial importance. The
and foremost question that should be investigated is rel
to the formation of entropic droplets@4,47# in the RSB sector
of the replica space.

ACKNOWLEDGMENT

V.G.R. gratefully acknowledges support by the Sond
forschungsbereich SFB 262 of the Deutsche Forschung
meinschaft.

APPENDIX A: FIELD-THEORETICAL REPRESENTATION
FOR A GENERAL SELF-INTERACTING CHAIN

Let us represent the Hamiltonian of the self-interact
chain in the form

H@r ~s!#5
d

2a2E0

N

dsS ]r

]sD
2

1 (
m51

`
vm11

~m11!!

3E
0

N

ds0ds1•••dsm)
i 51

m

d„r ~s0!2r ~si !…,

~A1!

wherevm11 denote the virial coefficients. It is convenient
introduce the density

r~r !5E
0

N

dsd„r2r ~s!…. ~A2!

Then the partition function of the polymer chain

Z5E Dr ~s!exp$2H@r ~s!#% ~A3!
05111
-

ally

r
ol-
c-

t

r
s
t
er
c-
er
s

n
rst
ed

-
e-

takes the form

Z5E Dr ~s!Dr~r !dFr~r !2E
0

N

dsd„r2r ~s!…G
3expH 2

d

2a2E0

N

dsS ]r

]sD
2

2 (
m51

`
vm11

~m11!! E ddrrm11~r !J . ~A4!

By making use of the integral representation for thed func-
tion Eq. ~A4! can be recast in the form

Z5E Dr ~s!Df~r !Dr~r !expH i E ddrf~r !r~r !

2 (
m51

`
vm11

~m11!! E ddrrm11~r !J
3E ddrddr 8G~r ,r 8;@f#;N!, ~A5!

where

G~r ,r 8;@f#;N!5E
r (0)5r

r (N)5r8
Dr ~s!expH 2

d

2a2E0

N

dsS ]r

]sD
2

2 i E
0

N

dsf„r ~s!…J . ~A6!

The corresponding equation forG reads

F ]

]N
2

a2

2d
¹21 if~r !GG~r ,r 8;@f#;N!5d~r2r 8!d~N!.

~A7!

It is convenient to make the Laplace transformation

G~r ,r 8;@f#;m!5E
0

`

dNG~r ,r 8;@f#;N!exp~2mN!,

~A8!

after which the equation forG(r ,r 8;@f#;m) yields
2-12
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G~r ,r 8;@f#;m!5

E Dcc~r !c~r 8!expH 2
1

2E ddrc~r !@m2~a2/2d!¹21 if~r !#c~r 8!J
E DcexpH 2

1

2E ddrc~r !@m2~a2/2d!¹21 if~r !#c~r 8!J . ~A9!
e
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f
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In order to avoid the denominator in Eq.~A9! we should
upgrade the fieldc by introducing then-component fieldcW
5$c1 ,c2 , . . . ,cn%. Then by using the replica trick we hav

G~r ,r 8;@f#;m!5 lim
n→0

E )
a51

n

Dcac1~r !c1~r 8!

3expH 2
1

2 (
a51

n E ddrca~r !

3Fm2
a2

2d
¹21 if~r !Gca~r 8!J .

~A10!

One can now make the Laplace transformation of aboth s
of Eq. ~A5! and substitute it in Eq.~A10!. Integration first
over the fieldf(r ) and then overr(r ) results in the follow-
ing expression for the grand canonical partition function o
polymer chain with ends fixed at pointsr and r 8:

J~r ,r 8;m!5 lim
n→0

E )
a51

n

Dcac1~r !c1~r 8!exp$2Hn@cW ;m#%,

~A11!

where

Hn@cW ;m#5
1

2E ddr (
a51

n

ca~r !Fm2
a2

2d
¹2Gca~r 8!

1 (
m51

`
vm11

~m11!! E ddr (
a51

n F1

2
ca

2~r !Gm11

.

~A12!

APPENDIX B: THE CONNECTION TO A RANDOM
MODEL

Here we prove that in a poor solvent the polymer probl
@see Eqs.~2.3! and ~2.4!# can be connected to a one
05111
es

a

component random model. We shall restrict our consid
ation to the second and third virial coefficients. The gen
alization to the case with an arbitrary number of viri
coefficients is straightforward.

Let us consider the one-component random model w
Hamiltonian

H$c%5
1

2E ddr Fmc2~r !1
a2

2d
~¹c!21t~r !c2~r !G ,

~B1!

wheret(r ) is a non-Gaussian random field with the gener
ing functional

F$r~r !%[E Dt~r !P$t~r !%expH 2E ddrt ~r !r~r !J
5expH uvu

8 E ddr r2~r !2
w

3!8E ddr r3~r !J .

~B2!

In Eq. ~B2! P$t(r )% is the distribution functional of the field
t(r ). One can easily check that the replication of the Ham
tonian ~B1! and the subsequent averaging overt(r ), i.e.,

Zn̄5E )
a51

n

DcaexpH 2 (
a51

n

H$ca%J , ~B3!

leads to the effective replicated Hamiltonian~2.4!.
From the probabilistic interpretation~B2! one can explic-

itly find the central moments oft(r ). The expansion of both
sides of Eq.~B2! yields
(
m50

`
~21!m

m! E dr1•••drmt~r 1!t~r 2!•••t~r m!r~r 1!r~r 2!•••r~r m!

5 (
k50

`
1

k! (
l 50

k
k! ~21! l

l ! ~k2 l !! F uvu
8 E ddrr2~r !Gk2 lF w

3!8E ddrr3~r !G l

. ~B4!

By making them terms ofr(r ) on both sides of Eq.~B4! equal, one gets
2-13
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E dr1•••drmt~r 1!t~r 2!•••t~r m!r~r 1!r~r 2!•••r~r m!5 (
k5$m/3%

@m/2#
m!

~m22k!! ~3k2m!!

3F uvu
8 E ddrr2~r !G3k2mF w

3!8E ddrr3~r !Gm22k

, ~B5!

where@m/2# stands for the greatest integer number less thanm/2 and$m/3% is the smallest integer number larger thanm/3. By
making use of the representations*ddrr2(r )5*ddr 1ddr 2d(r12r2)r(r1)r(r2) and *ddrr3(r )5*ddr 3ddr 4ddr 5d(r5
2r4)d(r52r3)r(r3)r(r4)r(r5) one finally gets

t~r 1!t~r 2!•••t~r m!5 (
k5$m/3%

[m/2]
m!

~m22k!! ~3k2m!! S uvu
8 D 3k2mS w

3!8D m22k

d~r12r2!d~r32r4!•••d~r6k22m212r6k22m!

3d~r6k22m112r6k22m12!d~r6k22m112r6k22m13!•••d~rm222rm21!d~rm222rm!. ~B6!
em

or

ier
In Eq. ~B6! the second line includes 3k2m d functions with
arguments successively pairwise divided between 6k22m
points. The third line includesm22k d functions so that in
each successive pair of them oner point is common.

Let us consider some particular cases of Eq.~B6!.
~i! m51. Then$m/3%51, @m/2#50, and

t~r !̄50. ~B7!

~ii ! m52. Then$m/3%51, @m/2#51, and Eq.~B6! reads

t~r1!t~r2!̄5
uvu
4

d~r12r2!. ~B8!

~iii ! At m53,$m/3%51, @m/2#51 ~i.e., k51), and one
gets

t~r1!t~r2!t~r3!5
w

8
d~r12r2!d~r12r3!. ~B9!

~iv! At m54,$m/3%52, @m/2#52 ~i.e., k52), and

t~r1!t~r2!t~r3!t~r4!5
3

16
uvu2d~r12r2!d~r32r4!.

~B10!

~v! Finally at m55,$m/3%52,@m/2#52, and

t~r1!t~r2!t~r3!t~r4!t~r5!5
5!

3!64
uvuwd~r12r2!

3d~r32r4!d~r32r5!.

~B11!
05111
The important feature of these moments is that all of th
are positive, which means thatt(r ) is real.

APPENDIX C: SPATIAL FLUCTUATIONS FOR A
WEAKLY INHOMOGENEOUS GLOBULE

In this Appendix we give the Landau expansion only f
the case whenq and the coefficientsG (2),G (3),G (4) are
weakly k dependent in the RS sector. The spatial Four
transformation in Eq.~3.1! leads to the following effective
Hamiltonian:

HRS$q~k!%5E ddk

~2p!d
G (2)~k!q~k!q~2k!

1E ddk1ddk2

~2p!2d
G (3)~k1 ,k2!q~k1!q~k2!

3q~2k12k2!1E ddk1ddk2ddk3

~2p!3d

3G (4)~k1 ,k2 ,k3!q~k1!q~k2!q~k3!

3q~2k12k22k3!1•••, ~C1!

where
G (2)~k!5
2

uvu
2E ddk

~2p!d

1

@~a2/2d!k21m#@~a2/2d!~k2k!21m#
, ~C2!

G (3)~k1 ,k2!5
4

3 F w

uvu3
2E ddk

~2p!d

1

@~a2/2d!k21m#@~a2/2d!~k2k1!21m#@~a2/2d!~k2k12k2!21m#
G , ~C3!
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G (4)~k1 ,k2 ,k3!5
2

uvu4
S w2

uvu
1

z

3D22E ddk

~2p!d

3
1

@~a2/2d!k21m#@~a2/2d!~k2k1!21m#@~a2/2d!~k2k12k2!21m#@~a2/2d!~k2k12k22k3!21m#
.

~C4!
th

s

a-
For weak fluctuations around the MF solutionqm to be in-
vestigated one should estimate the Hessian

d2HRS

dq~r1!dq~r2!
U

q5qm

52G (2)~r12r2!16qm

3E ddr 3G (3)~r22r1 ,r32r1!

112qm
2 E ddr 3ddr 4G (4)~r22r1 ,r3

2r1 ,r42r1!1•••, ~C5!

or, in the Fourier space,

d2HRS

dq~k!dq~2k!
U

q5qm

52G (2)~k!16qmG (3)~k,k50!

112qm
2 G (4)~k,k50,k50!1•••.

~C6!

The resulting effective Hamiltonian expansion around
MF solution takes the form

HRS$qm ,Dq~k!%5HRS$qm%1
1

2 E ddk

~2p!d

3
d2HRS

dq~k!dq~2k!
U

q5qm

Dq~k!Dq~2k!

5Aqm
2 1Bqm

3 1Cqm
4

1E ddk

~2p!d
@G (2)~k!13qmG (3)~k,k50!

16qm
2 G (4)~k,k50,k50!#Dq~k!

3Dq~2k!, ~C7!

where

Dq~k!5q~k!2qm ~C8!

and

A5G (2)~0!, B5G (3)~0,0!, C5G (4)~0,0,0!,
~C9!

or
05111
e

A5
2

uvu
2S d

2pa2D d/2
G„~42d/2!…

m (42d/2)
~C10!

B5
4

3 F w

uvu3
2S d

2pa2D d/2
G„~62d/2!…

2m (62d)/2 G ~C11!

C5
2

uvu4
S w2

uvu
1

z

3D2S d

2pa2D d/2
G„~82d/2!…

3m (82d/2)
, ~C12!

w15A13B~q2 f !16C~q2 f !2, ~C13!

w2523B f24C f4, ~C14!

w352B24C~q2 f !, ~C15!

w4524C f , ~C16!

w552C. ~C17!

It is easy to estimate the integrand in Eq.~C7! at small k
~weak inhomogeneity!. The straightforward calculation
yields

HRS$qm ,Dq~k!%5HRS$qm%1E ddk

~2p!d
$X~ uvu,w!

1~ka!2Y~ uvu,w!%Dq~k!Dq~2k!,

~C18!

where

X5A13qmB16qm
2 C ~C19!

and

Y5S 1

2pda2D d/2
2d23

12m (62d)/2
GS 62d

2 D
1qmS 1

2pda2D d/2
3d24

9m (82d)/2
GS 82d

2 D
1qm

2 S 1

2pda2D d/2
4d25

20m~102d!/2
GS 102d

/2 D . ~C20!

From Eq.~C18! it is obvious that the corresponding correl
tion function

^uDq~k!u2&5
1

X~ uvu,w!1~ka!2Y~ uvu,w!
. ~C21!
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