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Accurate estimation of the survival probability for trapping in two dimensions
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In this work we study the mean survival probabili(n,c) of random walks on a two-dimensional lattice
in the presence of traps of concentratigras a function of the number of stepsThe computation of this
quantity is performed indirectly by using the distribution of the number of sites viSifedn order to achieve
an accurate description of this distribution we use a combination of numerical techniques. The method allows
an accurate calculation @b down to very small valuegof the order of 10'% for example, which is not
possible via direct simulations. The survival probability is analyzed in terms of an asymptotic expansion,
following the results of Donsker and Varadh@ommun. Pure Appl. Matt28, 525(1975; 32, 721(1979],
and by using the outcome of a scaling ansatz, as described in our earlier work.
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[. INTRODUCTION The problem has been extensively studied both analyti-
cally and computationally. There is a plethora of results,
The trapping problem is one of the most puzzling andwhich, however, are usually restricted in a narrow time and
most studied problems in the diffusion literatfile-16]. The ~ concentration regime. A very important and basic relation,
problem itself can be very simply formulated. We consider avhich is known for a long time, can be deduced by very
homogenous space éhdimensions, either continuous or dis- Simple arguments. Suppose that the moving particle has sur-
crete. In this space we randomly distribute immobile trapsvived ann-step random walk. During this time it has visited
with a fixed known concentration These traps are typically S, different sites(some of them more than ongewhich
spheres or occupy one lattice site each. Particles, originatingieans that none of thes® sites can be a trap. If the trap
at random positions, start moving in this environment byconcentration is equal tg the probability of one site not to
performing Brownian motior(in continuous spadeor ran-  be a trap is +c, and consequently the statistical weight of
dom walk (in the case of a lattige Multiple occupancy is the above described walk on the survival probability is (1
allowed for the particles and any number of particles can be-c)*. Obviously, the average survival probability at time
on the same site simultaneously. When a particle meets i& exactly equal to
trap its motion stops and the moving particle gets annihilated
on this trap. An infinite number of walkers can be absorbed
on the same trap. This process corresponds to infinitely deep
traps.

The quantity of interest in this work is the survival prob- \ynere \ = —In(1—c), and the average is over all particle

ability ®(n,c), which is the average probability of a random yezjizations of ther-step random walk. Equatioft) can also
walker to have survived, i.e., not encounter a trap, after pe expressed in the form

steps in a space containing a trap concentration equel to
The problem described is only one of many possible varia-
tions that include moving traps, shallow traps that allow for
detrapping, traps that can host one particle only, funnels en- ®(n,c)= 22 pn(s)e™s, 2
circling the traps, excluded volume effects for the particles,

inhomogeneougfor example, fractalspace and many more,

which are dictated from the physical system examined. Howwhere p,(s) represents the density distribution function of
ever, even the simplest model is not easily amenable tghe S, values for a fixed number of steps This distribution
mathematical handling and there is a large amount of literahas heen known for some time in one dimendigy17], and
ture on this topic. Exact _solutlons have been found (_)nly iMas been used for accurate asymptotic evaluatioh (af,c)
special cases and there is no complete general solution. 7 g]: but the only available information for this distribution
There are many physical motivations for studylng such dvhend=2 is the first and second momeiifs8—20, as well
process. Almost any system comprised of two distinct entins the fact that it tends to a Gaussian distribution as the
ties and having random walkers moving in it can be de'dimensionality tends to infinity2].
scribed by one of the many variations of the trapping prob- The main analytical approaches to this problem include

lem. Characteristic examples include compounds of tW@he Rosenstock approximati¢h], where the mean value in
stoichiometrically different species, almost any material witheq_ (1) is replaced by its typical value, yielding

defects or impurities, trapping of excitons, the kinetics of a
chemical reaction A B— B, the probability of finding a taxi
in a city, etc. d(n,c)=e MS, 3

d(n,c)=((1—c)S)y=(e %), 1)

n+1
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the improvement of this approximation with the use of cu-cannot be ignored. Thus, under these conditions it is crucial
mulant expression$], and mainly the work of Donsker and to know in detail the distribution for small and intermediate
Varadhar4] that resulted in an exact asymptotic expressiorvalues ofS, .
for ®(n,c) The factors described abovgap-free regions and com-
pact walkg are both taken explicitly into account in E@).
The large trap-free regions contribute through the term?®
for large values ofs, and thecompactwalks through the
smalls wing of the distributionp,,(s). Since it is practically
impossible to directly simulate the,(s) distribution at its
In this expressiorky is a positive constant depending on the left wing, because of the extremely low probabilities associ-
dimensionality and the structure of the lattice. A detailedated with it, in this work we use an indirect method for this
summary of all the above results can be found in IREf. calculation.

The asymptotic expression in E@), though, has raised a
lot of discussion because it is in contrast with the intuitively Il. METHOD
expected mean-field simple exponential decay, and because
it has been impossible up to now to calculate by simulation In this paper we use an indirect method of calculating the
methods the crossover time, which cannot be predicted bgurvival probability®, i.e., we first calculate the probability
the theory, especially in the case of two dimensions. Redistribution p,(s) of S, and then multiply it bye™** [Eq.
cently, Bundeet al. [15] have proved that any direct Monte (2)]. It is fairly straightforward to construct a Monte Carlo
Carlo trapping simulation results in a simple exponential desimulation in order to compute,(s). A particle starts at the
cay, because of the finite lattice size. Additionally, we re-origin (n=0 and Sp=1) and performs a normal random
cently presented a scaling ansatz using an indirect simulatiowalk on a lattice with all directions having the same prob-
method [16], which clearly showed the crossover regime ability. One has to simply record the number of sites visited
from the Rosenstock approximation to the Donsker-aftern steps. Upon repeating the same procedure many times
Varadhan result. (called different realizations of the walkve construct a his-

The asymptotic behavior of the survival probability cantogram, which when divided by the total number of walks
also be deduced by heuristic argumdrtt, 12, which depict  simulated is a quite accurate approximationpg{s), espe-
that the main mechanism dominating tlebehavior is the cially when the number of realizations is quite large.
combination of large trap-free regions with random walkers This approach works very well, but unfortunately the
that are restricted in these regions. For shorter times, theumber of possible walks increases very rapidly witand
important factor is mainly walks that are very compact, i.e.,an enormous amount of computer resources would be needed
result in very smallS, values, even for larga. The relative  even forn=100 (in which case there are'%~10% possible
probability of occurrence for these walks is very low, but canrandom walks In order to overcome this difficulty we use a
become important as grows larger or for small values af ~ method that allows us to compupg,(s) with a high accu-
By inspecting Eq(2) we can see that the survival probability racy, especially in the sma8,, region. Our method consists
is the result of two fundamental terms; it is the sum of theof three basic steps.
points derived after multiplying two functions, one exponen- (1) Describe the shape of the distribution around the
tial and one—loosely speaking—Gaussian shaped. The maimaximum via direct computer simulation&) calculate ex-
contribution in this sum comes from the left wing of the actly the left-wing of the distribution; and3) interpolate
pn(s) distribution, because of the exponential factor that debetween these two regimes.
cays rapidly and only weighs the small values ©fThe Step 1.The first step is quite straightforward. We per-
number of terms needed in E() for acquiring a given formed 13° independent realizations of the walk and com-
accuracy ford(n,c), say 95%, depends both on the numberputed the probability distribution d,, as described above.
of stepsn and the trap concentration For smallern and  In this way, the minimum value o, can be 10'° and due
lower ¢ we need a larger portion of the distribution. For to statistics considerations we can claim an accuracy of about
example, if we fixn=500, we need around 40 terms when 10 °.
¢=0.9 and 220 terms wher~0.01, in order to converge to Step 2.The second step is an exact calculatiorpgfs),
a 95% accuracy. These terms correspond to the 8% and 44%tarting froms=2 and increasing as much as possible. We
portion of thep,,(s) distribution in thes axis. Similarly, if we  first count the numbeg,(s) of all possiblen-step walks
fix c=0.9 whenn=100 we need 16 terms in ER), which  resulting ins sites visited. The probabilitg,(s) is then sim-
corresponds to 16% of the distribution and is twice the corply found by normalizing by the total number of walk$, 4
responding value fon=500. Moreover, in all these cases i.e., p,(S)=gn(s)/4".
more than 50% in the calculation df(n,c) is contributed The procedure for counting,(s) is as follows: we con-
by the first 10-20 terms. It is thus clear that the regimestruct a Markov chain starting from the poi(@,0). At the
around the peak of the distribution has practically a smalfirst step four branches stem from this point, which corre-
contribution in the sum when the number of stepand the  spond to the four neighbors. At step every point that was
concentratiorc are not too small. Upon loweringthe con-  created during then—1 step gives rise to four more
tribution of the peak becomes progressively more importantbranches. This is the standard Markov chain for a normal
but the left-wing contribution still remains significant and two-dimensional random walk. However, the number of the

lim @ (n,c)=exp — kg 22T Dpd/(d+2)y (4

n—o
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walks increases exponentially and after a few steps there ar 1T
not enough computer resources to follow the evolution of the Y
system. In order to partially overcome this difficulty we fix a
value s, We continuously monitor the number of sites ,
visited along each path. Whenever a path exceeds the valu ;10| e
of smaxWe cut this branch and thus all the portion of the tree, . a
which would be generated by it. In this way, we have beeng
able to coung,(s) up tos=11. o
In practice, this counting was achieved by implementing
the following algorithm. Each path of the chain is repre- 1077
sented in the computer memory by a linked list, and each
node of the list includes the two coordinates of the corre-
sponding point and a pointer to the next node. Initially, there
is only one path including just one node with coordinates 530 .
(0,0) that of, course represents the origin of the lattice. After 2 4 6 8 10 12
a step is made each path gives rise to four more paths that are
exactly the same as the original except for the addition of FIG. 1. Comparison of the exact enumeration technique to the
one of the nearest neighbors. In order to improve the effiMonte Carlo data. Here we plgi,(s) as a function of. The lines
ciency of the algorithm each list includes only once the co-correspond to the simulation data, while the points represent the
ordinates of the sites visited. This means that we are onlgXact result. We present the left wing of three distributions(tiop
interested to find which sites have been visited until nowo bottom n=10, 20, and 50 steps.
which is the definition ofS,,, and not for the path itself. We
also need to know the current site of the lattice where théected with the thick line. The right-most part of the distri-
particle resides and this information is held separately fopution has not been calculated and no effort was made to-
each path. A check is also made so that when two lists inwards this direction because this information is not needed in
clude exactly the same set of sites and the current site is tHeur approach. For example, when=500 andc=0.1 the
same, one of them is destroyed and a variable, denoting hogontribution to the final result o= 150, where the maxi-
many times this particular set has occurred, is increased. Waum of the distribution is located, is less than 10 The
repeat the same procedure fosteps and count the number values ofs, which are larger thas= 150, contribute even
of sites included in each path. Whenever the valueSpf less to the® value sincePsq(s) in this regime is smaller
corresponding to a particular path surpasses the valye thanPsoo(150) and can thus be neglected, as it has already
we destroy this list and do not deal with it anymore. In thisbeen demonstrated at the end of Sec. I. Notice also that the
way, we can have the exact distributipp(s) for values up  error introduced by the interpolation step fo= 100 is very
t0 S=Spa. Due to the symmetry of the problegall four ~ small; only two points need to be computed by the interpo-
directions are equiprobable and the same random walks atation routine and we can be pretty confident about their
repeated in all directions, only rotated 90fe can follow Vvalues. Fom=200 steps the interpolated region is still nar-
only one of the four initial branches at the first step and therfow enough but fom=500 it is rather broad. It is normal

ta

multiply our result by 4. that this regime grows as increases since we cannot in-
In Fig. 1 we present results for the probability distribution

pn(s) aftern=10, 20, and 50 steps. We compare the Monte 10°

Carlo data of 1& realizations to those obtained by the §/

method just described arg},,,=11. It is obvious that the 10°% -;f

two data sets are in excellent agreement with each other b

verifying thus the validity and proper implementation of the 107 o

proposed algorithm. *

Step 3.The final step for approximating the distribution is @E 107 Lo
to interpolate between the exact smallegion computed in o

step 2 and the intermediate region, which was derived by the 107 |
Monte Carlo procedure. This was achieved by using the o
polynomial interpolation routine in Ref21]. 107°®
Ill. RESULTS 107 b : : :
' 0 100 200 300
The method described above gives us the opportunity to S
study the behavior of>(n,c) for finite times with great ac- FIG. 2. Distributions ofS, calculated fom=100, 200, and 500

curacy and without having to face the problem of rare trapsieps(top to bottom. The symbols are the results of the exact
configurations. The distributions d§, evaluated via this enumeration technique described in the text; the thin lines are the
method are given in Fig. 2 fan=100, 200, and 500 steps. result of direct Monte Carlo simulations; and the thick lines repre-
The points derived by the interpolation method are con-sent the interpolated region.
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FIG. 3. Comparison of the survival probability(n,c) calcu- 0 10 20 30 20 50 60

lated by this methodsymbolg, the Rosenstock approximation
(solid ling), and the Monte Carlo simulationglashed ling Trap
concentrationgtop to bottom ¢=0.01, 0.05, 0.1, 0.5, and 0.9.

Xoy = (Xn)o.s

FIG. 4. Plot of the survival probabilitp(n,c) as a function of

creases,, further than 11 by using this algorithm. There- Xpy=(An)*?2 forldifferent trap concentrations, from=0.005 toc .
fore, we have not tried to go further in time thar 500 in _=0.99. The solid and the dashed curves represent the two best fit
order to retain our confidence in the accuracy of the datdi"es of Ed.(5)-
From the figure it is seen that the portion of the curve, which . _ 12 ,
is determined exactly, is smoothly connected to the portiorY"f3 plot® as a function OfXDV_(.m) whethgr the points
that is determined by the Monte Carlo simulations. We be-WIII fall on_the same curve and, if they do, which expression
lieve that we have achieved a good representatiop, (s). can describe this behavior. We try to repre@mnfc) in a

As a simple test, we compared the first and second momenfgrm suggested by the asymptotic repre?gntatlordml

of the distribution and found them to agree with the theoret../ 8- FOr this purpose we will usep,=(\n) “* as the scal-
ical results. For example, the mean vali&) was in com- ing varlgble, W.hICh is suggestgd by the Donsker-Varadhan
plete agreement with the result of Henyey and Sestjaéi expression. This plot is shown in Fig. 4 and we can see that

which is considered the most accurate theoretical descrigh® data fall roughly on the same curve, but a small disper-
tion. sion is obvious in the plot and, moreover, this dispersion is

Now, we can use Eq?2) and calculate exactly the sur- systematic, in the sense that smaller concentrations yield

vival probability for any trap concentration. We cannot,  Slightly lower & values. ,
however, decreasedown to extremely small values because . W€ used the following form for the fit of the data for
in this case the right wing of the distribution may become®(Xov):
important. Results for certain valuesofre shown in Fig. 3
and'compared _to the results &) the Ro§enstock apprqxi— CD(XDv)=AeXV{ —KoXpy+ A ] (5)
mation andb) direct Monte Carlo simulation of the trapping Xpv
process. In the latter case we consider a lattice of<IT@0
sites and assign a random trap configuration where the probVe tried two different fits of the data. In the first one, we set
ability of a site being a trap is. We perform a random walk a;=0 and tookA andk, as free parameters. The results of
and record the number of steps required before trapping. Afthis fit areA=530.33 and,=3.756. In the second fit, we set
ter a certain number of realizations, °10h our case, we the value ofk,=4.26, which is the precise value of the
construct a histogram of these values and estimate thus holdonsker-Varadhan prediction, and we todlanda, as free
many random walkers have survived aftesteps. We can parameters. The parameters were found té\bel.51x 10°
clearly see from the figure that for small trap concentrationéinda,; = —63.35. The figure shows that the first fit already
all the curves practically coincide although we can see smalilescribes the data well, and the second fit gives an equally
deviations for largen. For large enough trap concentrations good agreement with the data. The deviation from the data at
these deviations are much more prominent and start earlier igmall values ok are of no concern in view of the form of the
time. We can see that although the number of steps is na@nsatZEq. (5)], which is valid for largex only. The param-
that large (<<500) the difference of the Rosenstock ap-eter values for the second fit are rather large and probably
proximation data from the other two metho@shich yield  result by our fixing of the constaks. This may be an indi-
similar resulty is important and the mean-field treatment cation of the importance of a different prefactor that may
fails. The Monte Carlo data follow the results of the methodalso depend om, or an indication of improper scaling vari-
presented above, but we expect larger deviations wheable. We also took further terms in the exponent of the form
®(n,c) has very small values, as it was showr 15]. a,/x3,, etc. into account, but the fit did only slightly change
An interesting question after acquiring accurate data isvhen they are included.
whether we can rescale them according to the Donsker- In Ref.[16], we have indicated by using a scaling ansatz
Varadhan expression. In other words, the question is whethat the proper scaling variable for two dimensions should be
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contrary, much better accuracy can be obtained when the
scaling variable is the one derived by our analysi§li@].

IV. SUMMARY

In this paper we have investigated the trapping problem in
d=2 by characterizing the survival probability of particles
diffusing in the presence of traps as a function of the number
of steps and the concentration of the traps. The dimension-
ality d=2 is practically the most difficult to attack in prob-
lems of this nature. The theoretical treatment is more de-
manding than in other dimensions because this is the
. borderline dimension for recurrent random walks, i.e.,dor
10° 10° =1 all the walks return at some time at their origin, while
x=An"® for d=3 only a certain percentage returns. For instance, the
mean number of distinct sites visited by a random walk of
steps(S,) contains logarithmic terms in=2, where ap-
proximately[18]

FIG. 5. Log-log plot of— Ind(n,c)/n®! as a function of the scal-
ing variablex=\n%8 Different symbols correspond to different
trap concentrations fromm=0.005 up toc=0.99. The two lines are
the ones predicted by E¢). na

(Sn)= : @)
x=xn%8 and in this case the mean survival probability can In(8n)

take a form independent of the number of stepand rap  \yhjle for d=1 andd=3 (S,) follows a power law, and it is
concentrationc. This form is reproduced here for conve- proportional ton¥’2 andn, respectively.

nience. We deduced the survival probabilit®(n,c) from the
A _ probability densityp,(s) of S,, which was accurately ob-
—In®(n,c) A% XSXe (6) tained by numerical techniques, and compared it with an
no-1 Axe+kg(x2—x?), x>x, asymptotic expansion of the survival probabiliy(n,c).

The comparison with the asymptotic expansion was not en-
where A, kg, and x. are numerical constants with the ap- tirely satisfactory in that no unique determination of the rela-
proximate valuef\=0.72, ky=4.26 andx,=8.76. In Fig. 5 tive terms was possible. When the same data are rescaled
we plot the data acquired in this work rescaled according t@according to another combination afand n, which was
Eq. (6). By comparing this figure to Fig. 3 ¢1.6] we can see derived by using a completely different route, we can see
that, although the data were obtained by two completely difthat the same figure can be reproduced exactly for both
ferent methods they obey the same behavior, verifying, thumethodologies and the data fall on the same ciFig. 5),
the validity of the scaling variables used. where two characteristic regimes can be easily identified.

The important result of this method is that we can ap- Of course, there is no direct practical application in
proximate the probability distributiop,(s) with a high ac-  achieving an accuracy fob(n,c) of the order of 10
curacy and compute the survival probabili(n,c), a task  However, in order to correctly characterize the different re-
that is impossible by a direct method. The attempt for agimes of behavior, to be able to reach the Donsker-Varadhan
scaling analysis by using the variablg,= (An)*2 whichis  regime and to decide for a proper scaling variable it is re-
present in the Donsker-Varadhan expression, yielded a rathequired to have very accurate data. Direct simulation methods
satisfactory convergence in a curve, which, however, is nohave failed to identify the different regimes, due to the limi-
good enough for one to be certain about the verification ofations posed by the possible(n,c) values that can be at-
the assumption that this is the proper scaling variable. On th&ined.
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