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Fractional Langevin equation
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We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a frac-
tional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle
coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process.
The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-
law behavior. Here we show that their lowest moments are actually all identical, except the second moment of
the velocity. This provides a simple criterion that enable us to distinguish these two non-Markovian processes.
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Diffusion is one of the basic nonequilibrium phenomena.diffusion constantD ,(t) = aDt* 1. In contradistinction, the
Normal diffusion is well described in the theory of Brownian diffusion equation for FTH18]
motion as a Gaussian process that is both local in space and
time. It is characterized by a mean-square displacement that ¢ D t  dr 9?
is asymptotically linear in time{x?)=2Dt, whereD is the 5 PrreX.)= F(a—l)J’o (—2-a PPFTP(X'T) 2
diffusion constan{1]. However, a growing number of ex- (t=7) X
perimental observations show that more complex processeggniains a memory kernel and the distribution function

in which the mean-square displacement is not proportional tg, «(x,t) is hence non-Gaussian. The solution of E2).is
t, also occur in nature. Anomalous diffusion has for instancegif/Ten ,by Perd x,z]=exp( Xz2DY) /[ 2D Y%A~ 2] " in

been seen in micelle systerfg], two-dimensional rotating
flows[3], porous glassdgl], actine network$5], but also on
capillary surface wavefs], in strongly coupled dusty plas-
mas [7], and more recently in intracellular transpd8].
Anomalous diffusion finds its dynamical origin in nonlocal-

Laplacez space. In timePrrp(X,t) has been expressed in
closed form in terms of a Fox functidid 9] or a one sided
Lévy stable distribution[20]. By introducing further the
Riemann-Liouville fractional derivative{1<A<0) [21]

ity, either in space or in tim&or a recent review se@]). A "

) . . M (1) 1 t f(r)dr
well-known example of a process that is nonlocal in space is = , 3
Levy stable motion, for which the mean-square displacement ath F(=N)Jo(t—nr*?

is actually infinite due to the occurrence of very long jumps . ) o ]
[10]. In this paper we focus on processes that are nonlocal iffd- (2) can be rewritten as a fractional diffusion equation
time and whence show memory effects. Specifically, wd 22]
shall discuss and compare fractional Brownian motion
(FBM) [11] and the fractal time proces&TP) [12]. These
two forms of anomalous diffusion are fundamentally differ-
ent (see below. Yet, they are difficult to tell apart experi-
mentally, since both yield a mean-square displacement of theoth Egs.(1) and(4) reduce to the normal diffusion equation
form (x?)=t®, a#1. It is for instance still an open question whena=1.
whether the long-range correlations observed in nucleotide We begin our discussion of FBM by introducing a frac-
sequencefl3-19 are to be interpreted in terms of FBM or tional Langevin equation. It is worthwhile to point out that
FTP-type DNA walkqd16]. In this paper we aim at providing the Langevin and the phase-space descriptions of Brownian
a simple criterion that permits to distinguish between thesgnotion are no longer fully equivalent in the non-Markovian
two non-Markovian processes. regime of interest here. As recently discussed by Calzetta
The very difference between FBM and FTP is best illus-et al.[25], the Langevin equation contains more information
trated by looking at their diffusion equations. The solution ofand thus appears more fundamental. We then apply this frac-

1-a &2

e QPFTP(XJ)- 4

1%
EPFTP(Xat):D

the diffusion equation for FBM17] tional Langevin equation to study in some detail the anoma-
lous diffusion of a free particle coupled to a fractal heat bath.

9 92 In particular, we evaluate the first twvo moments of both the

5 Peam(X,t)= aDt“*ﬁ Peam(X,t), (1) position and the velocity of the particle, which we express in

terms of Mittag-Leffler functions. Finally, we compare with

the results obtained recently for FTP by Metzler and Klafter
is easily found to be the Gaussian distributiBrgy(X,t) for 0<a<1 [23] and by Barkai and Silbey for L a<2
=exp(—x?4Dt®)/[47wDt*]¥2. FBM thus describes Gauss- [24] by using a fractional Klein-Kramers equation. We find
ian transport. It is important to note that Ed) is thereby that FBM and FTP satisfy the same generalized Einstein re-
local in time (there is no memory kernel The non- lation. Moreover, their lowest moments are all equal, except
Markovian character is expressed through a time-dependetite second moments of the velocity.
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We examine the dynamics of the Brownian particle with awhere £(t) is a Gaussian random force with mean zero and
microscopic random-matrix model. Rand(_)m—matnx theOWVariance(g(t)g(O))=K’(t), and y(t) is a damping kernel
has already been successfully applied in the context Ofhat obeysM kTy(t)=E’(t). This last relation is often re-

anomalous diffusion in Ref§27-29. The relaxation of a ferred to as the second fluctuation-dissipation theo@8h

system _coupled to a c_omplex environment I expected to bﬁemark that the Langevin equation is completely determined
insensitive to the details of the interaction. The process ma

then be described within a statistical approach where the iréy the real parK’(t) of the bath correlation function. Fur-

teraction is modeled by a random operaf@6]. We thus the_rmore, in the ””_"'“ O.f We".’lk coupli_ng, the dynamics de-
consider a systers weakly coupled to a fractal heat bath scribed by the Hamiltonia(b) is Gaussian and one can show

via a random-matrix interactiofi29,30. The coupling is that the corrgsponding diffusion equatiqn ig precisely given
chosen linear in the positior of the system. The generic 2Y EG:(1). Using again the fractional derivativ@), we may
form of the Hamiltonian is given by rewrite E_q.(8) in the form of a fractional Langevin equation.
We obtain
H=Hs®lg+1s®Hg+Xx®V, (5) o1
+ +U’(x)=
whereHs=p?/2M +U(x) is the Hamiltonian of the system, Mx()+ My at“‘lx(t) UM =41, ©®
Hg describes the bath andis a centered Gaussian random
band matrix. It is assumed that initially the system and thevhere we have definegl,= wAB/[M sin(an/2)]. The frac-
bath are uncorrelated and that the latter is in thermal equilibtional Langevin equatioi9) describes both subdiffusion for
rium at temperatur@= (kT) ~*. The variance of the random O0<a<1 and superdiffusion for £ «<2 [34]. As a simple
interaction is further taken to have the fof@29] application of the fractional equatio(®), we now concen-
trate on the free particle and accordingly 8€x) =0. In this
L lea—ep]* L (6a—ep)? case, the solution of the Langevin equation is easily obtained
V§b=A0a—ex;{ -2
[p(£a)p(ep)]Y? 2A°

(6) by applying Laplace transform technique?]. We find

t
Heree,'s denote the eigenenergies of the bath Hamiltonian X(D)=Xo+voB, (1) + fo B,(t=m)&(ndr, (10

(Hgla)=¢e,la)), Aq is the strength of the couplingy the
bandwidth, andp(e) is the density of states of the bath, where &q,v) are the initial coordinates of the particle and
which is locally written asp(g) = poexp(Be). As shown in Bv(t)zfgcv(t’)dt’ is the integral of thegnormalized ve-
[29], the variance6) gives rise to subdiffusion whea<1 locity autocorrelation functionC,(t)={(v(t)v)/{(v?). The
and to superdiffusion when<la<<2. The coupling to the Laplace transform o€, (t) is given by
bath is characterized by the bath correlation function that is
defined ask (t)=(V(t)V(0))g=K'(t) +iK"(t). Here V(t) 1 1
=exp(Hgt)Vexp(—iHgt) and (- --)g denotes the average Culzl= 7 [z] a1'
. Y Z+y,Z
thermal. After performing the average over the random-
matrix ensembleK(t) is found to be simply the Fourier wherey[z] is the Laplace transform of the damping kernel.
transform of the variancé’abz with respect toe,. In the  Equation(11) is known as the first fluctuation-dissipation
following we consider the limit of high temperature and theorem[33]. By taking the inverse Laplace transform, the
large bandwidth, &A <KkT. Using the variancé) we then  Velocity autocorrelation function can be written as
obtain

(11)

Cv(t):E27a(_7at27a)- (12)
PR am\ o B dK’ Here we have introduced the Mittag-Leffler functi@n(t),
K (t)_ZAOF(Q)COS(7>t » K'O=550 D \hich is defined by the series expans[@3]
We see that the time dependencexdt) follows an inverse E ()= t" (13)
power law. This presence of a long tail leads to long-time 7 = l(an+l)

correlation effects in the dynamics of the Brownian system

[29]. Note that fora=1, the Fourier transform of Eq6) The functionE (t) reduces to the exponential when=1.
readsK’ (t)=2mA,(t) and normal Brownian motion is re- 1he asymptotic behavior of the Mittag-Leffler functiond)
covered. The generalized Langevin equation that correfor shortand long times is respectively given bexp() and

sponds to the random-matrix Hamiltonié®) can easily be ~~[tI'(1-a)]™*, 0<a<1 and k< a<2[36]. For the ve-
derived with the method presented in REF1]. In the limit locity autocorrelation function(12) this yields a typical
of weak coupling this leads to stretched exponential behavior at short times
. t . - 'yat27 “
Mx(t)+Mfoy(t—T)X(T)dT+U’(X)=§(t), (8) Cv(t)~expm, t<m, (14)
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and an inverse power-law tail at long times (02) =0 Ey_ o(— Yot 9 7]?
Cu(t) S (15) [~y T) (23
~ , 2 . Ml LE2—al T Va .
7 yel'(a—1) (y,)Ye M

We observe thatv?) decays like (¢ 2)? for larget. A com-

mon remarkable property of the above calculated mean val-

ues is their slow relaxation towards equilibrium as given by

the (generalizegMittag-Leffler function. This has to be con-

B (t)=tE,_ . (—y.t2~%), 1 t_raste_d with normal Brow_nlan motion where all th|_s quanti-
(V) 2-a 2l = Yal™ ) (16 ties display an exponential decay. Let us now discuss the

where we have used the generalized Mittag-Leffler functiorfeneralized Einstein relation that relates driven and free pro-

The result(15) has already been obtained in Regf9], where
it has been shown to induce the “whip-back” effect. After
time integration, we finally get from E12)

E, 4(t) defined ag35] cess[37]. We consider a particle initially at reskxd{=uvg
“p =0) and seek the mean positidr)r as a function of an
* tn externally applied constant for¢é(x) = —xF6(t). From the
Eavﬁ(t)=; FlaniB)" (17)  Langevin equation we easily find
d{x)¢ F [t o
In the long-time limit, the generalized Mittag-Leffler func- at - MLCU(I )dt’, (24
tion satisfies E, s(t)~—[tI'(B—a)]"". Accordingly,
B, (t) exhibits a decay of the form where the velocity autocorrelation functi@(t) is given by

w1 Eq. (12). Equation(24) together with the Green-Kubo rela-
B,(t)~ t  when t—oo. (18) tion (21) for (?(2>o in the force-free case, then yields the
vl () generalized Einstein relation for FBM

We emphasize that the soluti¢h0) of the fractional Lange- _F
vin equation in the force-free case is completely specified by <X>F_ﬁ<x o-
the knowledge of the functioB,(t).

Let us now turn to the evaluation of the lowest momentslt is interesting to note that the validity of the Einstein rela-
of the position and the velocity of the free particle. The meariion (25 has been recently verified experimentdl88,39.
displacement and the mean-square displacement are readily We now come to the comparison of FBM with FTP. Bar-

(29

deduced from Eq(10). We find kai and Silbey have investigated superdiffusive FTP with a
fractional Klein-Kramers equation that they inferred from a
- v t*71 generalized Rayleigh modg24]. For the free particle, a di-
(X)=Xo+vot Ex— g2 = ¥at a)t:cy_am (19 rect comparison40] between their results and our Egs.

(19—(25) shows that the mean displaceméh®), the mean-
square displacemeri20), the velocity’s first moment22),
and the velocity autocorrelation functiqd2) are identical
kT kT te for the two processes. This means, in particular, that FBM
(X2)= ——1t?Ep_ oo — Yal? ™) ~ R and FTP satisfy the same Green-Kubo relati@h). More-
M ' e ¥eM I'(1+a) over, both FBM and FTP obey the same generalized Einstein
(200 relation(25). Although FBM and FTP are fundamentally dif-
ferent processes, we thus notice that they share strikingly

In the last equation, thermal initial conditions have been aScommon features. However, the second moments of the ve-
sumed =0, v3=kT/M). In addition, one may easily |ocity are different. For convenience, we quote their equation
verify that(x)?, (x?), andC,(t) satisfy the general Green- (2.18 that read<in our notation

Kubo relation ) 5 )
(V)= UgE2 - o( = 27,t°79)

and

2y 2 2KT [t (v k
(X)= ()= M Jl)dt fo d7Cy(7), @) "'VT{l_Ez—a(_z’Yatz_a)}- (26)

which is known from linear response thedB8]. In a similar W
way, one can compute the first and second moments of three
velocity from the time derivative of Eq10). This results in

e see that for FTP, the second moment of the velocity
laxes asymptotically liké* 2. This is in sharp contrast to
the FBM result Eq(23) that exhibits a much faster decay. It
is also worth noting that Eq€22) and (26) reduce to the

(V) =00z o( — yot?™ %) ~ ﬂtale (22) samg(exponential expression fo_raz 1. On the other hand,
toxYa subdiffusive FTP has been studied by Metzler and Klafter by
using a fractional Klein-Kramers equation derived from a
and non-Markovian generalization of the Chapman-Kolmogorov
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equation. A comparison with their results for the force-freevin equation that applies for both subdiffusion and superdif-
case leads to similar conclusions as in the superdiffusive réusion. The Langevin approach thus provides a unified treat-
gime_ Many experiments on anomalous diffusion have meament of anomalous diffusion. We have further studied the
sured either the mean-square displacenfi®ag] or the gen- anomalous dynamics of a free particle coupled to a fractal
eralized Einstein relatiof88,39. However, the latter do not N€at bath and performed a comparison between FBM and
allow to distinguish FBM and FTP, as we have just shown FTP. We have found that these completely different forms of
In contrast, the variance of the velocity offers a clear distinc-non'I\/I‘fjlrkow"’ln anomalous diffusion share many common

. I characteristics. In particular, they satisfy the same general-
tion between these two processes as exemplified by(Egs. ized Einstein relation and their lowest moments are all equal

with the exception of the second moment of the velocity.

and(26). This result could stimulate ongoing experiments on

anomalous diffusion41].

In summary, we have investigated FBM within a generic

We thank E. Barkai for reading the manuscript and E.

random-matrix approach and introduced a fractional LangeSchraler for correspondence.
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