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Self-generated disorder and structural glass formation in homopolymer globules
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We have investigated the interrelation between spin glasses and structural glasses. Spin glasses in this case
are p-spin interaction spin glassdat p>2) or Potts glasses that contain quenched disorder, whereas the
structural glasses are here exemplified by a homopolymeric globule, which can be viewed as a liquid of
connected units on a nanoscale. It is argued that the homopolymeric globule problem can be mapped onto a
disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin
glass model. In this sense the disorder in the globule is self-gendmtedntrast to spin glasseand can be
related to competing interactiogrial coefficients of different signsand the chain connectivity. The work is
aimed at giving a quantitative description of this analogy. We have investigated in the mean-field approxima-
tion the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy
globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature
dependence is also discussed.
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[. INTRODUCTION the MCT based on Langevin dynamics in the mean-field
limit) is higher than the Kauzmanty obtained by the static
The existing dynamical theory of glass-forming over- theory(or by the ordinary replica theoyy

cooled liquids and polymers is mainly applicable to the rela- (2) As the temperature decreagetarting from the para-
tively high temperature area. The well-known mode-magnetic phasethe metastable minima appear first exactly
coupling theory (MCT) [1] predicts a dynamical phase atTa- ) . )
transition at the critical temperatufe where the overcooled (3 In the intermediate temperature regimig<T<T,
liquid becomes nonergodic and stays in this state upon fufliany metastable states are separated by high barriers. In the
ther cooling. It is significant that according to MCT the Char_mean-ﬂeld limit these metastable states have an infinitely

acteristic times of ther relaxation and the viscosity exhibit a :ggg;l'fgrt:glg'sggr's tlrsar?si\tlzl:r!l_ggg;vgo?g::r::ﬂ?%ya()f{n}thee d:\r/:\Fen—
power law divergence ,(T)x »(T)«<|T—T,~? at a critical P

temperatureT=T,. It is now realized that this type of sin sional system. Nevertheless, in a finite dimensional system
N S . " T, is physically significant, since foF <T, activated trans-
gularity is generic for a broad class of mean-fiedltF) mod- A 1S PTY y SI9 A

I di . indicat f th iy port is the typical process.
els and its appearance Is an indication of the rolactiva- (4) The overlap order parameter within the one-step rep-

tion processeswhich are neglected in MF modeflg]. This  jica symmetry breaking1-RSB scenario undergoes a dis-
means physically that the topography of the free energy landsontinuous jump aTy . This recalls a first order phase tran-
scape in the space of the coarse grained variables should Bgion even though thermodynamicalfg.g., in the specific
taken into consideration. At low temperatures the free energyeay the transition seems to be of second order. The authors
landscape determines more or less the dynamics of the sygalled this class of phase transiticiasdom first order phase
tem. The size of the free energy barriers between the metaransitions Crisanti and Sommers confirmed essentially the
stable states, however, determines the rate of any activatioghme type of behavior for thp-spin spherical modef5],
processes in the low temperature regime T.. which is different from the Sherrington-Kirkpatrick6]

At the so-called Kauzmann temperatdig, whichis usu-  model, and the behavior is shared by some other spin glass
ally T¢<T,, a genuine thermodynamic glass transition or somodels[7].
called Gibbs-DiMarzio transition is expected to take place Indeed, it has been argued often that many connections
[3]. At the Gibbs-DiMarzio(or Kauzmanntemperaturdly,  exist between the behavior of structural glasses and spin
the system is preferably in a thermodynamically unique conglasses without reflection symmetf,4,7. Most of the
figuration since the heights of the free energy barriers grovproperties mentioned above for the spin glass can be found
with increasing system size. in the context of structural glasses too. However, the impor-

The earliest analytical approach to the problem that captant difference between the spin and structural glasses is that
tured these two aforementioned aspects was worked out ifhe spin glasses models already contain a quenched disorder
several papers by Kirkpatrick, Thirumalai, and Wolynes inin the Hamiltonian. In structural glasses the Hamiltonian is a
the late 1980$4]. In these papers, which study the phenom-regular function of the particle coordinates and does not con-
ena by making use of-spin interaction spin glasséat p  tain disorder. Nevertheless, the free energies in both systems
>2) and Potts glasses with more than four components, theesemble each other and possess similar properties. Thus, the

following conclusions were drawn. disorder is in a sense self-generated and develops during the
(1) The predicted phase transition temperatiiie ob-  cooling (or glass transitionprocess.
tained by the dynamical theofactually equivalent td . of The properties and possibilities of self-genera@dself-
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induced disorder have already been discussed in the framemation space of the model consisted of one huge valley and
work of rather special spin mode]8,8]. These models ex- a large number of small “chambers.” These disjoint do-
plicitly involve pseudorandom numbers, i.e., the spin-spinmains of the conformational space are responsible for the
couplings, although deterministic, oscillate very rapid andergodicity breaking and freezing transition. This might be
can be considered dpseudgrandom variables. These mod- important for the final processes of folding dynamics in pro-
els, however, provide some spin analogies with structuralein molecules because the speed and reliability of the fold-
glasses but still are quite different from structural glag8gs ing depends on whether the native state belongs to the same

Furthermore, the ideas and the methods of the mean-fielgonformational space domain or ridi5].
spin glass model§9—11] have been successfully used to  The thermodynamic behavior of homopolymer globules
study the freezing states in a heteropolymer glopii®-15.  has been studied also by discontinuous molecular dynamics
The corresponding model considers the conformational besimulation[22,23. By making use of a simple off-lattice
havior of a polymer chain with randomly quenched interac-model for chain lengtiN=64 the authors showed the exis-
tions between monomers. These random copolymers alwayence of a first order liquid-solid-like transition. The transi-
possess a collapsédr globular statedepending on the tem- tion occured at temperatures below the coil-globule transi-
perature and the strength of the randomness. It was succedign temperature and was detected by a heat capacity peak as
fully shown that the disorder results in a globular and evenwell as by a Lindemann parameter jump. It is interesting that
tually in a glassy globular state. The corresponding freezinghere is a qualitative similarity between homopolymers and
is characterized by a transition between two phases: oneroteins where the transition from the molten globule to the
phase is characterized by many accessible configurationgative state is also of first ordé¢R4,25. In Ref. [26] an
while the other is dominated by only a few of them, i.e., an“expanded ensemble” Monte Carlo algorithm was intro-
eventually frozen state. In this context heteropolymer freezduced which helps to overcome the density slowing down in
ing usually serves as a simple “toy model” for the protein the globule state. For chain lengths ug\te- 512 the authors
folding phenomenon[15]. This relationship between the saw a bimodal distribution in the number of contacts per
freezing and folding phenomena is caused mainly by the facnmonomer. This is again a clear indication of a first order
that in both cases only a single conformatigvhich in the  liquid-to-solid transition of the collapsed globule.
context of protein folding is called the native statibomi- As already mentioned, it is most important that the glob-
nates. ule formed from ordinary homopolymers does not contain

In the following we are going to investigate a similar any quenched disorder. If this system forms glassy states the
problem in homopolymer globules in poor solvent. It is well disorder has to be self-generated. Nevertheless, to form
known that homopolymers in poor solvent form globules dueglassy states certain frustrations are necessary. These may
to an attractive second virial coefficient; the globules argresult from the interplay between attractive interactioaga-
then stabilized by the repulsive third virial coefficigrs].  tive second virial coefficienv), repulsion (positive third
The relevant parameter for globule formation is the secondirial coefficient w), and the constraints imposed by the
virial coefficient which is measured by the relative distancechain connectivity. These frustrations might already be suf-
from the so-called® temperature, where the homopolymer ficient to provide a structural glass transition from a liquid
takes Gaussian conformations. Just bel®wthe polymer globule to a glassy globule.
collapses and the lower the temperature the more dense be- The main purpose of the present paper is to investigate
comes the globule. The intuitive limit is then a dense liquidthese problems in more detail by analytical means. We will
globule. We will show, nevertheless, that even at lower temindeed show that a linear homopolymer in the condensed
peratures and beyond a certain density the globule freezegobular phase undergoes a genuine structural glass transi-
and forms a glass. Homopolymer globules show a structurdion of a type similar to that in @-spin interaction spin glass
glass transition. Thus the system will form a “nanoglass,” with p>2 or a Potts glass model. We stress once more that
i.e., a frozen and condensed polymer chain restricted to théhe homopolymer is a pure system and does not contain
scale of the individual globule. guenched disorder. Nevertheless, thecomponent field

It is most interesting to note that in recent Monte Carlotheory formulation for linear polymei7] already provides
simulations of homopolymer globules, Milchev and Bindera natural and solid bas[28]. As we will show below, the
[17] found a dramatic decrease of the acceptance rate of tH®omopolymer globule is a generic system where frustrations
moves, which in its turn suggests the growth of the characrather than quenched disorder trigger the glass formation. As
teristic times. They saw also pronounced density fluctuationg starting point we employ the field-theoretical description of
which appear in the center of the globule and spread over the self-interacting polymeric chain in a poor solv¢29,30.
entire globule as the temperature is lowered. These resulfSo far, in Refs[29,3( it has been shown that the Laplace
were interpreted in terms of a glassy type of transition. Thes¢ransformation(with respect to the chain lengtN) of the
investigations have been restudied in papers by Kreitmeigpolymeric correlation function can be associated with the
et al. [18—2(Q where a similar dynamical behavior of the corresponding correlator within th@—O0 limit of the
homopolymer globule was verified once more and generaln—component:,//g,1,02’1 field theory (wherea=1,...n). We
ized for the cyclic deformation regime. Moreover, the glassargue instead that the same&omponent field theory can be
transition in a homopolymer globul&or chain lengthN mapped onto some kind of disordered one-component model
<27 on a 3X3X3 cubic lattice was investigated by com- where the imposed random field is non-Gaussgieslored
puter simulation$21]. These authors found that the confor- nois@ and its statistical moments are determined only by
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virial coefficientsv,w, . . ., etc. In this case the indexacts ~ which can be associated with time—0 limit of the /5, %2

as a replica index for spin glassgk10] or random magnet- field theory as follows:
ics [11]. This mapping has already been suggested for spin

glasses three decades a@1,32 but was never actually n

used. At this point we should add a general remark. E(ry,rom)= "mJ H Difaihy(r1) y(rs)
Throughout the paper we use the large globule approxima- n—o0J a=1

tion, i.e., we consider the chain lengthto be very large. -

This is necessary to avoid additional complications close to xexp{—Ha[ ¢ ul}, 2.3

the surface of the globule. Intuitively it is obvious that mono-

mers close to the globule surface experience a different dyv'vhere '77/:{',01 W ¥} is ann-component field angl
il y N

namic environment, such that different mechanisms of freezthe chemical potential, which is conjugateNpand the rep-
ing take place. We will come back to this point in a IaterIicated Hamiltonian is,

publication.
. 1 ! a?
Il. THE HOMOPOLYMER GLOBULE AS A DISORDERED Hol ¢ p]= Ef dr > ()| w— mvz}lﬂa(r)
SYSTEM a=1
A. The field theory representation |u|f 4 é . 2
- r r
In this section we will provide the basic formulations and 8 a1 °

the field theory for polymers in poor solvent, i.e., with attrac- n
tive interactions caused by a negative second virial coeffi- " w ddr{ 2 wA(r)
cient. To do so, we start from the usual continuous descrip- 318 =, e
tion of a homopolymer chain of length in a poor solvent.
The chain conformation is characterized by th
d-dimensional vector function(s), wheres (0<s<N) enu-
merates segments of the chain. The corresponding Edwar
Hamiltonian has the following form30]:

3
o (24

©As usual the vector fielgy corresponds to the polymer den-
§lty in the usual manner, i.ep (/7). The relationship be-
tweenu andN has the form

d (N [ar(s)\% |v| (N o —
H[r(s)]:—zf ds|——| ——= | dsdsé(r(s) (a/a,u)J dr (dr B (ry,ros ;)
2a%Jo s 2 Jo
N=— (2.5
w (N dr,d% B (ry,1;
~r(s")+ 57| dsdgds’a(r(s)~r()5(r(s) f AT i)
-JO
—r(s")). (2.1)  The attractive interaction term of ordes* changes the be-

havior of the field theory. Correlations of the self-avoidance
. . I . . are no longer important and we must consider the balance
The first term in the Hamiltoniaf2.1) is responsible for the between the attractive and repulsive forces. Although we

chain connectivity, whereas the two other terms are con- : . : :
. . . mentioned above the relative unimportance of the connectiv-
nected with the virial expansion. In Eq2.1) we already

imposed the condition that the second virial coefficient isity term, we have to keep track of it as well. The careful
negativep <0, and the third virial coefficieny>0. Usually analysis below shows that it provides at sufficiently low sec-

the second virial coefficient is measured by its distance fromOnd virialcoefficients significant contributions on small
the ® temperature, i.e |v|2a3|_|__®|/:;/37 The third scales[£~0O(a)] that are caused only by connectivity.
virial coefficient is always of the order afi~0O(a®). The These are in part responsible for frustration.

density of the globule is easily estimated s |v|/w, which

provides a naive limit of the temperature®=1. Indeed, B. Mapping onto a random model

at sufficient low temperatures the globule is dense, and the Now we are going to map this field theory onto a random
entropy term(first term becomes less and less important. system. It can be showfsee Appendix Bthat the free en-

The remaining entropic fluctuations are important only onergy of the globule statEg, can be interpreted as the free

length scaleg=a/r. Thl_s observatlpn will allqw us later the energy of a one-component random model with Hamiltonian
safe use of corresponding mean-field theories.

The next stef29,30,33 (see also Appendix Ais to em- 1 g a2
ploy the Laplace transformation of the polymeric correlation ~ H{#}= Ef dr M¢2(r)+E(V P2+ gA(r) |,
function E(r,,r,;N), (2.6)

Sy p) = J'w dNE(ry,ro:N)exp(— uN), (2.2 where the random fielt{r) is non-Gaussian with its gener-
e 0 ne ' ating functional of the form
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) [34,35. This results in the Legendre transformation with re-
q’{P(f)}EEXP{ —f d rt(f)P(f)] spect to the extremum fiel@,y,,
ol [ 4 2 w d. 3 y d o =
=exp o | dr pA(r) =g | dUr p3(n)y, K[Uab(1)]=WLQas(1)]+ | % > Qap(r)Ua(r)-

2.7) (2.12
and where the overbar means averaging o¢ex. It is inter- S @ resul36] we get
esting to underline that only for this combination of signs of SK
the virial coefficients ¢<Ow>0) are the even central mo- m:Qab(r), (2.13

a

mentst(r,)t(r,)- - -t(r,y) [see Eqs(B8)—(B11)] positive,
as they should be for a real fietdr). The aforementioned

mapping takes the form oW - 21
— Ucq- ( . 4)
1 8Qcq(r)
FGlz_rLiToﬁln zZ", (28 By making use of the expansid2.10 in Egs.(2.13 and

(2.14) one obtains foM[ Q] the following expression:
where the replicated partition function is

2 4w
- WQ.p(r)]=——| d% Tr(Q?— dr Tr(Q3)
znzf D rexp{ — H, . 2.9 ? |U|f 3|v|3f

2

In the present paper we are going to use this analogy be- — f ddr Tr(Q*) +0(Qd).
tween the homopolymer modélvhich is a “pure” model, | |
i.e., does not include quenched disorder in its Hamiltonian (2.19

and the random modé&R.6).

| v

After the transformatiori2.11) the replicated partition func-
C. Legendre transformation tion (2.9) takes the form
As a next step we should go to the two-replica variables 1
;1’ - ETr In

Q.n(r), or Parisi overlapg9] for polymers[28]. One can
implement this using the Legendre transformation of the in-

a®_,
M_%V an

teraction part of the Hamiltonia(2.4) which can be repre-
sented in the form —2Qp(1) +W[Qab(r)]]. (2.19
K[Uap]= %f d9r E UapUba So far only mathematical identities have been used. Nev-
a,b=1

ertheless, the use of the overlap varialgg, allows us to
detect completely different correlations from the classical
d O(n) field theory in the limitn— 0 for self-avoiding walks.
dr UapUpcUca . .
318 1 They will allow us to probe for a more complicated phase
space and provide information on the presence of glassy-type

z 9 2 U Up gl O(US,), correlations in the globules. With this in mind it appears
T 4116 ab¥bccdda ab’s instructive to express the generalization of the polymeric
correlation function(2.3)
(2.10
Ean(M1,r2; ) =(#a(ry) p(r2)) (2.17)

where the pair fieldi,,(r)= ¢,(r) ¥,(r) and where we have
alSO kept the fOUI’th Virial CoeffiCierE[ Let us introduce the in terms of Over|aanb(r)_ To this end we add the source
integral transformation term ¢4(r)h,(r) in Eqg. (2.11). After substitution in Eq(2.9)

and integration ovetf/ one gets

Ean(r.r;w)=({[1-Gg'=2Q]1 Yap)(r.,r"), (2.18

where G, '=pu—(a%2d)V2. The corresponding polymer
correlator(2.3) is nothing but the=4(r,r’; ) element of
the matrix(2.18).

and findW[ Q] in the form of a functional expansion. For ~ The correlatorZ ,,(r,r’; «) measures the probability of
this purpose one should use the saddle point method in Edinding a chain configuration starting atin the replicaa
(2.11) which can be carried out in the same spirit as in Refsprovided that it ends at’ in the replicab. From Eq.(2.18

eXp{K[Uab]}:f g Dch(r)EXP{W[Qab]

+f ddrg Qab(r>uab<r>] (2.1)
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this correlator can also be seen as the scattering amplitude of al w

a free “particle” with the Green functioi, on the “scat- PO(ryrpr) =7 —3

terers” whose density is described Q4. 3([v]
The present representati®f.16) is very promising and

recalls the corresponding expressions for spin glass models _GO(rl_rZ)GO(rZ_r3)GO(r3_rl)lv

O(ry—ry)d(ry—rj)

[3,5,9,10. The striking difference between these two cases is
that in Eqg.(2.16 only the pure model parametefKuhn’s

segment length and virial coefficientare involved. As a 2

w

result the representation can provide a good starting point for I)(ry,ro,r3,r)=——| =+ 2| 8(ry—r) 8(ro—rs)
the phenomenon of self-generated disorder which, as we be- o] vl 3
lieve, is behind the structural glass formation. X 8(r3—14)—Go(r1—r2)Go(roa—r3)
IIl. MEAN-FIELD TREATMENT XGo(rz—ra)Go(ra—ry). (3.2
A. Landau-type expansion As often in MF theories the order paramet@y, does not

In order to simplify the mean-field treatment of the inte- 9€Pend on the spatial coordinateAs is customary in the
gral (2.16 let us expand the effective Hamiltonian in Eq. MF theory of the spin glass model8—-11], we decompose

(2.16 to fourth order. We obtain by this procedure the Parisi matrixQ,, in the following form:
Qap=(q—F)dap+ T+ A5, (3.3

n
n_
z _f ablll DQan(r) In Eq. (3.3) the symmetric parR,,=(q—f) 54+ f, with the
. diagonalg and off-diagonaf elements, describes the replica
4 d @) symmetric(RS) solution[9-11]. The matrixA ,, equals zero
X ex —abZl d°rydrol"(ry,r2)Qan(r1)Qualt2)  for a=b and is responsible for the replica symmetry break-
' ing (RSB) [9—-11]. The use of the decompositid8.3) in Eq.
" (3.1 allows one in the MF approximation to separate the
- 2> f dr;d% ,d%rsT®)(r 115,13 Qan(ry) total free energy into RS and RSB parts. During the calcula-
abe=l tion of the traces in Eq3.1) it is convenient to use Parisi’s

n representation o\, by a functionA(x), where O=x=<1.
X Qpe(r2)Qealrza)— 2 d ,d% ,d% zd, Then the free energy is found to be
a,b,c,d=1
1
lim—F{Q.p}=frda,f} +frsg{q,f;A(X)}, (3.9
XF(4)(rl!r2=r3ar4)Qab(rl)ch(r2)ch(rS)Qda(r4)]a n—onV :

(3.1) where the RS free energy
frelQ, f}=A(q?— %)+ B(g3—3qf?+2f3)
+C(q*—609°%f2+8qf3—3f%) (3.5

where the coefficients

2
T@(ry,rp)=—8(r1—r3)—Go(r1—r2)Go(ry—ry),

lv] and the RSB free energy

1 1 2 1 X 1 3
freglQ.T;A(X)} = —leo dXAz(X)—WZ[ Jo dxA(X) —W3JO dx| xA3(x)+3A(x) JodyAZ(y) +w, fo dXA(X)
1 X ) 1 4 1 ) 1 2 1 2
+ws 4J0 dxA(x)fodyyA (y)JrfO dx @A (x)+2J'0 dxA (x)( jo dyA(y)| +2 L dyA(y)
X 1
—ZjodyA(y)JydzA(z)” (3.6

The coefficients in Eq93.5) and(3.6) are given in Appen-  [9-11]) of frgg results in the RSB solution in terms of the

dix C by Egs.(C10—(C17). overlap matrixA(x). The coefficients in the Landau expan-
The minimization off g5 leads to the RS solutiom,,, and  sion of frgg depend also on the RS solution.

fm, Whereas the maximizatiga@as is the case for spin glasses  In order to take into account the spatial correlation in the
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RS sectoi(see Sec. VB it is convenient to assume that the bining this with Egs.(2.14) and (2.15 and taking into ac-
variable g and the coefficient\,B, and C are weaklyk count the decompositio(8.3) one obtains the following ex-
dependent. In this case the Landau expansion is more irpansion for the density:

volved and is given in Appendix C.

4 4w o, 8 (wPozZ) 4w Lo
B. Density in terms of Q,y, P—mcﬁ‘ Wq +W m+§ q +W _jo dxA“(x)
The essential issue is to express the globule depsity )
terms of the order paramet€,,. This allows one to detect i w=ozy 1 5 1 3
any glassy features inside the globule and to distinguish be- * lv]4\[v] *3 39 o dxA(x) + 0 dx| xA%(x)

tween the liquid and glassy phases. Moreover, it will show

any unusual properties of the phase space. As mentioned X 2
already in the introductory remarks the density is determined +3A(%) 0 dyA<(y)
by the s fields. In the MF approximation the local monomer

dens?ty is given in terms of the grand canonical partition|, Eq.(3.14 we have used Parisi’s representatiomqf, and
function as taken into account that the off-diagonal element vanishes,
=0 (see below The “singularity” |v|—0 in Eq.(3.14) is
E(r:8)E(r—r":N—s) spurious, as we will see in the next section. In the MF ap-
. (3.7  Pproximation the value off becomegu| dependent itself, i.e.,
q>|v|? and A(x)=|v|?, so thatp—0 atv—0, as it should
close to the® temperature.

. (3.19

p(r):foNdsfddr

fddrE(r;N)

which should be supplemented by the normalization condi-

tion (mass conservationi.e., IV. ® POINT REGIME: COIL-GLOBULE TRANSITION

The question that must be resolved first is the ordinary
j d% p(r)=N. (3.9 coil-globule transition. In any case the present general ap-
proach should reproduce the physical properties of the stan-
dard coil-globule transitiofi27,37. We investigate the sys-
tem just below thé® temperaturd <©. In Refs.[29,3( the
standard Of) field-theoretic formulatiorisee Sec. Il Awas
P used in order to treat this problem beyond scaling. The
f ddrj ddr'E(l’,;,U«)E(r—r,;,U«):——J’ dIrE(r;u), method of pair fields, which is a simpler version of the
I present formulatiorf38], was developed and applied to the
(3.9 coil-globule transition. In that earlier paper of one of the

where= (r: ) is the Laplace transformation &(r:N) [see present authors the third virial coefficient was not taken into
Eq. (2.2)].’ Then the equation that determineé the Chainacpount, WhiCh corresponds to an expansion afoun‘ﬂhe
length becomes point regime. Here, the Legendre transformation method

from Sec. 1l C makes it easy to take into account an arbitrary

By making use of Eqs(3.7) and (3.8) and after Laplace
transformation we find

9 number of virial coefficients.
N=— &—In[ f ddrE(r;,u)} (3.10 In the ® point region(i.e., atT=®) the globule confor-
K mations are very close to Gaussian forms so that for the
and takes the form chemical potential one can expect the scaling uo/N. In

this case it is convenient to rescale the virial coefficients

[v],w, andz in the following way:
fddrfddr'a(r’;ma(r—r';u)

_ 4—dyi2
f ddrE(r;N) X= ;N( ) ) (41)
In the MF approximation E¢2.3) reads W
- ot y= N4 4.2
=(M)=¢1(r)¢17(0), (3.12 a
Wherezplmf(r) is the MF solution fory4(r). Combining Egs. 7
(3.12 with (3.11) and(3.9) leads to the expected result t= EN(8‘3")’2, 4.3
a
p(N=[¢7(N]% (3.13

which shows the upper critical dimensions of the different
Finally, in order to express the density in terms@f, we  terms in the virial expansion. After that the scaling forms of
recall that the pair fielclillmlf:[dfo(r)]2 (see Sec. Il Com-  the coefficientC10), (C11), and(C12) are given by
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_N(4—d)/2 2 d d/21'*((4_d)/2) F(E)
A= ad ;— E W, (44) y2 3 3/2 2
Mo —>|— . (4.13
x5~ \2m) 6,22
(6—d)/2 dr2 _
= AaNT l_(i) M , (45 Itis interesting that if Eq(4.11) is valid then conditions
3a% | x® |27 2,672 (4.12) and(4.13 merge and convert into the globule stability
conditiony>167%/27. We can eliminate., in Eq. (4.11) by
NE-d2[ y2 o ¢ d \ 921 ((8—d)/2) combining Eq.(3.10 with the polymer correlation function
c- v ] e
a3d 5 34 |27 3897 _ 1
(4.6) E(kip)= (4.14

(a216)k%+ pu—2q,

In the ® point regime|v|=a%(1—T/0®)—0 andN>1, so
that atd=3 x~1, y~1, andt<1, i.e., the fourth virial co-
efficient becomes irrelevant.

In the present regime only the RS solution makes physical
sense, since no other solution than the onset of the liquid
globule can be expected. Thus we minimize the RS free en-

ergy (3.5 with respect tog and f. The resulting solution By making use of Eqg4.10 and(4.11) in Eq. (4.15 for the

We recall that in Eq(4.14 p=puo/N andqm=q%/N. The
result of the combining reads

0 9 0
M0:1+ZQm_2(9_MOQm' (4.19

reads
fn=0, (4.7
—3B+(3B)?+32A[C
A= e , 4.8
so that the RS free energy becomes
fredd}=Ag*+B g+ C qg*. (4.9

transition line, one gets

16

x\2( 33 4\ 277

(z) (%) B EI T
y—2—777

where the globule stability condition>1672/27 is implied.

For completeness we check for the possibility of a first
order phase transition. The necessary conditions for this are
A>0,B<0, andC>0 [see Eq.(4.9]. It is simple to see

Let us consider a possible second order phase transition afi@®m Eqgs.(4.4)—(4.6) that these conditions are contradictory.

impose the conditionA=<0,B>0, andC>0. In the vicinity
of the transition point the coefficiet becomes small,A|
<1, and the order parameter takes the value

2|A|

dn~ 35 - (4.10

As is seen from Eq94.4) and (4.5), in d=3 the order pa-
rameter scales ag,<1/N. Thus, it follows from Eq.(3.14)

that the density scales gs=4q,,/|v|, which means physi-

cally p=1/N¥2 (note also thak~1 and|v|=N~*?). There-

fore we reproduce the correct scaling for the density, Whicrbr

is found also from naive scaling.
We can also obtain the transition line in thg-w plane,

which will be the first step toward a more general phas
diagram spanned by the virial coefficients. This line is d

fined by the conditionga=0,B>0, andC>0, which again
for three dimensionsl=3 yield

x\2( 33 112
“(z) %) Hz” “-19
3
y 3 3/2r<§>
& (ﬁ) 2 132 412

This means that within our MF approach only the second
order coil-globule phase transition is possible, which is in
accordance with the well-known resyB7]. Therefore the
present field-theoretic formulation is able to reproduce the
standard coil-globule transition as the replica symmetric so-
lution at conditions close to th® temperature.

V. DEEPER IN THE GLOBULE STATE: LIQUID VERSUS
GLASSY REGIME

A. RSB solution in the globule

In this section we investigate the possibility of replica
oken solutions deeper in the globular state. The globule
density from naive scaling is given ya®=as|v|/w=r and

has a natural limit at=1. Physically this limit corresponds

e‘_e[o a dense globular state without any solvent inside. At tem-

peratures below the coil-globule phase transition, but still far
above 7=1, the system is usually characterized by a
monomer-monomer correlation lengé Rg<NY2. In this
case the chemical potential and the density are no loNger
dependent. It can be seen from dimensional analysis and
simple scaling argumenf27,30,37 that the chemical poten-
tial scales aguo|v|?/we= 72, the densitypg = |v|/w= 7, and
Exlljvler L,

In this regime fluctuations can still be important unless
as¢<Rg, where the MF solution, which we discussed in
Sec. Ill, becomes valid. Here one can expect that, because of
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competing interactiongnegative second virial coefficient whereq,, and o, are the solutions that extremize the free
versus positive third virial coefficientand the constraints energies(3.5 and (3.6), respectively. With the 1-RSB as-
imposed by the chain connectivity, only a few conformationssumption[see Eq.5.1)] the free energy3.6) becomes

will dominate. This could manifest itself as the glass transi-

tion long known for spin glass model®-11] and het- frse( 0, Xg) = —W1(1—Xo) 02+ |W3|(1—Xg) (2—Xg) 0
eropolymers[15]. Formally speaking, this transition shows o 4
itself as a nontrivial solution that maximizes the RSB free —[Ws|(1=x0)(3=3xo+x5) 0. (5.4

energy functional3.6). ) ) ) o
Before doing this extremization let us find first the corre-1t IS convenient to represent the chemical potential in the

sponding equation for the chemical potential. In the RSBrm

case we should calculate tf#,; element from Eq(2.18

and substitute it into Eq3.10. We use here the so-called _ v

one-step replica symmetry breakifigRSB scenario, which ® s(|v],w)’

is generic for the glass transition in tpespin model4,5,7],

the random energy modgB9], and random heteropolymers wheres(|v|,w) is a function of|v| andw. For convenience

[15]. Then Parisi's functiomA(x) is defined by only two we switch to dimensionless variablédeeeping for simplicity

| 2

(5.5

parameters: the same notations
_ |0 x<Xo, v w z s
A(x)= o x>x (5.7 — ), ——W, ——z, ——ss,
’ 0- a3 aG a9 a6

The interpretation ofr and the break point, is the follow- 3 5 5
ing [10]. Within the 1-RSB scenario all replicas are grouped Aa’—A, Ba’»B, Ca’—-C. (5.6
into clusters so that their ultrametric organization has only ] ]

two levels: the intracluster overlapr self-overlap has the ~We also introduce the reduced valu@sth overbay
strengtho whereas the intercluster overlap is equal to zero. o o .

The fraction of replicas that overlap with the strengths A=Alv|, B=Bv|}>, C=Cv|°,

equal to & X,. After this simplification the inversion in Eq.
(2.18 can be done analyticalfysee Eq(All7) of Ref.[40]].

; . — Om — Om
After a straightforward calculation one gets qm:|—2, Umzm,
v v
] k' _ 1 N J— J—
Faulkin) = Xo[ (a2/2d)k2+ u—2q—2(1—Xo) o] wi=wqlv], ws=wslv[}, ws=wglv|®. (5.7
1—X, After that, Eq.(5.3) for s(|v|,w) (or for the chemical poten-

- . 5.2 i
X[ (2120) K2+ pu— 29— 20] (5.2 tial) takes the compact form

Insertion of Eq.(5.2) in Eq. (3.10 simply yields %=25m+2(1—xo);m, (5.9
1
M_ZQm_Z(l_Xo)Um:O<N), 5.3 Where
_ =3B+ V(3B)2+32/A|C
Om= = ) (5.9

8C

— 3[wsl(2- xo)+ V[3|Wa| (2—X0) 12— 32Wy|We| (3— 3xo+ x3)

o — , (5.10
" 8|ws|(3—3Xo+X3)

w;=A+2Cq?, (5.11)

w3=—B—4Cqp, (5.12

ws=—C, (5.13
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and the reduced coefficients read reduced variableg5.5—(5.7). After the inverse Fourier
transformation of Eq(C21), the radial distribution function
— 3\% (1) ,, reads
A=2—|—| TI[=|s*? (5.14
2 2 —
(n=- 3ol \/ 2 (519
_ 4 1 33/2 3 g(r)=—exp), —o|v =TI, .
S I 2\ 32 2X Y
B 3[w 2<2W) r(z)s , (5.15
where
C=2wt 2 ol [l 3lzr “le2 (51
2wt adul—3l5 ] Tlp)s™ (16 X=A+3q,B+6G2C (5.20
Equationg5.9) and(5.10 are the results of extremization of and
Egs.(4.9) and(5.4), respectively. hroughout the remainder of
the paper we will retain the condition&<0,B<0,C — 1 (37— ., 63,
>0,w;>0,w3<0, andws<O0. This assures that the non- Y=oar 3] S H0AmS™F s (52D

trivial solution o, shows up via a first order phase transition,
in a similar manner as ip-spin spin glasse§4,5] or the
random energy modé¢B9]. On the coexistence line between
liquid and glassy phases additionallysg(o,,Xg) =0 and
this leads to the corresponding equation

It is important to note here once more that the quantﬁes
andY do not have any additionab| dependence.

We estimate now the Ginzburg parametgy, (see, e.g.,
[41]) as the ratio ofg(r) at its maximum togr2n=a,2n|v|4.
W || - (2—Xo)? Then for the Ginzburg criterion we have the equation

(5.17

[wal2 4(3-3x0+x5) L

lv]?= = — : (5.22
6e=ca2\X([v]W)Y(|u].w)

The equation for the reduced globule densityp|v| can be
easily obtained from Eq23.14) under the 1-RSB assumption

(5.1. The calculation yields wheree is the Napier number. Equatidb.22 for a reason-

2 ably smalleg represents a line in thelu|,w) plane that
4w 8 [w z 4w . . .

c=4qm+t —qi+—| =+ 35|93 ———=0%(1—Xo) separates fluctuating and MF regimes. From now on we will
lv|? [v]® lv] 3 lv|? call these two regimes tHiguid globule and thelassyglob-

ule, respectively.

. From Eq.(5.19 the correlation length is given by

+8(W2+Z) 30mo2,(1 Iy
MR Amom(1=Xo)+ 5~(1—Xp)

3 - \[Z - (5.23
+ 5 0m(1=%0)?|. (5.18 3 VP77 o '

which is qualitatively in line with the standard result
[27,30,37 and the correct scaling.

From the Gaussian approximation for the effective Hamil-
tonian in the RS casfEq. (C18)] it is easy to calculate the
corresponding RS free energy, which takes the form

Equations (5.8—(5.16) for the function s(|v|,w) can be
solved numerically at given values of the fourth virial coef-
ficientzand break poink,. After substitution of this solution
s(lv|,w) in Eq. (5.17) we arrive at the equation for the co-
existence line in the plane ¢f| andw. By changingx, one
can obtain a whole set of, isolines. We will give the cor-

A 3T AN2 - B3 4~
responding numerical solution in Sec. V C but first we ana- fr{dmt = [v[*[Ady+Bam+ Cap]
lyze the validity of the MF approximation given above. T dPk
+§f SIn[|v[?X+ kY], (5.24
B. Role of fluctuations in RS sector (2m)

As mentioned above, the MF solution is valid when theT
fluctuations are negligible. Generally speaking, this shoulq
be required for the RS and RSB sectors of the replica spac
In the present paper it is not our intention to consider fluc
tuations in the RSB sector, which is a rather involved prob
lem that leave for a future publication.

In the RS sector spatial fluctuations are described by the

he last integral in Eq(5.24) diverges at largec. This ul-
raviolet divergence is of no significance as long as|tle
ﬁependence is the only one we are interested in. For the
'second derivative of the integral in E¢.24) with respect to
Tv|? one has

2 oo 2 3/2
correlation function(C21) (see Appendix € It is easy to 1" ZZ_KJ Lz_L i i
calculate from Eq.(C21) the radial distribution function o a7?lo [|v|X+k2Y]2  167\Y] v
g(r)=4mr?(Aq(r)Aq(0)) at d=3. Again we turn to the (5.25
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——— x,=0.88

s(lvl.w) %
—-—- x,=0.90

24 -' | -é
2 | i
2t ol §'§§§f!' E

2Ll

10

HH
-
HHHH-
b
n
(3]
T

N
T

lassy Globule

 APHTH
2nd virial coefficient, |v]|
&
I » T

30

—_
T

Liquid Globule

2nd virial coefficient, [v| 20‘ 05 - 4
FIG. 1. The dependence of the parametigsee Eq(5.5)] on the . . C"ill . . .
dimensionless[see Eq. (5.6)] virial coefficients atz=9 and 0 8 10 12 14 16 18 20
Xo=0.88. 3rd virial coefficient, w
After that the expression for the RS free energy takes the FIG. 2. The phase diagram of the polymer globule in terms of
form dimensionless virial coefficients. The lower solid line corresponds
to the coil-liquid globule second order transition, whereas the upper

transition. Dotted and dasheq isolines correspond to glassy state
with different values ofx,. The otherx, isolines, which are not
(5.20 shown here, have intermediate valuesxgf

X 8/2 solid line is associated with the first order liquid-to-solid globule
=| [vf®
Y

— T
frs= |0 [Adq+Bay+ Canl — 15

We ascribe this branch of the free energy to the liquid glob-
ule state and will consider it in more detail in the next sub-increases. We recall that-1x, is the fraction of replicas that
section. overlap with the strengthr,= o y|v|2.
The fact that on the transition line the valuexgfis less

C. Numerical calculations: Chemical potential, phase diagram, than 1 shows that the transition is thermodynamically of the

and configurational entropy first order. This is contrary tp-spin spin glassest,5,7] and
e(andom heteropolymefd3]. It is well known that in these
pases the transition has no latent h@a., it is thermody-
gamically of second ordgrsince xo=1 at the transition
point, while the order parameter undergoes a jumf.e.,

Finally we are going to compute the phase diagram for th
polymer globule. We recall here that the first step carried ou
earlier in this paper, i.e., the RS solution, corresponds to th
classical coil-globule transition. Here we are now in the po-

sition to calculate from the 1-RSB free energy the transitiordisplays a first order transitignin our case the transition is

to the glassy state. The numerical solution of EGs8)— of first order thermodynamically as well as with respect to
(5.19 atz=9 andx. =0.88 is shown in Fig. 1. As can be the order parameter. In Fig. 2 we have shown also the line
se.en the functioa(|uo| w). depends linearly 0|.w énd almost that corresponds to the coil-globule second order transition

does not depend frontv|. This is in agreement with the see Eq.(4.16)]_at_the_ chain lengtfN=250. The critical
well-known result[30,37] ux|v|?w [see Eq.(5.5]. We valu_e|v|cr on this line is scaled as C{N'_

have also calculates(|v|,w) at xo=0.90x,=0.92, andx, Figure 3 shows the reduced density behayisee Eq.
=0.95 and have used these results as input in(&d.7).

This eventually leads tx, isolines in the glassy globule M

phase which are plotted in Fig. 2.

The line that is associated with E(.22 corresponds to 53
the Ginzburg criterion for fluctuations in the RS sector and 7
separates the glassy globule from the liquid one. Obviously,g.g
the position of this line depends on the values@f<1 and o3
should be better seen as a crossover from the fluctuating to>
the mean-field regime. In Fig. 2 this line is given &t 0
=0.033. We have not shown moxg isolines explicitly, but
it is important to recall that by changing continuously one s
can span the whole phase diagram from left to right. It is -
interesting that the, isolines in Fig. 2 are almost vertical. 2nd virial coefficient, v]
This means that in a real experimefutpon changing the
solvent quality|v| by temperaturealways some particular FIG. 3. The reduced densityas a function of virial coefficients
value ofxg is hit in the glassy phase and stays with ifas  atz=9 andx, = 0.88.

30

%0
3rd virial coefficient, w
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(5.18] at x,=0.88 in the same intervals ¢f| andw as in 0.05 ’
Fig. 2. It can be seen that the density on the transition line is__
fairly small, justifying the use of the virial expansion.

Let us now calculate the configurational entrdfy,: (or
the complexity [42], which is usually of interest for glass-
forming liquids. The configurational entropy in the liquid
globule state can be defined as the difference

0.04

Configurational entropy, S_ (T

Sconf= Sliquid_ S\/alleyv (5.27 ————
where 0.03 +
Ifrs
Siiquid= — T (5.28
and S,y is the entropy(per particle that corresponds to 002,35 0.7 0.9
one pure state or a valley in the free energy landscape. Ir Temperature, T

order to estimateS, ey let us recall from Ref[43] that the

order parameterr describes the structure of the space of FIG. 4. The configurational entrop$.,,{(T) as a function of
valleys through the probabiliti?(o) that two valleys drawn temperature while the globule is cooling from the liquid to the
with the Boltzmann distribution have an overlap For the  glassy state. For convenience we use dimensionless variakies
1-RSB scenario this function has a rather simple form:—T @ndScont/Ks— Scont, Where® is the® temperature anklg is
P(0) =Xo8(0) +(1—Xo) (0 — o). The dimension of the the Boltzmann constant.

matrix A,,, which within 1-RSB is parametrized hy(xq VI. CONCLUSION AND OUTLOOK
—1)/2 parametersr, becomes negative at—0 and O<Xx,
<1. Therefore the free enerdysg[see Eq(5.4)] becomes We have shown that the homopolymer globule problem

negative, and the factor (1-xo) in Eq.(5.4) can be treated  can be formulated within the— 0 limit of free n-component
as the “fraction of valleys” with overlap_rrm. In _thls_ case 4% 4 field theory and can then be mapped onto a disor-

common factor of —(1-xo) in Ed. (5.4 fuvaey=  noise. It is of interest that the statistical moments of this
—fres/(1—Xo). Then we can estimat8,qey in the follow-  nojse can be expressed only through the virial coefficients of
Ing way: the pure model, a fact which gives grounds to discuss self-
generated disorder. On the other hand, the O limit is
S _ 1 f rsp 592 responsible at the same time both for the polymer conforma-
valley™ 94 _ . ( . 9) . . .
1-%Xo dT tions and for the nontrivial structure of the replica space.

Physically this means that units with competitive interactions
The configurational entropy in the glassy globule state isand constrained by the connectivity possess good precondi-
given in the same way as in thpespin spin glassest,43]: tions for glass formation.
The Legendre transformation from the pair fields
(5.30 z,/xa(r)wb(r_) to the _Parisi overlap pargmetdﬁgb(r) Iead_s to
an effective Hamiltonian that is akin to corresponding ex-
pressions for spin glass models. We have investigated this
where(x) is the digamma function. resulting replicated model within a mean-field Landau-type
By cooling the system along the, isoline atx,=0.88, treatment. First of all, the RS solution of the corresponding
we calculated the configurational entropy for liq{s®e Eqs. equation is associated with the conventional coil-liquid glob-
(5.27—(5.29] and glassy[Eq. (5.30] globules. Figure 4 uyle transition whereas the RSB solution deeper in the globule
gives the result of this calculation. As discussed above thetate is related to the glassy regime. This mean-field glassy
transition is of first order, i.e Sy Undergoes a jump which globule phase can be assured only if the fluctuations in RS
is qualitatively in line with molecular dynamid®2,23 and  and RSB sectors are small. In this paper we have studied the
Monte Carlo[26] simulations. We must bear in mind that the fluctuations only in the RS sector and have sketched the
transition temperature in Fig. 4 is also defined by the Gincorresponding Ginzburg criterion line on the phase diagram.
zburg criterion for fluctuationgsee the intersection point of We have calculated the configurational entropy for the liquid
the upper solid line and the,=0.88 isoline in Fig. 2 so  and glassy globules and shown that the transition between
that this transition can be treated as a crossover from thghem is a first order one, as it is also in molecular dynamics
fluctuating regime to mean field, where only a few statesand Monte Carlo computer simulatioh®2,23,26, whereas
dominate. This possibility is shown in Fig. 4 by the dashedfor the random heteropolymét 3] the freezing is thermody-
lines. On the other hand, this behavior is quite different fromnamically a second order transition. On the other hand, com-
that of low molecular weight systems or polymer melts puter simulatiof24] and experimeni25] show that the fold-
where S, goes to zero continuously as soonTas Ty . ing in proteins has a latent heat, i.e., the random

1
Sconf:N [4(1)— ¢(1—Xo)],
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heteropolymer is a poor model of protein-folding thermody-takes the form

namics. It has been showr5,44 that in heteropolymer

models where some sequences of monomers have especially

low energy in their native conformation the folding is ther- N

modynamically a first order transition. 7= J Dr(s)Dp(r)é{p(r)— J dss(r—r(s))
However, our calculations show that for the homopolymer 0

globule glassy phases occur already deeper in the poor sol- 5

vent regime. The reasons can be found in competing interac- Xexp{ _ ides( ﬂ)

tions (virial coefficients of different signsand the connec- 2a2Jo as

tivity. A transition with latent heat is possible. In this respect

reworking of the random heteropolymer problem within A

our field-theoretical approadlas oppose to the density func- _mz=:l mj ddmeH(r)} : (A4)
tional method 13—15) would be very interesting. This could

elucidate the problem of how the self-generated disorder
interplays with quenched disorder and eventually modifiesB
the freezing conditions. It is interesting to note also that;
some nonpolymer systems without quenched disorde
can show glassy behavior as a result of competing interac-
tions on different length scales. As an example one can refer

y making use of the integral representation for th&unc-
on Eqg. (A4) can be recast in the form

to the frustration-limited domain theory of structural glasses
[45] as well as to the “stripe glasses” in doped Mott insu- Z=f Dr(s)D¢>(r)Dp(r)exp[ ij dir ¢ (r)p(r)
lators[46].
The dynamical aspects of the thermodynamic transition 2L
discussed above are a matter of crucial importance. The first -y o f ddrpmﬂ(r)]
and foremost question that should be investigated is related m=1 (M+1)!
to the formation of entropic droplefd,47] in the RSB sector
of the replica space. xf drd9 ' G(r,r';[¢]:N), (A5)
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r(N)=r" d (N [ar\?
APPENDIX A: FIELD-THEORETICAL REPRESENTATION G(r,r’;[¢];N):J Dr(s)exp — _ZJ dsl —
FOR A GENERAL SELF-INTERACTING CHAIN r(0)=r 2a“Jo Js
Let us represent the Hamiltonian of the self-interacting (N
chain in the form =i jo dse(r(s)) . (AB)
d N ar 2 ” Um+1
Hlr(s)]= Efo ds(g) +mE=1 (m+1)! The corresponding equation f@& reads
N m
« [ "asasy - ds,]T atr(so-r(s)). o
{———V2+i¢(r)}G(r,r';[¢];N)=5(r—r’)§(N).
(A1) N 2d a7

wherev ., denote the virial coefficients. It is convenient to

introduce the density It is convenient to make the Laplace transformation

N
p(r)=f dsé(r—r(s)). (A2) w
0 G(r,r’:[¢];ﬂ)=f0 dNG(r,r";[¢];N)exp(— uN),
Then the partition function of the polymer chain (A8)
Z:f Dr(s)exp[—H[r(s)]} (A3) after which the equation fo&(r,r’;[ ¢]; ) yields
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4 _E d _ (a2 2 ’
JDlﬁlﬂ(f)t//(r )EXP{ zf drp(r)[pu— (@ /2d)Vo+ig(r) Jy(r )]

G(ririi[¢lim)= (A9)

J Dt//exp{ - %J’ ddrlﬂ(f)[/f«—(az/Zd)Veri¢(r)]¢(r’)]

In order to avoid the denominator in E¢A9) we should component random model. We shall restrict our consider-

upgrade the fields by introducing then-component fie|dZ ation to the second and third virial coefficients. The gener-
={1, 2, ... ). Then by using the replica trick we have alization to the case with an arbitrary number of virial
coefficients is straightforward.

, . Let us consider the one-component random model with
G(r,r";[ ¢]; ) = lim H D iha(1) (1) Hamiltonian

n—0

xex;{—lé fddrzpa(r)
2 &4 H{y}l= = J do {Mlp(r)-f— (Vt//)2+t(r)¢2(r)}

(B1)

w— ZdV2+l¢(r)}¢a(r )]

(A10)  wheret(r) is a non-Gaussian random field with the generat-

ing functional
One can now make the Laplace transformation of aboth sides 9

of Eqg. (A5) and substitute it in Eq(AL10). Integration first

over the field¢(r) and then ovep(r) results in the follow-

ing expression for the grand canonical partition function of a (I){p(r)}zf Dt(r)P{t(r)}exp[ _J ddrt(r)p(r)}
polymer chain with ends fixed at pointsandr’:

dd 2 o dd 3 ]
2,0 )= lim H D a1 (1 Yexpl— Hol i ), p{ f K] I
n—0
(A11) (B2)
where
In Eq. (B2) P{t(r)} is the distribution functional of the field

- 10 4 a? ) , t(r). One can easily check that the replication of the Hamil-
Hil )= EJ d razl Ya(D)| =55 V7| alr’) tonian (B1) and the subsequent averaging o), i.e.,

+1

Um+1
w$ e —
1<m+1>'f z= glwaexp{—glwa}], ®3)

(A12)

APPENDIX B: THE CONNECTION TO A RANDOM

MODEL leads to the effective replicated Hamiltoniéh4).

From the probabilistic interpretatiqi82) one can explic-
Here we prove that in a poor solvent the polymer problemitly find the central moments df(r). The expansion of both
[see EQs.(2.3) and (2.4)] can be connected to a one- sides of Eq(B2) yields

> S dry - drpt(r)t(ra) - trp)p(ry)p(ra) - p(rp)
m=0 m!
% 1 k k| l k—1 |
20 I'((k—I;' : lfdd”’z“)} {sv!vsfddrps(”}' =y

By making them terms ofp(r) on both sides of Eq(B4) equal, one gets
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[m/2] ml
]

X

3k—m
{ , (B5)

}mzk

W
gf d%r p?(r) mf d’rp3(r)

where[ m/2] stands for the greatest integer number less th&hand{nV3} is the smallest integer number larger thaf8. By
making use of the representationsddr p?(r)=fdd ;d%,8(r;—r,)p(r)p(ry) and [d% p3(r)=Sd% 3d% ,d%r 56(rs
—14)6(rs—r3)p(r3)p(rs)p(rs) one finally gets

[m/2] m! |U| 3k—m m— 2k
t(rpt(ry)-- 't(rm):k=%]/3} (m—2K)1(3k—m)! (?) (m) O(ry—rp)o(rg—ry)- - 6(rex—om—1—"ek—2m)
X 8(rk—2m+1~ Fek—2m+2) O(Fek—2m+1~Fek—2m+3) " 6(Im-2=Tm-1)d(rm_2—Tm). (B6)

In Eqg. (B6) the second line includesk3-m & functions with ~ The important feature of these moments is that all of them
arguments successively pairwise divided betwe&r-Bm  are positive, which means thg(tr) is real.

points. The third line includem— 2k & functions so that in

each successive pair of them on@oint is common.

Let us consider some particular cases of &6). APPENDIX C: SPATIAL FLUCTUATIONS FOR A
(i) m=1. Then{m/3}=1, [m/2]=0, and WEAKLY INHOMOGENEOUS GLOBULE
t(r)=0. (B7)

In this Appendix we give the Landau expansion only for
(i) m=2. Then{m/3} =1, [m/2]=1, and Eq(B6) reads the case whem and the coefficientsd®,I'®),"*) are
weakly k dependent in the RS sector. The spatial Fourier

transformation in Eq(3.1) leads to the following effective
Hr)t(ry) = —=8(ri—ro). B8 Hamiltonian:

(i) At m=3,{m/3}=1, [m/2]=1 (i.e.,, k=1), and one
gets

dk
[ — (2) _
()= g 8 —12)a(ry—ra). (B9 Hesldlio) J G oatoac-
(iv) At m=4{m/3l=2, [m/2]=2 (i.e., k=2), and +f ddklddkzr(g)(k )k a(ks)
5 —(27r)2d 1.K2 1 2
t(rl)t(rz)t(rs)t(r4):E|U|25(r1_r2)5(r3_r4)- d%:. d%.-d%
(B10) Xq(—kl—kz)+fﬁ
(v) Finally atm=5{m/3}=2[m/2]=2, and 7
51 XT®(ky,kp,k3)a(ki)q(ka)q(ks)
t(rl)t(rz)t(r3)t(r4)t(r5):m|U|W5(r1_r2) X q(—Ky—ky—Kg) + - -, (C1)
XO(rg—ry)6(rzg—rs).
(B11) where
|
2 d9% 1
k= —— , C2
() vl j(zw)d [(a%/2d) K2+ u][(a2/2d)(k—K)2+ u] (€2
IOk ky) = ﬂ—f d' ! (3
PR ) (2m) [(@%2d) k¥ pl(a%2d) (k—ky) 2+ pl (@272d) (k—ky— ko) 2+ )]
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T (kg Ky Ks) = 2 (W2+Z> zf d'
1:72:03 |U|4 |U| 3 (27T)d
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><[(612/20|)K2+ p[(a%2d)(k—ky)?+ p][(a%2d) (k— Ky —kp)*+ p][(8%/2d) (k—ky —Kp—Kg)*+ u]’

For weak fluctuations around the MF solutigg, to be in-
vestigated one should estimate the Hessian

5°Hgs

S r N SHlv N\ = (2) —
8q(r1)6q(r,) 2I@(ry—ry)+6qn

=0y

X f do sl C(ry—ry,r3—ry)

+12qr2nj d9r 5d% T (r—ry,rg

=l Fg=Try) 4+, (ChH
or, in the Fourier space,
5®Hgs
—_— =2I'@ (k) + 6, ®(k,k=0
+1292T D (k,k=0,k=0)+ - - -.
(C6)

The resulting effective Hamiltonian expansion around the

MF solution takes the form
dk

1
HrslOm,AQ(K)}=Hggqm} + > J W

5°Hgs

XW Aq(k)Ag(—k)

q9=0ny

=Adn+Bah+Cap,

d
(2) (3) =
+f(2w)d[r (k) + 30, ®(k,k=0)

+60g2I®(k,k=0,k=0)]Aq(k)

XAq(—k), (C7
where
Aq(k)=q(k) —0m (CY
and
A=T®0), B=I®0,0), Cc=I%(0,0,0,
(C9
or

1
(CH
[
dr2

2 d I'((4—d/2))
A= o] ( 27-ra2> (4= d2) (C10
4w d \"*r(6-d) -
3 W_ 2l 2y (6-)72 (C1Y
o 2 w2+z) d \*’r(8-dw) 1
_|v|4 lvl 3 2ma? 392 - (€12
w;=A+3B(q—f)+6C(q—f)?, (C13
w,=—3Bf—4Cf4 (C19
wz=—-B—-4C(q—f), (C1H
w,= —4Cf, (C16)

It is easy to estimate the integrand in EG7) at smallk

(weak inhomogeneily The straightforward calculations

yields

HRS{vaAq(k)}:HRS{qm}_"f % {X(lv],w)
(2m)¢
+(ka)?Y(|v],w)}Aq(k)Ag(—k),
(C19
where
X=A+30q,B+6qg3C (C19
and

o[ 1 |7 2d-3  6-d
N\ 2mda? 1246~ 72 2
1\ 3d-4 (8d
+0m 2rda? 9M(87d)/2 2

[ 1\ ad-s 10-d
+q
m 27Tda.2 2 (10—d)/2 12

0 ) . (C20

From Eq.(C18) it is obvious that the corresponding correla-

tion function

1
lo],w)+ (ka)2Y(Jo|,w)

Aq(k)|2) =
(|Aq(k)|%) X (C21
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